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Abstract The limit theorems of discrete- and continuous-time quantum walks
on the line have been intensively studied. We show a relation among limit
distributions of quantum walks, Heun differential equations and Gauss dif-
ferential equations. Indeed, we derive the second-order Fucksian differential
equations which limit density functions of quantum walks satisfy. Moreover,
using both differential equations, we discuss a relationship between discrete-
and continuous-time quantum walks. Taking suitable limit, we can transform
a Heun equation obtained from the limit density function of the discrete-time
quantum walk to a Gauss equation given by that of the continuous-time quan-
tum walk. This work is collaboration with Norio Konno and Tohru Wakasa.

1 Introduction

The discrete-time quantum walk ( $QW$), which is a quantum counterpart of
the classical random walk, has been extensively investigated since Ambainis
et al. [2] studied a detail of the walk. The continuous-time $QW$ was proposed
by Farhi and Gutmann [5], and has been analyzed on not only regular graphs
but also complex networks (e.g. [8, 19, 25]). $A$ further development in the theory
of the $QW$ during recent 10 years showed us several novel properties on both
QWs. The behavior of the $QW$ is quite different from that of the random
walk and is expected to be connected with various phenomena in quantum
mechanics. $A$ relation between the $QW$ and quantum computer has been also
discussed (e.g. [1, 20, 22]). The quantum search algorithm designed by the $QW$

is one of the important applications. The Grover search algorithm can be
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considered as a discrete-time $QW$ on the complete graph and it produces
speed-up at the square-root rate for the corresponding classical search. There
are some reviews of the $QW$ [10, 11, 15,24].

One of the purposes in the study of the $QW$ is to derive the limit dis-
tribution and the asymptotic behavior as time tends to infinity. The limit
distribution has been obtained for various kinds of QWs. In the present paper,
we concentrate on the $QW$ in the one-dimensional space. Observing previous
results, one can mention that each limit distribution usually has a compact
support and admits a singularity at the boundary of the support. This is an
interesting property of the limit distribution, because the $QW$ does not pos-
sess any singularity in space. To the fact, we now address a question: How to
understand the singularity of the $QW$? Motivated by this question, we inves-
tigate the limit distribution of the $QW$ from a viewpoint of the differential
equation.

We begin with finding a differential equation for the limit distribution.
For example, consider discrete- and continuous-time symmetric simple random
walks on the line. The central limit theorem for the walk, that is, $\lim_{tarrow\infty}\mathbb{P}(Y_{t}/\sqrt{t}\leq$

x $)$ $= \int_{-\infty}^{x}e^{-y^{2}/2}/\sqrt{2\pi}dy$ , is well-known, where $Y_{t}$ denotes the walker’s posi-
tion at time $t$ and $\mathbb{P}(Y_{t}=x)$ is the probability that the walker is at position
$x$ at time $t$ . For the limit density function $f(x)=e^{-x^{2}/2}/\sqrt{2\pi}$ , an equation
$d^{2}f(x)/dx^{2}+xdf(x)/dx+f(x)=0$ is derived. This equation comes from the
theory of the diffusion equation $\partial u(x, t)/\partial t=\frac{1}{2}\partial^{2}u(x, t)/\partial x^{2}$ , and in par-
ticular, it is also obtained by the self-similarity of the fundamental solution
$u(x, t)=(1/\sqrt{t})f(x/\sqrt{t})$ .

Let us consider both discrete-time and continuous-time QWs on the line.
The classical random walk corresponds to the diffusion process, while for the
$QW$ the corresponding process is not known. Thus, to find out the process
would remain as one of important problems. Taking an account of the singu-
larity in the limit distribution, we treat a class of Fucksian linear differential
equations of the second order. For discrete-time (resp. continuous-time) QWs,
we are led to a Heun’s differential equation ($HE$ ) (resp. a hypergeometric dif-
ferential equation by Gauss (the Gauss equation, $GE$ ) $)$ . The $GE$ is one of
typical Fucksian equations and represents the Fucksian equations with exactly
three regular singular points. On the other hand, the $HE$ was proposed in 1888
by Heun [7] and admits four regular singular points.

Moreover, a concept of confluence between the $HE$ and the $GE$ helps us to
understand a relationship between discrete,-and continuous-time QWs clearly.
Through these results, authors believe that the $HE$ and the $GE$ play an im-
portant role in understanding the QWs.

The present paper is organized as follows. In Sect. 2, we explain both the
one-dimensional discrete-time $QW$ and the $HE$ . After introducing the limit
distribution obtained by Konno [12, 14], we discuss a relation between the
discrete-time $QW$ and the $HE$ . In Sect. 3, we concentrate on the continuous-
time $QW$ , and show that the $GE$ relates with the limit density function of
the walk. Section 4 is devoted to a connection between the $HE$ and the $GE$
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in order to understand a relationship between discrete- and continuous-time
QWs given by Strauch [23].

2 $A$ relation between the discrete-time $QW$ and the $HE$

In this section, we discuss a relation between the discrete-time $QW$ in one
dimension and the $HE$ . At first we define the $QW$ on the line. Let $|x\rangle(x\in \mathbb{Z}=$

$\{0, \pm 1, \pm 2, \ldots\})$ be infinite components vectors which denote the position of
the walker. Here, x-th component of $|x\rangle$ is 1 and the other is $0$ . Let $|\psi_{t}(x)\rangle\in \mathbb{C}^{2}$

be the amplitude of the walker at position $x$ at time $t\in\{0,1,2, \ldots\}$ , where $\mathbb{C}$

is the set of complex numbers. The amplitude of the walk at time $t$ is expressed
by

$| \Psi_{t}\rangle=\sum_{x\in \mathbb{Z}}|x\rangle\otimes|\psi_{t}(x)\rangle$
. (1)

The time evolution of the walk can be defined by the following unitary matrix:

$U=\{\begin{array}{l}bacd\end{array}\}$ , (2)

where $a,$ $b,$ $c,$ $d\in \mathbb{C}$ . Moreover, we introduce two matrices:

$P=\{\begin{array}{l}ba00\end{array}\}, Q=\{\begin{array}{l}00dc\end{array}\}$ (3)

Note that $P+Q=U$ . Then the evolution is determined by

$|\psi_{t+1}(x)\rangle=P|\psi_{t}(x+1)\rangle+Q|\psi_{t}(x-1)\rangle$ . (4)

The probability that the discrete-time quantum walker $X_{t}^{(d)}$ is at position $x$

at time $t,$ $\mathbb{P}(X_{t}^{(d)}=x)$ , is defined by

$\mathbb{P}(X_{t}^{(d)}=x)=\langle\psi_{t}(x)|\psi_{t}(x)\rangle$ , (5)

where $\langle\psi_{t}(x)|$ denotes the conjugate transposed vector of $|\psi_{t}(x)\rangle$ . In the present
paper, we take the initial state as

$|\psi_{0}(x)\rangle=\{\begin{array}{l}\tau[1/\sqrt{2}, i/\sqrt{2}](x=0) ,\tau[0,0] (x\neq 0) ,\end{array}$ (6)

where $T$ is the transposed operator. Equation (6) is well-known as the initial
state that gives the symmetric probability distribution about the origin [15].

For the walk, some limit theorems and asymptotic behaviors have been
obtained. In particular, we focus on the density function of probability distri-
bution as $tarrow\infty$ . The limit distribution of the $QW$ was given by Konno [12,
14]. That is, for $abcd\neq 0$ , we have

$\lim_{tarrow\infty}\mathbb{P}(\frac{X_{t}^{(d)}}{t}\leq x)=\int_{-\infty}^{x}f^{(d)}(y)I_{(-|a|,|a|)}(y)dy$ , (7)
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where

$f^{(d)}(x)= \frac{\sqrt{1-|a|^{2}}}{\pi(1-x^{2})\sqrt{|a|^{2}-x^{2}}}$ , (8)

and $I_{A}(x)=1$ if $x\in A,$ $I_{A}(x)=0$ if $x\not\in A.$ $A$ lot of limit distribu-
tions of discrete-time QWs are often described by using this function $f^{(d)}(x)$

(e.g. [3,9,16-18,21]). Figure 1 depicts the comparison between the probabil-
ity distribution at time 500 and the limit density function for the walk with
$a=b=c=-d=1/\sqrt{2}$ , which is called the Hadamard walk.

1 $-|u|$ $0$ $|u|$ 1

$x$ $x$

(a) (b)

Fig. 1 Comparison between the probability distribution and the limit density function of
the discrete-time $QW$ with $a=b=c=-d=1/\sqrt{2}$ . Figure (a) is the probability distribution
at time $t=500$ . Figure (b) is the limit density function of the walk.

From now, we discuss a relation between the limit density function $f^{(d)}(x)$

and the $HE$ . The canonical form of the $HE$ is given by

$\frac{d^{2}u}{dz^{2}}+(\frac{\gamma}{z}+\frac{\delta}{z-1}+\frac{\epsilon}{z-\theta})\frac{du}{dz}+\frac{\alpha\beta z-q}{z(z-1)(z-\theta)}u=0$, (9)

where $\theta\in \mathbb{C}$ is one of the singular points and $\alpha,$
$\beta,$

$\gamma,$
$\delta,$

$\epsilon,$
$q\in \mathbb{C}$ . The five

parameters $\alpha,$
$\beta,$

$\gamma,$
$\delta,$ $\epsilon$ are linked by the relation $\alpha+\beta+1=\gamma+\delta+\epsilon$ and

the parameter $q$ is called the accessory parameter. The $HE$ has four regular
singularities at $z=0,1,$ $\theta,$ $\infty$ . Particularly the $HE$ with $\gamma=\delta=\epsilon=1/2$ is
called Lam\’e’s equation and it have been analyzed in detail. In some special
cases, the $HE$ becomes the $GE(e.g. \theta=1, q=\alpha\beta case)$ .

We find that $f^{(d)}(x)$ satisfies the following differential equation:

$(1-x^{2})(|a|^{2}-x^{2}) \frac{d^{2}}{dx^{2}}f^{(d)}(x)-x(4|a|^{2}+3-7x^{2})\frac{d}{dx}f^{(d)}(x)$

$+(9x^{2}-2|a|^{2}-1)f^{(d)}(x)=0$ . (10)

By a change of an independent variable $x^{2}=z$ , we obtain one of our main
results:
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Theorem 1

$\frac{d^{2}}{dz^{2}}u^{(d)}(z)+(\frac{\frac{1}{2}}{z}+\frac{2}{z-1}+\frac{\frac{3}{2}}{z-|a|^{2}})\frac{d}{dz}u^{(d)}(z)$

$+ \frac{\frac{9}{4}z-\frac{2|a|^{2}+1}{4}}{z(z-1)(z-|a|^{2})}u^{(d)}(z)=0$ , (11)

where

$u^{(d)}(z)= \frac{\sqrt{1-|a|^{2}}}{\pi(1-z)\sqrt{|a|^{2}-z}}$ . (12)

We should remark that Eq. (11) is equivalent to the $HE$ with

$\alpha=\beta=\frac{3}{2}, \gamma=\frac{1}{2}, \delta=2, \epsilon=\frac{3}{2}, q=\frac{2|a|^{2}+1}{4}, \theta=|a|^{2}$ (13)

3 $A$ relation between the continuous-time $QW$ and the $GE$

In this section we will show a relationship between the continuous-time $QW$

on $\mathbb{Z}$ and the $GE$ :

$z(z-1) \frac{d^{2}u}{dz^{2}}+\{(\alpha+\beta+1)z-\gamma\}\frac{du}{dz}+\alpha\beta u=0$ (14)

where $\alpha,$
$\beta,$ $\gamma\in \mathbb{C}$ are parameters. Equation (14) is a second-order Fucksian

equation with three regular singularities at $z=0,1,$ $\infty.$

We give a definition of the continuous-time $QW$ on the line. At first, we
consider the amplitude $\psi_{t}(x)\in \mathbb{C}$ at position $x\in \mathbb{Z}$ at time $t(>0)$ instead
of $|\psi_{t}(x)\rangle\in \mathbb{C}^{2}$ for the discrete-time $QW$ . The evolution of the amplitude is
defined by

$i \frac{d\psi_{t}(x)}{dt}=-\nu\{\psi_{t}(x-1)-2\psi_{t}(x)+\psi_{t}(x+1)\}$ , (15)

where $\nu>0$ . The probability that the walker is at position $x$ at time $t$ is
denoted by $\mathbb{P}(X_{t}^{(c)}=x)=|\psi_{t}(x)|^{2}$ , where $X_{t}^{(c)}$ is the continuous-time quan-
tum walker’s position at time $t$ . We take an initial state as $\psi_{0}(0)=1$ and
$\psi_{0}(x)=0(x\neq 0)$ . Konno [13] and Gottlieb [6] got the limit theorem for the
continuous-time $QW$ as follows:

$\lim_{tarrow\infty}\mathbb{P}(\frac{X_{t}^{(c)}}{t}\leq x)=\int_{-\infty}^{x}f^{(c)}(y)I_{(-2\nu,2\nu)}(y)dy$ , (16)

where
$f^{(c)}(x)= \frac{1}{\pi\sqrt{(2\nu)^{2}-x^{2}}}$ . (17)

In Fig. 2, we show the comparison between the probability distribution at time
500 and the limit density function for the walk with $\nu=1/2\sqrt{2}.$
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Fig. 2 Comparison between the probability distribution and the limit density function of
the continuous-time $QW$ with $\nu=1/2\sqrt{2}$ . Figure (a) is the probability distribution at time
$t=500$ . Figure (b) is the limit density function of the walk.

We see that the function $f^{(c)}(x)$ satisfies the following differential equation:

$(4 \nu^{2}-x^{2})\frac{d^{2}}{dx^{2}}f^{(c)}(x)-3x\frac{d}{dx}f^{(c)}(x)-f^{(c)}(x)=0$ . (18)

By the change of an independent variable $x^{2}/4\nu^{2}=z$ , we have a continuous-
time counterpart of Theorem 1:

Theorem 2

$z(z-1) \frac{d^{2}}{dz^{2}}u^{(c)}(z)+(2z-\frac{1}{2})\frac{d}{dz}u^{(c)}(z)+\frac{1}{4}u^{(c)}(z)=0$, (19)

where

$u^{(c)}(z)= \frac{1}{2\nu\pi\sqrt{1-z}}$ . (20)

Note that Eq. (19) is the $GE$ with $\alpha=\beta=\gamma=1/2.$

4 $A$ relation between discrete-time and continuous-time QWs in
the theory of the differential equation

In this section, we discuss a relation between discrete- and continuous-time
QWs on the second-order differential equations which were obtained in previ-
ous sections. Strauch [23] found a relation between both walks by transforming
Eq. (4) to Eq. (15) in a suitable limit. $D$ ’Alessandro [4] focused on both QWs
on general graphs and derived the dynamics of continuous-time walks as a
limit of discrete-time dynamics.

Considering a confluent type for the $HE$ which the function $u^{(d)}(z)$ satisfies,
we can also obtain the $GE$ which the function $u^{(c)}(z)$ satisfies. For a scaling
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parameter $\tau$ , substituting $z=t/\tau$ in Eq. (11), we have

$4t(|a|^{2} \tau-t)(1-\frac{t}{\tau})\frac{d^{2}}{dt^{2}}v(t)+2\{\frac{8t^{2}}{\tau}-(5|a|^{2}+4)t+|a|^{2}\tau\}\frac{d}{dt}v(t)$

$+( \frac{9t}{\mathcal{T}}-2|a|^{2}-1)v(t)=0$ , (21)

with $v(t)=u^{(d)}(t/\tau)$ . As $\tauarrow\infty,$ $|a|arrow 0$ under the condition $|a|^{2}\tauarrow 1$ , we
obtain a confluent $HE$ :

$t(t-1) \frac{d^{2}v}{dt^{2}}+(2t-\frac{1}{2})\frac{dv}{dt}+\frac{1}{4}v=0$. (22)

Equation (22) is equivalent to the $GE$ which was obtained from the continuous-
time $QW$ (see Eq. (19)). This result corresponds to the result in Strauch [23].
We can confirm his result in a relation between the $HE$ and the $GE.$
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