goooboooobgon
0 18380 20130 41-47

Blow-up and pointwise comparison principles for
the generalized Riccati differential equation and application to
oscillation of some nonlinear ode’s
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Abstract We give a short presentation on the blow-up and pointwise comparison principles for the
generalized Riccati differential equation recently applied to a study of oscillation of a class of general
second-order differential equations with damping term. A part of this review article was presented on
the RIMS workshop: Global qualitative theory of ordinary differential equations and its applications,
Kyoto 2012. All details have been published in author’s paper [4].

1 Introduction
We consider the following class of the second-order differential equation with damping:

(r®)®(z,2)' +p())¥ (2, 2') +q(t) f(z) =0, tto, (L)
where we adopt the following:

e solutions: z = z(t), € C([to, ), R) N C2((to, ), R);

e nonlinear or linear functions:
® = ®(u,v), ¥ = ¥(u,v), f = f(u), &, T : R xR - R, f: R = R, are smooth enough;

o coefficients: r € C*([to, %), (0,00)), p, g € C([to, ), R).

Definition 1.1 A function x(t) is oscillatory if there is a sequence t, > to such that z(t,) = 0 and
tn = 00 asn — 0o. A differential equation is oscillatory if all its solutions are oscillatory.

The main assumptions on the differential operators (r(t)®(z, z' ))/ and the damped term p(t)¥(z, z’)

are:
[u]""2v®(u,v) > g(|®(u,v)|) and ¥(u,v)u>0, (1.2)

(u,v)v >0 and ulu|""2¥(u,v) > g(|B(y, v)|) (1.3)

where y > 2 and g: Ry — Ry

g(es) > cVgo(s) forallc>0and s >0,
go : Ry — Ry is a locally Lipschitz function on R, (1.4)
3Mp > 0 such that go(s) + Mp > 52, Vs € R,.

For instance, if g(s) = go(s) = s7, v > 2, then (1.2) is:

[u]""20®(u,v) > |®(u,v)]” and ¥(u,v)u >0,
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Next we give the main examples for the second-order differential operators (r(t)®(z,z’ )’ that
satisfy required assumption (1.2) or (1.3).

Example 1.1 (linear second-order differential operators in z’) We consider the equation:
(r(HA(@)z) +p()B@)b(a) +a(t)f(2) =0, t2to.

Condition (1.2) for v = 2 is fulfilled provided functions A(u), B(u) and %(v) satisfy:
0< Aw) €1, A(u) #0, uB(u) 20 and ¢(v) 2 0.

For instance: A(u) = |sin(u)] and A(u) = |u|/(1 + |u|). Indeed, for ®(u,v) = A(w)v, ¥(u,v) =
B(u)y(v), v = 2 we have:

[u|""20® (u, v) = A(w)v? > A2(u)v? = [A(u)v)? = |®(u,)]",
¥ (u,v)u =uB(u)(v) >0.0
Example 1.2 (quasilinear prescribed mean-curvature differential operators in z') We consider the
equation:
z’ ! ,
(r4@) =) +pOBEWE) +4®f(@) =0, t2t
Condition (1.2) for any v > 2 is fulfilled provided A(u), B(u) and ¥(v) satisfy:

0< A" (u) < Jul"™%, A(w) #0, uB(u) 20 and Y(v) 2 0.

For instance: A(u) = |sin(u)| and A(w) = |u|/(1 + |u]).

Indeed, for v
‘I’(U,v)=»4(u)m and ¥(u,v) = B(w)y(v),
we have:
12y =24 s v
[l ™ 0@ (u,v) = A T 2 Wz
ol
S AV () —10 v,
2 A gy |®(u,v)[". O

Example 1.3 (half-linear second-order differential operators in ) We consider the equation:
(rOA@) 1) +pOB@ILIP + a0 f (@) =0, >,
where 8 > 1. Condition (3) for any v > 2 is fulfilled provided A(u) and B(u) satisfy:
0< A(u), A(u) #0 and ulu|""2B(u) > A" (u).
Indeed, for ®(u,v) = A(u)|v|~1v and ¥(u,v) = B(u)|v|?”?, we have:
®(u,v)v = A(u)|v|?~tvv = A(u)|v|PT! >0
and

u["" ¥ (u,v) = [u]"" B(w)v|?? > A7 (u)[v]?
= |A(u)|v|ﬁ_1vl'y = |®(u,v)|". O



2 Riccati transformation under assumption (1.2)

In this section we recall the well known Riccati transformation of the equation (1.1) by supposing the
main assumption (1.2).

Lemma 2.1 Let p(t) > 0 and q(t) > 0. Let ®(u,v) and ¥(u,v) satisfy (1.2), and f(u) satisfy:
fw)/u > K >0 for all u # 0. Let z(t) be a nonoscillatory solution of equation (1.1). Then w(t)
defined by: )

- r(t)@(x(t), 2'(t))

= — > .

w(t) 20 , 2T, (2.1)

satisfies the inequality:
T 2 (r(t) oo(l@)) + Kq(t) t>T,

Proof. Taking the first derivative in (2.1), we obtain:

i _ T8, 7)., (r)8(=(t), ()
w(t) = 2 z'(t) 20

and using equation (1.1) we get:

7' () = D2®),2'®) , .\ pH)¥(z,z) f(z(®))
w (t) - x2(t) T (t) + .’D(t) + Q(t) .’E(t)
that is:
() = r@)2@®), 2@ (M) | pt)¥(z,a")2(t) q(t)f(x(t))

|l=(&)” z2(t) 2(t)

Using assumptions (1.2) and f(u)/u > K > 0 for all u # 0, where v > 2 and g(s) satisfies (1.4), we
get: )

- r(t)g(|2(=(t), z'(£)])
w(t) > g |x(t)|‘7x | + Kq(t) fort>T.

From (2.1) we get:

1Bz (), 2/ (1) = @% >,

and putting it into previous inequality we obtain:

w(t) > I;((t?l,,g(lw(tr)(lgc(t) |) + Kq(t) fort>T.

Now we can use assumption (1.4) in previous inequality, and hence, we obtain:

T (1) > E’%'ﬁ—g;#gouwam + Kqlt)

= (r())*go(|@(t)|) + Kq(t) fort>T,

that proves this lemma. O
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3 Riccati transformation under assumption (1.3)

In this section, we repeat the consideration from previous section but supposing the main assumption
(1.3) instead of (1.2).

Lemma 3.1 Let p(t) > 0 and g(t) > 0. Let ®(u,v) and ¥(u,v) satisfy (1.3), and f(u) satisfy:
fw)/u > K > 0 for all u # 0. Let z(t) be a nonoscillatory solution of equation (1.1). Then W(t)
defined by: ©a( )
o _ _T()®(z(t),2'(t))
satisfies the inequality:
> p(t)
— ()Y

go(@)) + Kq(t), t>T.

Proof. We start as before. Taking the first derivative in (2.1), we obtain:

0 _ T(2(=(8),2'(®)) , (r(®)2(=(t),=' (1))’
(t) - x2(t) z (t) - z(t) ’

that is,

i _ T(B)®(x(), 7' ()2’ (1) | p(t)¥(z, 2 )e(t)|z(t)]" 2 f=z(t))
U= mr sor %
Using assumptions f(u)/u > K > 0 for all u # 0, and (1.3), where v > 2 and g(s) satisfy (1.4), we get:
w(t) > p(t)g(l?i?:t()tl); Z ) + Kg(t) fort>T.
From (2.1) we have in particular that:

#(e(e. 20y = TAEOL 4> 7,

and puting it into

T(t) > p(t)g(lﬁgt()tl),;zl(t))l) + Kq(t) fort>T,

we obtain:

w(t) > |a§(tt))|,yg(lw(?(lg(t)l) + Kq(t) fort>T.

Now we use assumption (1.4) in previous inequality and so, we conclude that:

() 2 2 EO go(rme)) + Katt)

_
r(t)Y

go([w(t)|) + Kq(t) fort>T,

that shows this lemma. O
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4 A pointwise comparison principle and a blow-up argument
We consider the generalized Riccati differential equation:
w'(t) = a(t)go(lw®)]) + Kq(t), t>T, (4.1)

where

_ J(®)*  under condition (1.2),
® = \p(t)/r(t) under condition (1.3)

For Tp and T, T < Ty < T*, we associate to equation (4.1) the corresponding sub- and supersolu-
tions: w, W € C([Tp, T*),R) defined respectively by:

w'(t) < a(t)go(|w(®))) + Kq(t) and @ (t) > a(t)go(|@W(t)|) + Kq(t) in [To, T™).

Definition 4.1 We says that the comparison principle holds for equation (4.1) with arbitrary Ty and
T*, T < To < T*, if the following statement holds for all sub- and supersolutions w, W of equation (4.1):

w(Ty) <wW(Tp) implies w(t) <w(t) for all ¢t € [Ty, T*).

For a supersolution @ € C*([Ty, o), R) of the Riccati differential equation (4.1), let find:

¢ two real numbers Ty and T, T < Ty < T,
¢ a subsolution w € C*([Tp, T*), R) of equation (4.1),

such that the following initial and blow-up arguments are satisfied at the sam time:
<w i = 00.
w(To) <W(Tp) and  lim w(t) = oo

By a combination of the preceding comparison principle and the initial and blow-up arguments we
can conclude:
lim w(t) < lim wW(¢
t—T+ w(t) < by ®),
and hence, every supersoluton W(t) satisfies:

tgr% W(t) = oo.

It shows the nonexistence of a global supersolution of the Riccati differential equation (4.1).
In conclusion:

1°th step: if there is a nonoscillatory solution z(¢) of the main equation (1.1):
(r(®)®(@.2)) +p(H)¥ (@) +q(0)f(2) =0, t=to,
then the function W(¢) defined by:

- T(0)2(z(t), 2'(t))
B(t) = — =0 ,t2T,

is a GLOBAL supersolution of the Riccati differential equation (4.1);

2°th and 3°th steps: for some sufficient ”oscillation” conditions, the comparison and blow-up principles
for equation (4.1) hod and it implies: lim;—,7+ W(t) = oo, that is, W(t) is:a LOCAL supersolution of
(4.1), which implies that there is NO any nonoscillatory solution of the main equation (1.1). By this
contradiction, we conclude that equation (1.1) is oscillatory.

Now we present the main results of this section.
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Lemma 4.1 (a pointwise comparison principle) Let a(t) = (r(t))!~ in the case of condition (1.2)
or a(t) = p(t)/r(t)Y in the case of condition (1.3) and let a(t) be a locally integrable function on Ry.
Then for every two points Ty and T*, T < Ty < T*, and for every sub- and supersolution w(t),w(t) €
C [Ty, T*),R) of the generalized Riccati differential equation (4.1) we have: w(Tp) < W(To) implies
w(t) < W(t) for allt € [Tp, T*). That is:

o w(To) < W(To),

o w'(t) < a(®)go(lw(®)) + Ka(t), t > T,

o W (t) > a(t)go(IW()]) + Kq(t), t > T,

gives: w(t) < W(t) for allt € [T,,T™).

Lemma 4.2 (a blow-up principle) Let the coefficients a(t) and Kq(t) of the generalized Riccati differ-

ential equation (4.1) satisfy the following ”oscillation” condition: there is a continuous function C(t)
and a point Ty > ty such that:

C(t) < min{a(t), Kq(t)}, t >Ty and lim sup /t C(r)dr = o0. (4.2)
T

t—00

Then there are two points Ty and T*, Ty < T*, and a subsolution w(t) of equation (4.1) such that:

w(To) SW(T) and lim w(t) = oo,

5 Main results and examples

In this section we present the main results and their consequences. Also, a few examples are given to
illustrate the importance of our main results.

Theorem 5.1 Let ®(u,v) and ¥(u,v) satisfy condition (1.2) or (1.3). Let f(u)/u> K >0 foru #0,
and let coefficients r(t) and q(t) satisfy "oscillatory condition” (4.2). Then equation (1.1) is oscillatory.

The main consequence is the following.
Corollary 5.1 Let ®(u,v) and ¥(u,v) satisfy condition (1.2) or (1.3), and let f(u)/u > K > 0 for
u#0. Let u<1/(y=1) orv > yu—1 and 0 <1, where v > 2 Then equation:
(t*®(z, ) +t*U(z,2') +t7f(z) =0, t2>to, (5.1)
18 oscillatory.

Proof. The hypotheses on ®(u,v), ¥(u,v), and f(u) are the same as in Theorem 5.1. Hence, we
need only to show that the coeflicients:

r(t)=t*, p(t)=t" and q(t)=t77, t >ty

where u < 1/(y—1) or v >yu—1 and o < 1, satisfy the required oscillatory conditon (4.2). Indeed,
in both cases (1.2) and (1.3), if C(t) = ¢/t for some ¢ > 0 and all ¢ > ¢ > 0, then:

HOMEHC i HOE

t =\t TT T\
¢ t .
lim sup/ C(rydr = lim/ —dr = 00,
T t—00 T'T

t—00

IA

and

which proves this corollary. O

Finally, we present some concrete examples which can be shown by previous corollary.



Example 5.1 Let K >0, u <1or v >2u—1and o <1. Then the equation:

2 /
T —
<t”1+_wz xl) + 2322 + Kt %2 =0, t >ty > 0,

is oscillatory.

Example 5.2 Let K >0, py<1lorv >2u—1and ¢ <1. Then the equation:
(t*(sinz)?z’) + t'z%2 + Kt %2 =0, t > ty > 0,

is oscillatory.

Example 5.3 Let > 1,n €N, K >0, u<lorv>2u—1and ¢ <1. Then the equation:

z2 z ! zz’ n
th t + Ktz =0,
( 1+22 (1+x/2)%) + ‘”((1+m2)(1+xf2)%) e

is oscillatory.

Example 5.4 Let £ >1, K >0, v > 2u—1 and ¢ < 1. Then the equation:
(t#(sinz)?2"®) + V232" + Kt =72 =0, t >ty > 0,

is oscillatory.

Example 5.5 Let K >0, u<1,v >0, A >0, and o < 1. Then the equation:

2 '
(t“ 1 : po m') +t’|zPPzsh(z )2’ + Kt ™2 =0, t >ty > 0,

is oscillatory.

The oscillation criterion presented in Theorem 5.1 can be called the Fite-Wintner-Leighton type
criterion. The reason for that can be found in papers by Fite [1], Wintner [2], Leighton [3], and Pasic
[4].
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