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ABSTRACT. $A$ review is given of recent work on reducing peri-
odic/antiperiodic Sturm-Liouville problems to analysis of the Pr\"ufer
angle. This provides an altemative to the more usual approaches
via operator theory or the Hill discriminant in the definite case,
and leads to new results in cases with semidefinite weight and
more general coupling boundary conditions.

1. INTRODUCTION.
The Sturm-Liouville equation

(1.1) $-(p(x)y’)’+q(x)y=\lambda r(x)y, x\in[a, b]$

has received widespread attention. From about 100 years before the
time of Sturm and Liouville, until the present day, such equations have
been studied (and applied) in a variety of contexts subject to separating
(also called Sturmian) boundary conditions of the form

(1.2) $y(a)\cos\alpha=(py)’(a)\sin\alpha$ , and $y(b)\cos\beta=(py)’(b)\sin\beta.$

For a long time, the basic eigenvalue existence and eigenfunction os-
cillation theory proceeded via analysis of the zeros of real solutions of
(1.1) as functions of $\lambda$ . Much of the relevant material up to the $1920s$
is covered in, e.g., [13, Ch. 10], first published in 1926. In the same
year, Pr\"ufer [17] (in what seems to be his only paper on differential
equations) gave a new transformation of the problem leading to an
analysis simpler in various ways than in previous works. Assuming
that $p,$ $r>0$ , which we shall call the “definite case”, he rewrote (1.1)
as an equivalent system

(1.3) $y’=z/p, z’=(q-\lambda r)y$
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and then used polar coordinates in the corresponding phase plane to
derive the basic eigenvalue existence and eigenfunction oscillation the-
ory.

Since then, Pr\"ufer’s transformation has been the method of choice
in most texts discussing the above basic theory. Many follow Pr\"ufer’s
lead and consider continuous coefficients $p,$ $q$ and $r$ (cf. [9, Ch. 8]),
but we shall allow $L_{1}$ conditions, which are treated in [1] and [21], for
example.

Following Hill’s studies of planetary motion in the latter part of the
19th century, Sturm-Liouville equations with periodic (or antiperiodic)
conditions

(1.4) $y(a)=\pm y(b)$ ,

(where $y$ $=[yy’]^{T}$ ) became of interest, and we remark that such
boundary conditions also appear in the study of wave motion, separa-
tion of variables in classical boundary value problems, etc. Two basic
methods have been established for the existence of eigenvalues of (1.1)
and (1.4). One proceeds via Floquet theory and Hill’s discriminant
$d(\lambda)$ . It requires little background, but is somewhat involved, particu-
larly in the analysis of $d”(\lambda)$ . The other is variational in nature, and
requires a significant amount of background in operator (or equivalent)
theory. Here we shall outline another method, via Pr\"ufer’s transforma-
tion.

Indeed there seem to be various reasons to give a Pr\"ufer treatment
of (1.1) and (1.4). It depends on elementary analysis of initial value
problems, builds on standard ideas from the separated case, and is
less intricate (and shorter) than the Floquet/Hill theory (as in, say,
[9, Ch. 8] $)$ . It requires much less background than the treatments of,
say, Eastham [10] or Weidmann [21], who use signfficant amounts of
operator theory. Also, it is versatile enough to allow a unified treatment
not only of eigenvalue existence but also of further topics like oscillation
and comparison principles, asymptotics and interlacing.

Our plan is as follows. In Section 2 we recall some basic properties
of the Pr\"ufer transformation, showing how both the (standard) case
of (1.2), and also the case of (1.4), can be reduced in different ways
to analysis of the Pr\"ufer angle $\theta(\lambda, \alpha, x)$ at $x=b$. As a function of
$\lambda\in \mathbb{R}$ , this increases continuously from $0$ to infinity. Thus, values of
the form $n\pi+\beta$ for integers $n\geq 0$ are attained and generate eigenvalues
for (1.1) and (1.2). It turns out that the boundary conditions (1.4)
can be treated via two such functions $m$ and $M$ , thereby generating
pairs (with the same oscillation count) of periodic and antiperiodic
eigenvalues. These functions still depend on the Pr\"ufer angle, but via
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more involved constructions, and the corresponding theory is developed
in Section 3. For proofs, and further topics like comparison principles,
interlacing of eigenvalues and eigenfunction zeros and the relationship
with Floquet theory and Hill’s discriminant, we refer to [6].

In Section 4 we extend (1.4) to boundary conditions of the form
(1.5) $y(b)=Ky(a)$ ,
where $K=(k_{ij})$ is a real $2\cross 2$ matrix with determinant 1. These are
the most general (real) self-adjoint boundary conditions for (1.1). The
best known examples of coupling boundary conditions are the periodic
and antiperiodic cases, where $K=I$ and $K=-I$, respectively. For
the definite case, see, e.g., [9, 10, 21] for various conditions on the coef-
ficients, via a combination of Hill discriminant and operator theoretic
methods. Results include existence of eigenvalues and their interlacing
with those for corresponding Dirichlet and Neumann problems. More
general cases of $K$ have been treated for over a century, again for the
definite case, in, e.g., [8] (which was later corrected in some respects).
Most of the work in this area (which is reviewed in [5]) involves gener-
alised versions of the Hill discriminant and the Dirichlet and Neumann
problems noted above. Proofs for the Pr\"ufer method used here can be
found in [7].

In Section 5 we relax definiteness to allow $r\geq 0$ a.e. This topic,
often studied under the title of “semidefinite weight”, has again been
investigated for over a century–see, e.g., [12]. Later results on more
general cases, e.g. [4, 11], examine a “loss of eigenvalues” if $r$ vanishes
on a “large enough” set. This case is also referred to as “right semidefi-
nite”, but recently “singular indefinite” has been used by some authors,
e.g. in [15]. Here we shall extend the Pr\"ufer transformation analysis
of the definite case from the previous sections to the right semidefinite
problem. Superficially, little changes except for the “loss” of a certain
number (which we make precise, at least in the periodic/antiperiodic
cases) of eigenvalues. On the other hand, several aspects of the analysis
become more involved, and for details, and various related results, we
refer to [7].

The methods here can in fact be extended to a more general situation
in which (1.3) is replaced by

(1.6) $y’=sz, z’=(q-\lambda r)y.$

This problem, under additional conditions, was considered by Atkinson
[1, Chapter 8]. For the definite case, and more generally when $p>0,$
this simply involves a change of notation in (1.3) to $s=1/p$ with
$z=py’$ . (Despite some advantages, this has not been widely used).

151



PAUL BINDING

Atkinson, however, also took the further step of relaxing definiteness
to the “semi-definiteness” conditions
(1.7) $r\geq 0$ and $s\geq 0$

a.e. on $[a, b]$ . The second inequality in (1.7) extends the meaning of
(1.3) to (1.6), and is a proper extension when $s$ vanishes nontrivially.
Indeed, Atkinson used this idea to incorporate certain difference equar
tions into a generalised Sturm-Liouville framework. For further work
on such problems we cite [4] for separating boundary conditions, and
special cases of Atkinson’s problem (equivalent to equations with piece-
wise constant coefficients) with finitely many eigenvalues have been
studied by various authors, cf. [14] and its references. The setting has
been shown in [19] to be powerful enough to include work of Krein on
strings, Feller on certain diffusion processes, and certain equations in-
volving measures. It is shown in [7] that the Pr\"ufer method used here
can be extended to Atkinson’s problem, although certain concepts like
oscillation count have to be redefined since eigenfunctions can have
intervals of zeros.

Moreover, related methods have been used to derive existence of
periodic eigenvalues for various (definite) equations generalising (1.1),
for example for Fu\v{c}\’ik spectra, the half-eigenvalue problem and the p-
Laplacian. The results are then not as sharp, however, and arbitrarily
many eigenvalues can have the same oscillation count; see, e.g., [2].

2. THE BASIC $p_{R}\"{U} FER$ TRANSFORMATION.

In this section we assume that $p,$ $r>0$ and $\frac{1}{p},$ $q,$ $r\in L_{1}(a, b)$ . We
recall that Pr\"ufer’s transformation for a nonzero solution $y$ of (1.1)
takes the form
(2.1) $y=\rho\sin\theta$ , and $py’=\rho\cos\theta.$

Given the initial conditions
(2.2) $y(a)=\sin\alpha, (py’)(a)=\cos\alpha,$

for (1.1), standard manipulations (e.g., [9, Ch. 8]) give

(2.3) $\theta’=\frac{\cos^{2}\theta}{p}+(\lambda r-q)\sin^{2}\theta$ and $\rho’=\rho(\frac{1}{p}+q-\lambda r)\sin\theta\cos\theta$

with initial conditions
(2.4) $\theta(\lambda, \alpha, 0)=\alpha\in \mathbb{R}$ and $\rho(\lambda, \alpha, 0)=1.$

Conversely, (2.3) and (2.4) imply (1.1) and (2.2).
We use (2.3), (2.4) to define $\theta$ and $\rho$ as functions of $(\lambda, \alpha, x)$ . We

remark that the above differential equations are all to be understood in
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the sense of Carath\’eodory and are Lipschitz in the dependent variables.
Basic theory for such equations can be found in various books, e.g.,
[9, 18, 20].

For separating conditions (1.2), $\alpha$ is given, and the eigenvalue con-
dition can be written in the form

(2.5) $\theta(\lambda, \alpha, b)=\beta+k\pi$ , for $\alpha,$ $\beta\in[0, \pi)$ ,

where $k$ is the “oscillation count” of $\lambda$ . We define this as the number
of zeros in $(a, b]$ of any eigenfunction corresponding to $\lambda$ . It suffices,
then, to study $\theta$ alone and we now list some of the standard properties
that we need (see, e.g., [9, 21]. First,

(2.6) $\theta(\lambda, \alpha, x)$ increases with $x$ through multiples of $\pi.$

Next,

(2.7) $\theta(\lambda, \alpha, b)$ increases strictly and continuously with $\lambda,$

and finally

(2.8) $\theta(\lambda, \alpha, b)arrow 0$ (resp. $+\infty$ ) as $\lambdaarrow$ -00 (resp. $+\infty$).

Via well known arguments, e.g., in [9, 21] these suffice to give existence
of a unique $\lambda=\lambda_{k}(\alpha, \beta)$ with oscillation count $k$ for each $k\geq 0$ except,
because of (2.5), that $k\geq 1$ when $\beta=0$ , e.g., for Dirichlet conditions
$y(O)=y(\pi)=0)$ . In this case the above oscillation result differs from
the usual one, where $\beta\in(0, \pi]$ and eigenfunction zeros are counted in
$(a, b)$ , but our convention will allow a more unified treatment of the
results below.

We now lay the groundwork for the periodic/antiperiodic conditions
where $K=\pm I$ in (1.5). First we note that $\theta(\lambda, \alpha, x)$ is $C^{1}$ in $\alpha$ , and
indeed $\theta_{\alpha}$ (the subscript denoting partial differentiation by $\alpha$) satisfies
the variational initial value problem

$\theta_{\alpha}’=-2\theta_{\alpha}(\frac{1}{p}+q-\lambda r)\sin\theta\cos\theta$ , where $\theta_{\alpha}(\lambda, \alpha, 0)=1,$

obtained from the $\theta$ equations in (2.3) and (2.4) (see, e.g., [9], [18]).
Using the $\rho$ equation in (2.3) we see that $(\rho^{2}\theta_{\alpha})’=0$ , and from (2.4)
we derive

(2.9) $\rho^{2}\theta_{\alpha}=1.$

We now use (2.4) (where $\alpha$ is as yet undetermined) to rewrite (1.4) in
the form

$\theta(\lambda, \alpha, \pi)=\alpha+k\pi,$
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where $k$ is even (resp. odd) for a periodic (resp. antiperiodic) condition,
together with $\rho(\lambda, \alpha, \pi)=1$ . This last equation and (2.9) yield

$\theta_{\alpha}(\lambda, \alpha, \pi)=1$

so again it is enough to study $\theta$ without $\rho$ . Actually, it will be more
convenient to work with the difference

(2.10) $\delta(\lambda, \alpha)=\theta(\lambda, \alpha, \pi)-\alpha$

between final and initial values, and then the eigenvalue conditions take
the form
(2.11) $\delta(\lambda, \alpha)=k\pi$ , and $\delta_{\alpha}(\lambda, \alpha)=0.$

3. PERIODIC AND ANTIPERIODIC EIGENVALUES.

In this section we assume that $p,r>0$ and $\frac{1}{p},$ $q,r\in L_{1}(a, b)$ . Rom
(2.11), $k\pi$ is a critical value (with respect to $\alpha$ ) of $\delta(\lambda, \alpha)$ , and one key
for us will be to replace “critical” by “extreme” We start by extending
the definition of $\delta(\lambda, \alpha)$ from $\alpha\in[0, \pi)$ to $\alpha\in \mathbb{R}$ , noting that $\delta$ is then
$\pi$-periodic in $\alpha$ , by virtue of
(3.1) $\theta(\lambda, \alpha+\pi, x)=\theta(\lambda, \alpha, x)+\pi.$

In particular, the minimum $m(\lambda)$ and maximum $M(\lambda)$ of $\delta(\lambda, \alpha)$ over
$\alpha\in \mathbb{R}$ equal those over $\alpha\in[0, \pi]$ and are attained. The following result
describes some basic properties of $m$ and $M.$

Lemma 3.1.
(a) The functions $m$ and $M$ are continuous and strictly increasing.
(b) For each $\lambda$ , we have the inequalities $m(\lambda)\leq M(\lambda)<m(\lambda)+\pi.$

(c) If $\lambdaarrow-\infty$ , then $m(\lambda)arrow-\pi$ and $M(\lambda)arrow 0.$

(d) If $\lambdaarrow+\infty$ , then $m(\lambda)arrow+\infty$ . The proof can be found in [6].

Now we are ready for our central construction. From Lemma 3.1,
$m$ (resp. $M$) attains each value $k\pi$ for $k\geq 0$ (resp. $k\geq 1$ ) so we can
define intervals

(3.2) $I_{k}=\{\lambda : m(\lambda)\leq k\pi\leq M(\lambda)\}=\{\lambda$ : $\delta(\lambda, \alpha)=k\pi$ for some $\alpha\}$

with end points $\lambda_{k}^{-}\leq\lambda_{k}^{+}$ , for each $k\geq 0$ . Apart from $\lambda_{0}^{-}=-\infty$ , each
$\lambda_{k}^{\pm}$ is finite, and
(3.3) $m(\lambda_{0}^{+})=0$ , and $m(\lambda_{k}^{+})=k\pi=M(\lambda_{k}^{-})$ for all $k\geq 1.$

We are now ready for the main result of this section.

Theorem 3.2. (a) Except for $\lambda_{0}^{-}$ , each $\lambda_{k}^{\pm}$ is an eigenvalue of the
periodic eigenvalue problem when $k$ is even and of the antiperii-
odic eigenvalue problem when $k$ is odd.
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(b) There are no other eigenvalues.
(c) The $I_{k}$ are disjoint, so $\lambda_{k}^{+}<\lambda_{k+1}^{-}$ for each $k\geq 0.$

(d) An eigenfunction $y$ belonging to the eigenvalue $\lambda_{k}^{\pm}$ has $k$ zeros
in $(a, b].$

The proof can be found in [6], along with various additional re-
sults concerning comparison principles, interlacing of eigenvalues and
eigenfunction zeros and the relationship with Floquet theory and Hill’s
discriminant.

4. COUPLING BOUNDARY CONDITIONS

In this section we assume that $p,$ $r>0$ and $\frac{1}{p},$ $q,$ $r\in L_{1}(a, b)$ . We con-
sider the system (1.6) subject to the boundary conditions (1.5) where
$K=(k_{ij})$ is a real $2\cross 2$ matrix with determinant 1.

It will be convenient to treat the boundary conditions

(4.1) $(_{(py)(b)}y(b))=-K(_{(py)(a)}y(a))$

as well as (1.5). Since we may replace $K$ by $-K$ we will assume,
without loss of generality, that
(4.2) $k_{12}<0$ or $k_{12}=0<k_{11}.$

For $\alpha\in \mathbb{R},$ $i=1,2$ , we set
$k_{i}(\alpha):=k_{i1}\sin\alpha+k_{i2}\cos\alpha.$

The curve $(k_{2}(\alpha), k_{1}(\alpha))$ does not pass through $(0,0)$ , and we denote
its continuously chosen polar angle by $\beta(\alpha)$ . By virtue of (4.2), we may
determine the function $\beta$ uniquely by the condition
(4.3) $\beta(0)\in(-\pi, 0].$

If $k_{1}(\alpha)=0$ then $\beta(\alpha)$ is an integer multiple of $\pi$ (for example, $k_{12}=0$

is equivalent to $\beta(0)=0)$ ; otherwise we have

(4.4) $\cot\beta(\alpha)=\frac{k_{2}(\alpha)}{k_{1}(\alpha)}.$

In the special case of periodic/antiperiodic boundary conditions, $K$ is
the identity matrix and $\beta(\alpha)=\alpha.$

The function $\beta$ : $\mathbb{R}arrow \mathbb{R}$ is continuously differentiable with derivative
(4.5) $\beta’(\alpha)=[k_{1}(\alpha)^{2}+k_{2}(\alpha)^{2}]^{-1}>0.$

Therefore, $\beta$ is an increasing function and
(4.6) $\beta(\alpha+\pi)=\beta(\alpha)+\pi.$
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We can now extend the definition of $\delta$ from Section 2 to

(4.7) $\delta(\alpha, \lambda):=\theta(b, \alpha, \lambda)-\beta(\alpha)$ .
As a function of $\alpha,$

$\delta(\alpha, \lambda)$ is continuously differentiable and has period
$\pi$ . The proof of the following lemma can be found in [7].

Lemma 4.1. $A$ real number $\lambda$ is an eigenvalue of (1.6) subject to
boundaw conditions (1.5) (resp. (4.1)) if and only if there is an even
(resp. odd) integer $k$ such that $k\pi$ is a critical value of the function $\delta($

$\lambda):\alpha\mapsto\delta(\alpha, \lambda)$ .
Following the procedure from Section 3 we define

$m( \lambda):=\min_{\alpha\in \mathbb{R}}\delta(\alpha, \lambda)$ ,

$M( \lambda):=\max_{\alpha\in \mathbb{R}}\delta(\alpha, \lambda)$

and we extend the reasoning of Section 3 to give the following result.

Lemma 4.2.
(a) The functions $m,$ $M$ : $\mathbb{R}arrow \mathbb{R}$ are continuous and strictly in-

creasing.
(b) For every $\lambda\in \mathbb{R},$

(4.8) $-\pi<m(\lambda)\leq M(\lambda)<m(\lambda)+\pi.$

(c) For every $\lambda\in \mathbb{R},$ $m(\lambda)$ and $M(\lambda)$ are the only critical values of
the function $\delta(, \lambda)$ .

The proof can be found in [7]. The following theorem now follows
from Lemmas 4.1 and 4.2(c). .
Theorem 4.3. $A$ real number $\lambda$ is an eigenvalue of (1.6) subject to
boundary conditions (1.5) (resp. (4.1)) if and only if there is an even
(resp. odd) integer $k$ such that either $m(\lambda)=k\pi$ or $M(\lambda)=k\pi.$

In order to obtain analogues of Lemma 3.1(c) and (d), we note that
$\beta(\alpha)$ attains its minimum and maximum for $0\leq\alpha\leq\pi$ at $\beta(0)$ and
$\beta(\pi)=\beta(0)+\pi$ respectively. Thus if $\lambdaarrow-\infty$ , then $m(\lambda)arrow-\beta(O)-\pi$

and $M(\lambda)arrow-\beta(0)$ , while if $\lambdaarrow+\infty$ , then $m(\lambda)arrow+\infty$ . Since
$-\beta(0)\in[0, \pi)$ by (4.3), we may argue as in [7] to obtain

Theorem 4.4. (a) Except for $\lambda_{0}^{-}$ , each $\lambda_{k}^{\pm}$ is an eigenvalue corre-
sponding to (1.5) when $k$ is even and to (4.1) when $k$ is odd.

(b) There are no other eigenvalues.
(c) The $I_{k}$ are $disjoint_{f}$ so $\lambda_{k}^{+}<\lambda_{k+1}^{-}$ for each $k\geq 0.$
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This corresonds to Theorem $3.2(a)-(c)$ , but statement (d) of Theo-
rem 3.2 regarding oscillation counts now becomes more complicated.
Eigenfunctions $y$ corresponding to the eigenvalue $\lambda=\lambda_{k}^{\pm}$ may be taken
in the form (2.1), (2.4) with $\alpha\in[0, \pi)$ . Then

$\theta(b, \alpha, \lambda)-\beta(\alpha)=k\pi.$

Note that $\beta(\alpha)\in(-\pi, \pi)$ . If $\beta(\alpha)<0$ then $y$ has $k-1$ zeros in $(a, b]$

, and if $\beta(\alpha)\geq 0$ then there are $k$ zeros. For further analysis of this
topic in the definite case, via different methods, we refer to [5] and its
references.

5. SEMIDEFINITE WEIGHT FUNCTION

In this section we assume the previous integrability conditions on
$1/p,$ $q$ and $r$ with $p>0$ but additionally we allow $r\geq 0$ a.e. In this
case (2.7) (and (2.8), as we shall see) may fail. For example, if $r=0$ a.e.
then the eigenvalue problem is independent of $\lambda$ and in what follows
we shall assume the nondegeneracy condition

(5.1) $\int_{a}^{b}r>0.$

Initially we shall assume periodic/antiperiodic boundary conditions,
i.e., $K=\pm I$ in (1.5), and we extend the coefficients $p,$ $q,$ $r$ periodi-
cally over $\mathbb{R}$ . Assumption (5.1) allows us to translate the independent
variable if necessary so that

(5.2) $\int_{a}^{c}r>0,$ $l^{b}r>0$ for every $c\in(a, b)$ .

Accordingly we shall assume that $\theta,$ $\delta,$ $m,$ $M$ are defined using such an
$a.$

Arguing as in [7], we see that enough properties of $m$ and $M$ ex-
tend to the case of semidefinite weight to allow us to deduce Theorem
4.3 verbatim. Since $m$ and $M$ are easily seen to be nondecreasing,
it remains to consider their limits at $\pm\infty$ and whether they increase
strictly.

We start by noting that, for each $\alpha,$ $\theta(b, \alpha, \lambda)arrow+\infty$ as $\lambdaarrow+\infty,$

see, e.g., [3]. Also $\theta(b, \alpha, \lambda)$ is nondecreasing and analytic in $\lambda$ for each
$\alpha$ . Arguing as in [7], one can use the analogue of Lemma 3.1(b) to
deduce

Lemma 5.1. (a) The functions $m,$ $M:\mathbb{R}arrow \mathbb{R}$ are continuous and
strictly increasing.

(b) $m(\lambda)$ and $M(\lambda)$ tend $to+\infty$ as $\lambdaarrow+\infty.$
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It remains to consider the limits of $m(\lambda)$ and $M(\lambda)$ as $\lambdaarrow-\infty.$

To this end we let $\mathcal{J}$ be the collection of maximal closed intervals
$[c,$ $d\rfloor\subset[a, b]$ with $c<d$ for which $\int_{c}^{d}r=0.$

For $J=[c,$ $d\rfloor\in \mathcal{J}$ let $\theta_{J}(x),$ $x\in J$ , be the solution of the first
equation in (2.3), that is,

(5.3) $\theta_{J}’=\frac{1}{p}\cos^{2}\theta_{J}-q\sin^{2}\theta_{J}$

with initial value
$\theta_{J}(c)=0.$

We define
$\ell_{J}^{-}:=\max\{k\pi:k\in \mathbb{Z}, k\pi\leq\theta_{J}(d)\}$

Then as in [4, Theorem 3.2] we see that if $\alpha\in[0, \pi)$ then

(5.4) $\theta(b, \alpha, \lambda)arrow\ell_{-:=\sum_{J\in \mathcal{J}}\ell_{J}^{-}}$
a$s$ $\lambdaarrow-\infty,$

where the empty sum is understood as $0$ . Note that the above sum is
always finite since $\frac{1}{p},$ $q$ and $r$ are integrable.

Reasoning as in [7], we then reach

Lemma 5.2. $m(\lambda)arrow\ell_{-}-\pi$ and $M(\lambda)arrow\ell_{-}$ as $\lambdaarrow-\infty.$

Combining Lemmas 5.1 and 5.2 with the reasoning used in [7], we
obtain the following result, where $\kappa:=\ell_{-}/\pi.$

Theorem 5.3. (a) Except for $\lambda_{\overline{\kappa}}$ , each $\lambda_{k}^{\pm}$ with $k\geq\kappa$ is an eigen-
value of the periodic eigenvalue problem when $k$ is even and of
the antiperiodic eigenvalue problem when $k$ is odd.

(b) There are no other eigenvalues.
(c) The $I_{k}$ are disjoint, so $\lambda_{k}^{+}<\lambda_{k+1}^{-}$ for each $k\geq 0.$

(d) An eigenfunction $y$ belonging to the eigenvalue $\lambda_{k}^{\pm}$ has $k$ zeros
in $(a, b].$

Finally, we discuss the changes needed when the coupling boundary
conditions involve general $K$ in (1.5). Then (5.1) no longer allows us to
assume (5.2), but it is still possible to adopt the same general strategy.
This involves the analysis of several cases, which we omit, but we shall
indicate an analogue of Theorem 5.3.

This requires modffications to the definition of $\kappa$ via $\ell_{-}$ to allow
for intervals $[c, d]\in \mathcal{J}$ with either $a=c$ or $b=d$ (but not both,
because of (5.1) $)$ . If there is an interval $T=[c, b]\in \mathcal{J}$ , then we
write $\ell_{T}^{-}$ $:=\theta_{T}(b)$ , where $\theta_{T}$ obeys the differential equation (5.3) for
$\theta_{J}$ . If there is $I=[a,$ $d\rfloor\in \mathcal{J}$ then we let $\theta_{R}$ obey the same differential
equation (5.3) as $\theta_{J}$ , but with terminal condition $\theta_{R}(d)=0.$
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Then $P_{-}$ in Lemma 5.2 must be modified to account for $\theta_{T},$ $\theta_{R}$ and
the function $\beta$ of Section 4. See [7] for details of this and the final
result, which we can express loosely as follows.

For general $K$ and with $\kappa$ as the greatest integer not exceeding $\ell_{-}/\pi,$

conclusions $(a)-(c)$ of Theorem 5.3 hold, and conclusion (d) is replaced
by the paragraph following Theorem 4.4. For related results on com-
parison, interlacing etc., we refer to [7].

REFERENCES
[1] F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press,

1964.
[2] P. Binding, B. P. Rynne, Half-eigenvalues of periodic Sturm-Liouville prob-

lems, J. Differential Equns, 206 (2004), 280-305.
[3] P. Binding, H. Volkmer, Existence and asymptotics of eigenvalues of indefi-

nite systems of Sturm-Liouville and Dirac type, J. Differential Equations 172
(2001), 116-133.

[4] P. Binding and H. Volkmer, Pr\"ufer angle asymptotics for Atkinson’s semidefi-
nite Sturm-Liouville Problem, Math. Nachr. 278 (2005), 1458-1475.

[5] P. Binding, H. Volkmer, Interlacing and oscillation for Sturm-Liouville prob-
lems with separated and coupled boundary conditions, J. Comput. Appl. Math.
194 (2006), 75-93.

[6] P. Binding and H. Volkmer, A $P\ddot{m}fer$ angle approach to the periodic Sturm-
Liouville problem, Amer. Math. Monthly 119 (2012), 477-484.

[7] P. Binding, H. Volkmer, A Pr\"ufer angle approach to semidefinite Sturm-
Liouville problems with coupling boundary conditions, to appear.

[8] G. D. Birkhoff, Existence and oscillation theorem for a Sturm-Liouville eigen-
value problem, Trans. Amer. Math. Soc. 10 (1909), 259-270.

[9] E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations,
McGraw-Hill, 1955.

[10] M. S. P. Eastham, The Spectral Theory of Periodic Differential Equations,
Scottish Academic, 1973.

[11] W. N. Everitt, M. K. Kwong, A. Zettl, Oscillation of eigenfunctions of weighted
regular Sturm-Liouville problems, J. London Math. Soc., 27 (1983), 106-120.

[12] E. Holmgren, ber Randwertaufgaben bei einer linearen Differentialgleichung
der zweiten Ordnung, Ark f. Mat., Astr. och Fys. 1, (1904), 401-417.

[13] E. L. Ince, Ordinary Differential Equations, Dover, 1926 (reprinted, 1956).
[14] Q. Kong, H. Volkmer, A. Zettl, Matrix representations of Sturm-Liouville prob-

lems with finite spectrum, Results Math. 54 (2009), 103-116.
[15] R. Kajikiya, Y.-H. Lee, I. Sim, One-dimensional p -Laplacian with a strong

singular indefinite weight. I. Eigenvalue. J. Differential Equations 244 (2008),
1985-2019.

[16] M. Morse, Calculus of Variations in the Large, Colloq. Pub. 18, Amer. Math.
Soc., 1934.

[17] H. Pr\"ufer, Neue Herleitung der Sturm-Liouvillschen Reihenentwicklung
stetiger Funktionen, Math. Ann. 95 (1926), 499-518.

[18] W. Reid, Ordinary Differential Equations, Wiley, 1971.

159



PAUL BINDING

[19] H. Volkmer, Eigenvalue problems of Atkinson, Feller and Krein, and their
mutual relationship, Elec. J. Differential Equations 2005 (2005), No. 48, 1-15.

[20] W. Walter, Ordinary Differential Equations, Springer-Verlag, 1998.
[21] J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture

Notes in Math. 1258, Springer-Verlag, 1987.
[22] A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs 121,

American Math. Soc., 2005.

P. A. BINDING, DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVER-
SITY OF CALGARY, UNIVERSITY DRIVE NW, CALGARY, ALBERTA, $T2N$ lN4,
CANADA

$E$-mail address: bindingQucalgary. ca

160


