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Abstract

In this note we present some recent results on the large time behavior of so-
lutions to viscous Hamilton-Jacobi equations arising in stochastic control. Our
equations possess superlinear nonlinearity in gradients, and solutions are un-
bounded on the whole Euclidean space. We prove that, as the time tends to
infinity, the solution approaches to a steady state in a suitable sense. We also
establish a variational representation formula for the limit.

1 Introduction

Let us consider semilinear parabolic equations of the form
1
OGiu — 3 tr(a(z)D?u) + H(z,Du) =0 in (0,00) X RY, (1.1)

where 8,u = du/8t, D*u = (60°u/0z;0x;), and Du = (Ou/dz;). We are concerned with
the large time behavior of solutions of (1.1). It turns out under suitable assumptions
on a = (a;(z)), H = H(z,p), and initial datum (0, - ), that the solution u = u(t, z)
of (1.1) approaches as ¢t — oo to a function of the form At + ¢(z) + ¢ for some real
constants )\, ¢, and function ¢ = ¢(x) on RN with ¢(0) = 0. More precisely, one can
prove the following convergence:

u(t,z) — (M +¢(z)+¢c) — 0 in C(R") as T — oo. (1.2)
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Here, convergence 'in C(R")" stands for locally uniform convergence in R¥. We call
the triplet (A, ¢,c) asymptotic solution if At + ¢(z) + c solves (1.1). Any asymptotic
solution should satisfy the stationary equation

A %tr(a(x)quﬁ) 4 H(z,D$)=0 in RY, @(0)=0. (1.3)

Finding a pair (), ¢) satisfying (1.3) is called ergodic problem. Remark that A and ¢ in
(1.2) are specified from the stationary equation (1.3), whereas the constant ¢ needs to
be determined from the evolutionary equation (1.1). Asymptotic problems of this type
have been largely studied in various settings. We refer to [1, 2, 5, 12, 13] for recent
results from the PDE viewpoint, and to (3, 4, 6, 8, 9, 10, 11] from the probabilistic
viewpoint, especially, in connection with mathematical finance.
In this note, we concentrate on a more specific equation: we consider the Cauchy
problem
Oyu — %Au + %|Du|m =f in (0,400) x RV,

ul,_, =9 on {0} x R¥,

(CP)

where m, f, and g are assumed to satisfy the following conditions:
(H1) m>1.
(H2) f e C*R"), and there exist some C > 0 and 8 > 0 such that

Clzl’ - C < f(z) <C(lz]P +1), |Df(z)] <C(z)f~*+1), zeR".

(H3) g € C(RY) is bounded below on RY.

In the first half of this note, we discuss, according to [9], the large time behavior of
solutions to (CP). It holds convergence (1.2) for some (A, ¢, c) under (H1)-(H3). In the
second half, we study a variational representation formula for the limit ¢, which seems
to be new to the best of our knowledge.

Equation (CP) naturally appears in the stochastic control theory. Let us consider
the following minimizing problem

T
e 1 .
Minimize  J(T, ;€)= B / (=lalm + F(X9)) dt + g(xg)],
0 m
t
subject to Xf=x—/ &ds+ W, t2>0,
0

where m* := m/(m — 1) > 1, and W = (W,) denotes an N-dimensional Brownian
motion defined on a filtered probability space (Q,F, P;(F;)). The control process
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¢ = (&) is taken from the admissible class Az which is defined as the collection of all
(F¢)-progressively measurable processes £=(&)in RY such that

[ [ (e

where (3 is the constant in (H2). Then, we see that the value function

m |X5|f’)dt] <00, z€RY, (1.4)

u(T,z) = inf J(T,;€) (L5)

is a classical solution of (CP).

This note is organized as follows. In the next section, we survey some results
obtained in [9]. In Section 3, we discuss a variational representation formula for the
constant c in (1.2).

2 Convergence of solutions
We begin with the solvability of (CP).

Theorem 2.1. Let (H1)-(H3) hold. Then, u defined by (1.5) is the minimal solution
of (CP) in the class

® := {u € C™?((0,00) x RY) x C([0,00) x R¥)| inf u> —o0, T > 0}.
[0,T)xRN

Proof. The proof is based on the verification theorem. See [9, Theorem 2.1] for details.
O

As the limiting equation of (CP), we derive the ergodic problem
1 1
A—5A¢+—IDg" = f in RY, 4(0)=0. (EP)

Recall that the unknown is (), ¢) € R x C?(R"). Equation (EP) has a unique solution
in the following sense.

Theorem 2.2. Let (H1)-(H3) hold. Then, there exists a unique solution (\*,¢) €
R x C*(R") of (EP) such that infg~ ¢ > —0co. Moreover, there exists some C > 0 such
that the solution ¢ satisfies the following estimate:

CYa|B/mH — C < o(z) < C(|z|®/™+ + 1), zeRV.

Proof. See [9, Theorem 2.2). 0



Remark 2.3. The condition infgy ¢ > —00 is necessary to derive the uniqueness of
solution. Indeed, there exist infinitely may pairs (), ¢) satisfying (EP) if we do not put
this condition.

Let (A*, ¢) be the unique solution of (EP) given in Theorem 2.2. Then, we see that
the solution u of (CP) converges to an asymptotic solution (A*, ¢, c) for some c € R.

Theorem 2.4. Let (H1)-(H3) hold. Let u and (\*,¢) be the solutions of (CP) and
(EP), respectively. Assume that 3 > m*. Then, there exists a constant c¢ such that

wWT, )= NT+¢(-)+c)—0 in C(R"Y) as T — oo. (2.1)

Remark 2.5. Under (H1)-(H3), we can prove that

E(—T,—;;’;)———)—)\* in C(RY) as T — oo.

However, we do not know, in general, if (2.1) is valid without assuming 8 > m*.

In the rest of this section, we give a sketch of the proof for Theorem 2.4. We
refer to [9, Section 5.2] for a complete proof. Let u be the solution of (CP) defined
by (1.5), and let (A*, ) be the solution of (EP) such that infgyv ¢ > —o00. We set
w(T, z) = u(T,z) — (p(x) + A*T) for (T,z) € (0,00) x RY. The goal is to prove that
w(T, -) converges in C(R") to a constant as T' — oo. Observe that w is a solution of

dw — A*w + H,(z,Dw) =0 in (0,00) x RN (2.2)

with w(0, -) = g — ¢ in R, where A¥ is the second order differential operator given
by
1
A? := SA — |Do(a)|"*Dp(<) - D,

and H,(z,p) is defined by
1 1 _
Hy(2,9) = —lp+ Dg(a)[" — - IDp(@)[" = [Dp(@)I"*Di(e) 5. (2.9

Notice that H, > 0 in R%" since the mapping p — (1/m)|p|™ is convex.
Let X% = (X7)t>0 be the A¢-diffusion, that is, the solution of the stochastic differ-
ential equation

dX? = ~|Dp(X?)|"2Dp(Xf) dt + dW;, t > 0.

Note that X* is ergodic with an invariant probability measure y = u(dz) such that
Jan.lzl'u(dz) < oo for all I > 0 (see [9, Proposition 4.13]).
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Lemma 2.6. Let (\*,¢) be the unique solution of (EP) given in Theorem 2.2, and let
X = (X{) be the A¢-diffusion. Then,

w(T +8,z) < E*lw(T,Xg), T,8>0, zeR".
Proof. In view of Ito’s formula to w(T + S — ¢, XY) and equation (2.2), we see that
w(T + S — S ATr, XEn,,) — w(T + S, XT)

SATR SATR
= / (=8w + A*w)(T + S —t, Xf) dt + / Dw(T + S —t, X7) dW,
OSATR °
> / Dw(T + 8 — t, X¢) dW,,
0
where 75 := inf{t > 0||X{| > R}. Taking expectation, we have
w(T + S,z) < E*w(T + S — S AR, X5,

Since [w(t, z)| < C(1+|z|?) in [0, T+S]xR¥ for some C,q > 1, and {|X§,,.|?; R > 1}
is uniformly integrable, we obtain the desired estimate after sending R — oo. O

Proposition 2.7. The family {w(T, -)|T > 1} is uniformly bounded from above on
Bg := {z € RV ||z| < R} for any R > 0. Moreover, if 8 > m*, then it is also uniformly
bounded from below on Bpg.

Proof. Let X? = (X¥)i>0 be the A¥ diffusion. Then, in view of Lemma 2.6, we see
that

w(T,2) < B*{ig — (XD — [ (9= o)uu(dy) <oo as T oo

Since the convergence above is uniform in Bp, we see that w(T, -) is bounded above
on B uniformly in T > 1.

To get a lower bound, we assume 3 > m*. Set v(T, ) := (1—e~T)p(z)+ AT +¢(T)
for some § > 0 and ¢ € C!([0,00)) that will be determined later. Then, noting
o(z) < K(1+ |z|®/™+1) in RV for some K > 0 and observing 8 > (6/m) + 1 in view
of 8 > m*, we have

8w+ Flv] < e=Tép + A +4 + (1 — e T)Flg] + e T F[0]

<e
< e (6K — o)z’ + ¢ + € T(26K + |\ + C))

for some ¢;,Cy > 0. We now choose 6 := ¢;/K and ¢(T) := infgv g — 671 (20K + |A| +
C1)(1—e~%T). Then, 8;v+F[v] < 0in (0,00) xRN and v(0, -) < ginRY. In particular,



v is a subsolution of (CP). Applying the comparison principle ([9, Proposition 3.6)),
we obtain v < u in (0,00) x RY. This infers that —e~*Tp(z) + ¢(T) < w(T, z) for all
(T,z) € (0,00) x RV, Since infrs; ¢(T) > —oo, we conclude that w(T, -) is bounded
below on B, uniformly in T > 1. Hence, we have completed the proof. O

Let I" be the totality of all w-limits of {w(T, -)|T > 1} in C(R"), namely,
= {we € CRY)| lim w(T}, ) = weo in C(RY) for some lim T} = oo }.
) j—00

In view of Proposition 2.7 and the standard gradient estimate for w, we see that the
family {w(T, -)|T > 1} is pre-compact in C(R¥). In particular, I" # 0.
We are now in position to complete the proof of Theorem 2.4.

Proof of Theorem 2.4. It suffices to prove that ' = {c} for some ¢ € R. We first show
that any element of I' is constant. Let we, € T, i.e., w(Tj, -) = We in C(RY) as
J — oo for some diverging sequence {7;}. By Lemma 2.6, we see that

w(T + S,z) < E*[w(T, X%)], T,8>0, zeR". (2.4)

Take S :=T; — T and send j — oo. Then, we have

Weo(Z) < /w(T, y)u(dy).

Choosing T := T; and letting j — oo,

Wo() < / oo y) ().

Taking the sup over z € RY, we obtain
0< [(aly) = supuac)u(dy) <0.

From the last estimate and the fact that suppu = RY, we conclude that wy, =
SUDRN; Weo in RY. Hence, wy, is constant in RV,

We next show that I" consists of a single element. Suppose that there exist two
diverging sequences {7;} and {S;} such that w(T}, -) — ¢; and w(S;, ) — ¢ in
C(RM) as j — oo for some c;,c; € R. We choose S := S; — T and T := T}, in (2.4),
and let j — oo and k — oo in this order. Then,

¢ < lim / w(Tk, y)u(dy) = / cp(dy) = cr.

Thus, ¢; < ¢;. Changing the role of {T;} and {S;}, we also have ¢; < c¢;. Hence,
¢1 = ¢, and therefore I = {c} for some c € R. O
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3 A representation formula

In this section, we discuss the dependence of ¢ in (2.1) with respect to the initial
function g. Let u and (\*,¢) be the solutions of (CP) and (EP), respectively. As in

the previous section, we set
w(T,z) := uw(T,z) = (\*T+¢(z)), T>0, zeR" (3.1)

Then, w satisfies (2.2) with w(0,-) = g — . In the rest of this section, we set
n := w(0, - ), which is viewed as a small perturbation of stationary state ¢. In view of
Theorem 2.4, we can prove the following theorem.

Theorem 3.1. For any n € Cy(R"), there exists a real constant ¢ = ¢(n) such that
w(t, -) = cin C(R") as t — oo. Moreover, let u = u(dz) be the invariant probability
measure for the A%-diffusion. Then, the function

t— (w(t, ), :=/ w(t, z)u(dr)
RN
is non-increasing. In particular,
c(n) = ;I;(f; (w(t, ), p) = tllglo(w(t’ ) 1)

In what follows, we assume 7 € Cy(R"Y) and regard c = () as a functional of 7
taken from the Banach space (Co(RY), || - |lco), Where ||7]lco := supgw |7|-

Proposition 3.2. Let ¢ = ¢(7n) be the constant given in Theorem 3.1. Then, ¢(n)
satisfies the following properties:

(a) ¢(0) =0 and c(n+ a) = c(n) + a for any n € Cy(R") and a € R.

(b) m < e in RY implies c(m) < c(ne).

(©) le(m) —c(me)l < |lm — m2lloo for all gy, m2 € Co(RY).

(d) cis concave, i.e., c(dn; + (1 — 8)m2) > dc(m) + (1 — &)c(ne) for all ny,me € Cy(RY)
and ¢ € [0, 1].

Proof. (a). Let (T3):»o be the nonlinear semigroup associated with (2.2), that is, for
each n € Co(RY), we set Tyn := w(t, -) € Cy(RY), where w denotes the unique solution
of (2.2) with w(0, -) = n. Then, by the uniqueness of solution, it is easy to see that
T:0 = 0 and Ti(n + a) = Tyn + a. In particular, ¢(0) = 0 and ¢(n + a) = c(n) + a.

(b). Since Ty(m) < Ti(n) in view of comparison, we obtain c(n;) < ¢(1,) after sending
t — oo.



(c). Set n := 2 + |Im — M2lles. Note that 7 < nin RN. Taking into acount (a) and
(b), we see that

Tim < Tin=Ti(m + lm — m2llw) = Tinz + llm — n2l|co-

Letting ¢ — oo, we obtain c(n;) < ¢(72) + ||m1 — M2]|oo- Changing the role of n; and 7.,
we obtain the desired inequality.
(d). In view of the convexity of H,(z,p) in p, we see that §T3(m) + (1 — 8)Ti(n2) is
a subsolution of (2.2) with w(0, -) := én; + (1 — §)n,. By the comparison theorem,
we have 0T;(m) + (1 — 6)Tz(n2) < Ti(dm + (1 — &)mz). Letting ¢ — oo, we obtain the
concavity of c. O
We now derive a variational formula for c¢(n). Let (Q,F, P; (F;)) be a given filtered
probability space on which is defined an N-dimensional standard (F;)-Brownian motion
W = (W;)s>0. Let Ar denote the totality of (F;)-progressively measurable processes
¢ = (&)o<t<r With values in RN. For each T > 0, £ € Ay, and a given initial law,
we define the stochastic process X¢ = X¢ as the solution to the stochastic differential
equation

dX; = =& dt — |Dp(XE)|"2Dp(XE)dt +dW,, 0<t<T. (3.2)
Let H, = H,(z,p) be the function defined by (2.3), and set
L(z,p) := sup (£ -p— Hy(z,p)), (z,p) € R*Y.
peRN
Note that L satisfies the following properties:

(L1) L e C*RN x (RN —{0})).
(L2) min{L(z,£)|& € RV} =0 for all z € RY.
(L3) L(z,¢&) is strictly convex and superlinear with respect to ¢ for all z € RV.

For given p, v € My, where M; = M;(R") is the set of Borel probability measures
on R, we consider the minimization problem
T
Minimize Jr(u,v;€) :=FE [/ L(X{, &) dt]
0
subject to  P(X§)'=pu, P(X§)l=v, €€ Ar

Recall that X¢ = (X¥) is governed by (3.2). Furthermore, for each T > 0 and p,v €
M, we set

Ar(p,v) == {€ € Ar | P(X§) ™ = p, P(X5)™' = v},

Vr(u, v) = inf{J (4, v;€) |€ € Ar(p,v)},
V(p,v) = inf{Vr(u,v) | T > 0}.
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We set Vp(u,v) := +00 if Ar(u,v) = 0. Under this notation, function w defined by

(3.1) can be written as
w(T, z) = inf{Vr (0, v) + (n, v)|ve Ml}’
where &, stands for the unit distribution concentrated on z € R".

Theorem 3.3. Let ¢ = ¢(n) be the constant given in Theorem 3.1. Then, for any
n € Cy(RY), one has

c(n) = inf{V(g,v) + (n,v) |v € M1},

where 1 denotes the invariant probability measure for the A®-diffusion.

Proof. Fix any n € Cy(RM) and v € M;. Then, for any ¢ > 0, there exists a T > 0
such that Vp(u,v) < V(u,v) + €. By the definition of V7, we can find a £ € Ar(u,v)
such that

E [ / ' L(XF,&) dt] < Vr(p,v) +e¢.

0
In view of Theorem 3.1, we have

T
o(n) < (W(T, ), 1) < E [ | o eyar+ n(xﬁ] <V(wv) + () +2¢.

Letting ¢ — 0 and then taking the inf over v € M;, we obtain ¢(n) < inf{V(u,v) +
(m ) |v € Mi}.

We next prove the opposite inequality. Fix an arbitrary T > 0. We consider the
feedback control ér(t,z) := D,H(z, Dw(T — t,z)) and define the diffusion process
X = XT by

dX, = —£r(t, Xs) dt — |Dp(X,)|"*Dp(X;) dt +dW;,  0<t<T,

with P(Xo)™! = . Then, by Ito’s formula and the definition of H,, we easily see that

it =5 [ 1t X e+ r).
Setting v7 := P(X7)™!, we obtain
<w(T’ : )nu) 2 VT(#aVT) + (77’ VT) 2 inf{V(p,, V) + (77’ V) |V € Ml}

Since T > 0 is arbitrary, we have the opposite inequality. Hence, we have completed
the proof. O
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Now, we consider the case where m = 2. In this case, we have H,(z,p) = (1/2)|p|2.
In particular, w satisfies the equation

Ow — %Aw+Dgo-Dw+ %lle2 =0 in (0,00) x R".
We set v := e™™. Then, v is a solution of the linear equation
1
O — 5Av+Dyp-Dyv=0 in (0,00) X RN

with v(0, -) = €™ in RY. Note that v is written as v(T, z) = E,[e~"*7)], where X is
governed by
dX; = —Dyp(X;) dt + dW;.

Since X is ergodic with invariant probability measure u(dz) := e~2#@dzx, we have
v(T,z) = E [e™"*1)] — / e @ y(dz) as T — oo.
RN
Thus, c¢(n) in Theorem 3.1 can be written as

o) =—log [ W), e CRY) (33)
RN
Taking into account this observation, we have the following representation formula

for c(n).
Theorem 3.4. Assume that m = 2. Let H(v|u) be the "relative entropy" defined by

d
)= [ log L@ vida), v
RN du
where H(v|u) := 400 if v is singular to u. Then,
e(n) = min{(n,v) + H(vlu) |v € My}, o= e2%ds.
Moreover, the minimum is attained when v = e~"du/(e™", u).

Proof. Let v € M be such that v <« p, and set p := dv/du. Then, for any n € Cy(R"),
we have

c(n) — (n,v) < H(|w).
Indeed, in view of (3.3), we see that the above inequality is equivalent to say that

exp ([ 1=11) - ogp(ootan)) < [ ey,
RN RN
But this inequality is true in view of Jensen’s inequality. Hence, we obtain

cm <(mv)+H(vlu), veMi.

Note that the equality holds if and only if —n(z) — logp(x) is constant. This implies
that p should be of the form p(z) = e™"®) /(e=", u). Hence, we have completed the
proof. O



112

References

(1] G. Barles, P.E. Souganidis, Space-time periodic solutions and long-time behavior
of solutions to quasi-linear parabolic equations, SIAM J. Math. Anal. 32 (2001)
1311-1323.

[2] G. Barles, A. Porretta, T. Tchamba, On the large time behavior of solutions of the
Dirichlet problem for subquadratic viscous Hamilton-Jacobi equations, J. Math.
Pures Appl. 94 (2010) 497-519.

[3] W.H. Fleming, W.M. McEneaney, Risk-sensitive control on an infinite time hori-
zon, SIAM J. Control Optim. 33 (1995) 1881-1915.

[4] W.H. Fleming, S.J. Sheu, Optimal long term growth rate of expected utility of
wealth, Ann. Appl. Probab. 9 (1999) 871-903.

[5] Y. Fujita, H. Ishii, P. Loreti, Asymptotic solutions of Hamilton-Jacobi equations
in Euclidean n space, Indiana Univ. Math. J. 55 (2006) 1671-1700.

[6] H. Hata, H. Nagai, S.J. Sheu, Asymptotics of the probability minimizing a 'down
side' risk, Ann. Appl. Probab. 20 (2010) 52-89.

(7] N. Ichihara, Recurrence and transience of optimal feedback processes associated
with Bellman equations of ergodic type, SIAM J. Control Optim. 49 (2011) 1938-
1960.

[8] N. Ichihara, S.J. Sheu, Large time behavior of solutions of Hamilton-Jacobi-
Bellman equations with quadratic nonlinearity in gradients, to appear in SIAM J.
Math. Anal.

[9] N. Ichihara, Large time asymptotic problems for optimal stochastic control with
superlinear cost, Stoc. Proc. Appl. 122 (2012) 1248-1275.

(10] H. Nagai, Optimal strategies for risk-sensitive portfolio optimization problems for
general factor models, SIAM J. Control Optim. 41 (2003) 1779-1800.

[11] H. Nagai, Down side risk minimization via a large deviations approach, Ann. Appl.
Probab. 22 (2012) 608-669.

{12] P. Souplet, Q. Zhang, Global solutions of inhomogeneous Hamilton-Jacobi equa-
tions, J. Anal. Math. 99 (2006) 355-396.



113

(13] T. Tchamba, Large time behavior of solutions of viscous Hamilton-Jacobi equa-
tions with superquadratic Hamiltonian, Asymptot. Anal. 66 (2010) 161-186.



