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INDECOMPOSABLE HILBERT REPRESENTATIONS
OF THE KRONECKER QUIVER ON
INFINITE-DIMENSIONAL HILBERT SPACES

MASATOSHI ENOMOTO

1. INTRODUCTION

This is a joint work with Yasuo Watatani. We aim to study relations
between operator theory and Hilbert representations of quivers on in-
finite dimensional Hilbert spaces . Invariant subspace problem is the
existence problem of simple representations of a loop in infinite dimen-
sional Hilbert spaces. Three subspace problem is the existence problem
of indecomposable representations of Dy in infinite dimensional Hilbert
spaces. We mainly report indecomposable Hilbert representations of
the Kronecker quiver on infinite-dimensional Hilbert spaces.

2. FUNDAMENTAL CONCEPTS

At first we shall explain some notions to describe our results. A
family I' = (V, E, s,r) is called a quiver if V' is a vertex set and F is
an edge set and s,r are mappings from E to V such that for o € E,
s(a) € V is the initial point of o and r(a) € V is the end point of a. A
quiver I' = (V, E, s,7) is called the Kronecker quiver if V is a two point
set {0,1} and E is a two point set {a, 3} and s(a) = 0,s(8) = 0, and
r(a) = 1,7(8) = 1. A pair (H, f) is called a Hilbert representation of a
quiver I' if H = (H,)yev is a family of Hilbert spaces and f = (f,)ack
is a family of bounded linear operators f, from Hyo) to Hy). For
Hilbert representations (K, g) and (K, ¢’) of a quiver T', we define the
direct sum (H,f) by H, = K, ® K,,(vE V), fa =9 ® g,,(a € E).

For Hilbert representations (H, f) and (K, g) of I, a homomorphism
¢ : (H,f) = (K,g) is a family ¢ = (é,)vev of bounded operators
¢» : H, — K, satistying, for any arrow o € E, ¢r(a) fa = GaPs(a)-

Let Hom((H, f), (K, g)) be the set of homomorphisms from (H, f) to
(K, g). Let End(H, f) be the set Hom((H, f), (H, f)). Let Idem(H, f)
be the set of idempotents of End(H, f).

Hilbert representations (H, f) and (K, g) of I" are called isomorphic
if there exists an isomorphism ¢ : (H, f) — (K, g), that is, there exists
a family ¢ = (¢,)yev of bounded invertible operators ¢, € B(H,, K,)
such that, for any arrow o € E, ¢r(a)fa = gaPs(a)-

A Hilbert representation (H, f) of I is called indecomposable if it is
not isomorphic to nontrivial direct sum of Hilbert representations of I".



A Hilbert representation (H, f) of T', is called transitive if End(H, f) =
C

We note that a Hilbert representation (H, f) of I is indecomposable
if and only if Idem(H, f) = {0, 1}.

3. GABRIEL’S THEOREM IN INFINITE DIMENSIONAL SPACES

Gabriel’s theorem says that a finite, connected quiver has only finitely
many indecomposable representations if and only if the underlying
undirected graph is one of Dynkin diagrams A,, D,, Es, E7, Esg.
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We succeeded in the establishment of a complement of Gabriel’s
theorem for Hilbert representations. We constructed some examples
of indecomposable, infinite-dimensional representations of quivers with
the underlying undirected graphs extended Dynkin diagrams A, (n>
0) D, (n > 4),E6,E7 and Fj.
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In order to do this, we considered the relative position of several
subspaces along the quivers, where vertices are represented by a family
of subspaces and arrows are represented by natural inclusion maps.
Let ' = (V, E,s,r) be a quiver whose underlying undirected graph
is an extended Dynkin diagram A, (n > 0). Then there exist un-
countably many infinite-dimensional, indecomposable Hilbert represen-
tations of I'. For example, consider




Define a Hilbert representation (H, f) of T by Hi = Hy = --- = Hy 1 =
P(N), fay = faz ="+ = fapys = I and fo, = S, the unilateral shift.
Then (H, f) is indecomposable.

Lemma 3.1. Let I" = (V, E, s,r) be the following quiver with the un-
derlying undirected graph an extended Dynkin diagram D, for n > 4

a2 a4

a1 a3

Then there exists an infinite-ditnensional, indecomposable Hilbert rep-
resentation (H, f) of I,

Let K = ¢3(N) and S a unilateral shift on K. We define a Hilbert
representation (H, f) := ((H,)vev, (fa)ace) of T as follows:
Define H; = K @0, H, =0® K, H3 = {(z,5z) € K @ K|z € K},
H4:{(CE,-'L')EK@KI$€K},H5:H6="'= n+1=K@K.
Let fo, : Hsap) = Hp,) be the inclusion map for any oy € E for
k =1,2,3,4, and fz = id for other arrows 8 € E. Then (H, f) is
indecomposable. .
Consider the following quiver I' = (V, E, s, 1)
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Then %mdelrlying undireéted graph is an extended Dynkin diagram F.
Let K = ¢%(N) and S a unilateral shift on K. We define a Hilbert
representation (H, f) := ((Hy)vev, (fa)ace) of T as follows:
Put Ho=K®K® K, HH=Kae06 K, H,=0008 K,
H =KoK®0, Hy=00 K o0,
Hyw = {(z,z,z) + (y,5y,0) € K3 | z,y € K} and .
Hy = {(z,z,z) € K® | z € K}.
Then (H, f) is indecomposable.

Lemma 3.2. Let T = (V, E, s,r) be the following quiver with the un-
derlying undirected graph an extended Dynkin diagram Er :

1//

Then th¥re exists an inﬁni%e—dizr'nen?éional, indecomposable Hilbert rep-
resentation (H, f) of T



Let K = ¢2(N) and S a unilateral shift on K. We define a Hilbert
representation (H, f) := ((Hv)veVa (fa)ack) of T as follows:
Hy,=Ka0&{(z,z);z € K} H3 Kae0a0a0,

H =08K®K®K, Hy =00 K &{(y,Sy) € K* [y € K},

H3 =00K®050 andHu = {(z,y,z,y) € K* | z,y € K}. For any
arrow o € E, let f, : Hsa) = Hy(o) be the canonical inclusion map.
Then (H, f) is indecomposable.

Lemma 3.3. Let ' = (V, E, s,) be the following quiver with the un-
derlying undirected graph an extended Dynkin diagram Ej :

1//

Then there exists an in]ﬁnitzé—diriq’lens{lonal? indecomposable Hilbert rep-
resentation (H, f) of T,

Let K = ¢*(N) and S a unilateral shift on K. We define a Hilbert
representation (H, f) := ((Hy)vev, (fa)ack) of I as follows:
Let Ho= Ko Ko K®dK® K B K,
H={(z,2)e K’ |z K} K& KO K®K,
H,=000000K®{(y,Sy) € K*|y€ K}, H; = 000800 K $080,
H) = KbKo{(z,y,z,y) € K*|z,y € K}, Hy = KOK®0000080,
Hyr = {(y,2,2,0,9, 2 )GKGIzy,zGK}
For any arrow a € E, let f, : Hya) — Hy(q) be the canonical inclusion
map. Then (H, f) is 1ndecomposable

Theorem 3.4. Let T be a finite, connected quiver. If the underly-
ing undirected graph |T'| contains one of the extended Dynkin diagrams
A, (n > 0), D, (n > 4), Eg, E; and Eg, then there exists an infinite-
dimensional, indecomposable, Hilbert representation of I'.

We need to get Hilbert representations of I with any orientation. It
is a hard task. In order to do this, we need to use Reflection functors,
closed conditions and nice mapping property of Hilbert representations.

4. HILBERT REPRESENTATION OF THE KRONECKER QUIVER

It is known that indecomposable finite dimensional representations
of 1-loop are reduced to the Jordan canonical forms. It is realized
by Weierstrass using elementary divisors in 1868. Representations of
1-loops are contained in representations of the Kronecker quiver. Gen-
eral forms of indecomposable finite dimensional representations of the
Kronecker quiver are obtained by Kronecker in 1890 as follows.

(1) Hy = C*1,Hy = C", fo = (0L,),f5 = (I0).



(IDHy = Hy = C",f, = I,,fs = B,. (B, is the backward shift with
n size.) ‘

(III)HO = H1 = Cn, fa = n,f5 =A + Bn()\ 75 O)

(IV) Hy = C*"H, = C"*!, f, = (0L,.)%,fs = (I,0).

In this form, transitive representations are (I) and (IV). (II) and (III)
are not transitive except n=1.

5. THE KRONECKER QUIVER AND 4 SUBSPACES

We shall note the relation between classification of the Kronecker
quiver and classification of 4 subspaces.

Gelfand and Ponomarev gave a complete classification of indecom-
posable systems of four subspaces in a finite-dimensional space.

In order to do this, Gelfand and Ponomarev introduced an integer
valued invariant p(S), called defect, for a system S = (H; E1, Ey, Es3, Ey)
of four subspaces by

4
p(S) = ZdimEi —2dim H.
i=1

The invariant defect characterizes an essential feature of the system.

We put the Kronecker quiver I' = (V, E,s,r) by V = {0,1}, E =
{o,p} and s(a) = 0,5(8) = 0, and r(a) = 1,7(8) = 1. We put
Dy = (V,E,s,r) by V = {vo,v1,v3,v3,v4}, E = {o,i = 1,2,3,4}
and s(a;) = v; and 7r(ag) = vp.

For a Hilbert representation (H, f) of the Kronecker quiver, we as-
sociate with a Hilbert representation (K,g) of Dy by K,, = H @ 0,
K, =00 K, K,;, = {(z,Az);z € H}, K,, = {(z,Bz);z € H},
K,, = H® K. g,, is the canonical inclusion from K, to K,,. Then
End(H, f) is isomorphic to End(K, g).

Let S1(2k+1, —1) (resp. S2(2k+1,1)) (cf,[EW2006]) be the isomor-
phism class of 4 subspaces which has the odd whole space dimension
and defect -1(resp. 1). S;(2k + 1, —1) corresponds to Kronecker clas-
sification (I) and S3(2k + 1, 1) corresponds to Kronecker classification
(IV). Let S13(2k, 0) be the isomorphism class of 4 subspaces which has
A = By and B = 1. Let §(2k,0; ) be the isomorphism class of 4
subspaces which has A = A+ By and B = 1. 81 3(2k,0) and S(2k,0; \)
correspond to Kronecker classification (II) and (III).(cf.[EW2006))

6. CANONICAL AND NON-CANONICAL HILBERT REPRESENTATIONS
OF THE KRONECKER QUIVER

Next we consider indecomposable Hilbert representations of the Kro-
necker quiver in the infinite dimensional case.

In the infinite dimensional setting, different phenomenon occurs com-
pared with finite dimensional case.



For a Kronecker quiver I' = (V,E,s,7), V = {0,1}, E = {o,B}
and s(a) = 0,5(8) = 0, and r(a) = 1,7(8) = 1, and an operator
T € B(H),where H is an infinite dimensional Hilbert space, we can
associate to a canonical representation (H, f) such that Hy = H; = H
and f,=Iand fg=T

T € B(H) is strongly irreducible if and only if there does not exist
a non-trivial idempotent P such that TP = PT. If we take a strongly
irreducible operator T € B(H), then we get an indecomposable Hilbert
representation of the Kronecker quiver.

Theorem 6.1. Let S be a shift and A € C. Put Ay =S+ X. Take a
canonical representation (H*, f*) such that H} = H} = H and f; = I
and f3 = Ax. Then {(H", A f")} X 1S an uncountable famzly of canonical
mdecomposable Hilbert representations of .

Theorem 6.2. Let A, B be strongly irreducible operators and A\(# 0) €
o(A). Put (H,f) by Ho=Hi=H and fo = A—A,fs = A. Put(K,g)
by Ko = K1 = H and go = 1,95 = B. Then (H, f) and (K,g) are
indecomposable representations and they are not isomorphic.

In the following we can construct continuously many non-canonical
indecomposable representations of the Kronecker quiver.

Theorem 6.3. Let S be a unilateral shift on an infinite dimensional
Hilbert space. Let Tx =S+ X T, =S+p, ApeC, | A-1]<1,
PESTESNEEIATIES)

Put (H*, f*) by H} = H} = H and A=I-T\f} ="T.

Then X = p if and only if (H*, f*) and (H*, f*) are isomorphic.

7. CONSTRUCTION OF TRANSITIVE REPRESENTATIONS OF THE
KRONECKER QUIVER

In this section we present examples of transitive representations of
the Kronecker quiver on infinite dimensional Hilbert spaces by two
methods.

For the Kronecker quiver I' = (V, E,s,r), V = {0,1}, E = {o, 8}
and s(a) = 0,s(8) = 0, and r(a) = 1,7(8) = 1, and an operator
T € B(H),where H is an infinite dimensional Hilbert space, we can
associate to a canonical representation (H, f) such that Hy = H; = H
and f, = I and fs = T. These canonical representations are not
transitive. Our non-canonical representations which we constructed
above are not transitive.

Next we construct transitive representations of the Kronecker quiver
by weight sequences. Let H = ¢*(Z) and XA > 1. We define two weight
sequences a(n),b(n)(n € Z) by

a(n) = e=*"(n > 1, even), 1(n is otherwise).

b(n) = e>"(n > 1,0dd), 1(n is otherwise). We put A = Do(D,
is a diagonal operator with a(n) diagonal coefficients) and B = U Dy(



the product of bilateral forward shift U and diagonal operator D, with
b(n) diagonal coefficients). A is a positive operator and B is a weighted
shift operator with weight b(n).

We put Hy = H,H} = H. We put f} = A and f} = B. Then
we get a Hilbert representation (H*, f*) of the Kronecker quiver on an
infinite dimensional Hilbert space.

Theorem 7.1. This Hilbert representation (H*, f*) of the Kronecker
quiver is transitive. That is, we have End(H?*, f*) = C.

Theorem 7.2. For A\,pu > 1\ # p, (H* f}and (H*, f*) are not

1somorphic.

Next we construct transitive representations of the Kronecker quiver
by perturbation method. Let S be a unilateral shift on K = #2(N). Let
e1, €, .. be a basis of K. Take A = ();); € £*°(N) such that \; # \;(¢ #
j) and W = (W,)n € £*(N) such that w, # 0 for any n € N. Let 6.,
be a rank one operator. Let I' be the Kronecker quiver. Put (K g) be
a Hilbert representation of I" as follows.

Ko=Ki=K,g9,=S5,93=5D,+ Oe; w-

Theorem 7.3. This Hilbert representation (K, g) of T is transitive and
this representation is not isomorphic to the above transitive represen-
tations.
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