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A brief introduction of the Karcher mean
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Abstract. The purpose of this paper is to introduce
some recent topics about Karcher mean. The Karcher
mean is a kind of geometric mean of several matrices,
and an extension of the well-known geometric mean of
two-matrices. In this paper, we shall introduce def-
inition, a way of computation, some inequalities of
Karcher mean, and then we shall introduce how to
extend the Karcher mean from matrices to operators.

1. INTRODUCTION

In 1975, W. Pusz and S.L. Woronowicz [21] have defined geometric
mean of two-operators. It looks little bit complicated, but it has many
good properties. Then, it has been extended to the theory of opera-
tor means by Kubo-Ando [15]. It is known that operator means have
one-to-one correspondence to operator monotone functions. To extend
the theory of operator means to several variable is one of the natural
question. Some extensions have been obtained, however, there were not
known any good extension of geometric mean of two-operators (we will
explain about “good extension”, below). In 2004, Ando-Li-Mathias [3]
have obtained a new definition of geometric mean of several matrices.
It has at least ten good properties, for example, monotonicity, joint
concavity, permutation invariance and arithmetic-geometric means in-
equality. Then many authors studied about geometric mean of several
variables. Until now we obtain three kinds of the definitions of the
geometric mean of several variables. The one is defined by Ando-Li-
Mathias (we call ALM mean for short). It has been defined by the
iteration method. The second one is defined by Bini-Meini-Poloni [5]
and Izumino-Nakamura [13] (we call BMP mean), independently, it
is a refinement of ALM mean. It has at least ten same properties of
ALM mean. But it is better to computation than ALM mean [5, 13].
The third one is called Karcher mean or Riemannian geometric mean
[4, 20, 16]. It is defined by the geometrical way, however the same
ten properties of ALM or BMP means are satisfied. Moreover, some
inequalities of Karcher mean are obtained [12, 23]. In this paper, we
shall introduce recent topics about Karcher mean.

This paper is organized as follows: In section 2, we shall introduce
some notations which are used later. In Section 3, we shall introduce
some topics of Karcher mean, definition, basic properties, and some
recent results. The Karcher mean is only defined for matrices, firstly.
To extend the Karcher mean of several matrices to operators, we have



to consider the power mean. In Section 4, we will introduce the defi-
nition and some properties of the power mean. And the last section,
we will introduce how to extend the Karcher mean of several matri-
ces to operators. This paper is a survey paper for introducing recent
topics about matrix means and matrix inequalities, so we will omit
introducing proofs.

2. PRELIMINARY

Let M., be the set of all m—by—m matrices, and let P,,, be the set of
all positive invertible matrices in M,,,. The famous geometric mean of
two-matrices is defined as follows [21]: Let A, B € P,,. Then geometric
mean AfB is defined by

AfB = A7(AZ BA7 )1 A1,
Also, weighted geometric mean is known as
Af,B = A1(AT BAT )'A? fort e [0,1].

Geometric mean can be defined for positive invertible operators. Let
H be a complex Hilbert space, and let B(H) be the algebra of all
bounded linear operators on ‘H. We write PP as a set of all positive
invertible operators in B(H).

A vector w = (wy, - ,wn) € [0,1]™ is called a probability vector if
and only if ", w; = 1 and w; > 0. Let A, be the set of all probability

vector.
For A,B € P,, the Riemannian metric is defined by 62(A, B) =

llog A% BA7 |5, where || - || means the trace norm, ie., I X2 =

VitraceX*X for X e M,,.
Let X € P, and A\ (X),..., An(X) be the spectral of X which are

arranged in the decreasing order. For A, B € Pp,, A <(10g) B is defined
as follows:

k k
HA,-(A) < H)\i(B) for k=1,2,...,m—1,
i=1 i=1
H Ai(4) = H Ai(B).
i=1 i=1
We call the above relation log-majorisation.

3. KARCHER MEAN

In this section, we shall introduce the definition and basic properties
of Karcher mean.
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Definition 1 (Karcher mean [4, 20, 16]). Let A = (Ay,---,A,) € P7,
and w € A,. Then the Karcher mean (Riemannian geometric mean)
Alw, A) is defined by

Aw,A) = aggeﬂggin 2_; w;03( Ai, X).

It is easy to check that for A, B € P,,,, A((1 —t,t); A, B) = A}, B. If
w=(%,---,1) e A, then we write it A(A) for short. As in Definition

1, Ka?cher mean is defined by geometrical way, the idea is originated
from differential geometry [6]. Because the set of all positive invertible
matrices equipped with inner product (X,Y) = traceY X* for X,Y €
M,, is the Riemannian manifold, and the Riemannian metric is the

geodesic for the Riemannian manifold.

The Karcher mean has at least ten good properties. The follow-
ing properties (P1)-(P10) are satisfied for Karcher mean [4, 20, 16].
Moreover ALM [3] and BMP [5, 13] means also satisfy them. Let
A= (A, .., A),B=(By,..,B,) € P and w = (wy, ..., wp,) € A,,.

(P1) Commutative case. If Ay, ..., 4, commute with each other,

then

Alw; A) = ﬁ AP
i=1

(P2) Joint homogeneity. Let ay, ..., a,, be positive numbers. Then

Aw;a144, ..., 0,A,) = (H a;‘“) A(w; A).
i=1

(P3) Permutation invariance. Let o be a permutation on (1,2, - - -
Then

Alw; A) = A(We(1), vy Won); Ao(1)s -y Aom))-

(P4) Monotonicity. For eachi = 1,2, ...,n, assume 4; < B;. Then
Aw; A) < A(w;B).
(P5) Continuity. For eachi = 1,2, ..., n, if the sequences Agk) — A;
as k — 400, then

Aw; AP AR 5 Aw;A) as k — 400 .

(P6) Joint concavity. For 0 < A < 1,
A (w; A) + (1 = MA(w;B) < Alw; MA + (1 — \)B).
(P7) Congruence invariance. For any invertible matrix S,
A(w; §* A4S, ..., S*A,S) = S*A(w; A)S.
(P8) Self-duality.
Alw; AT A= A(w; A).

n
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(P9) Determinantial identity.

det A(w; A) = [ [ (det A;)**.

i=1

(P10) Arithmetic-geometric-harmonic means inequality.

n -1 n
i=1 i=1

The Karcher mean has been defined by geometrical way, however, it
is known two types of characterizations of the Karcher mean. The first
one is as follows:

Theorem 1 ([20, 16]). Let A = (A, ..., An) € P}, andw = (wy, ..., wn) €
A,. Then the Karcher mean A(w;A) is the unique positive solution of

(3.1) Xn:w log (X‘T‘A,-X%l) —0.
1=1

Especially, Y >, w;log A; = 0 if and only if A(w;A) = I holds. We
call (3.1) the Karcher equation [14].

The second characterization is follows: Let A = (Ay,...,4,) € Pr,,
and w = (w1, ..., w,) € A,. Suppose that we choose a natural number
ir € {1,...,n} in the k-th independent trial with the probability w;,,
and let X = A;,. Define {Si} as follows:

S1=X1, S2= 51X = XiXo,
S3 = Szu%X;g — (XlﬁXQ)ﬁ%Xg, ceey

Sk = Skl 1 Xiey1-
Theorem 2 ([16, 22]). Almost always klim Sk = A(w; A) holds.
—00

Theorem 3 (No dice approach [11]). Let A = (Ay,...,A4,) € Pp.
Define the matriz sequence {Xi} by

{Xk} = {Al, Ag, ceey An, Al, Az, ceey An, Al, Az, }
Then
lim Sk = A(A)
k—o0
always holds.

There are a lot of matrix inequalities related to geometric mean of
two matrices. However, ALM and BMP means can not extend them.
Until now, Karcher mean can extend them to inequalities for several
variables.



Theorem 4 ([23]). Let A = (Ay,- -, A,) € P, andw = (wy, - - ,wy) €
A,. Then

ZwilogAi <0 = A(w;A) <.
i=1
Remark. Theorem 4 is an extension of the well-known result shown
in [1, 9, 8] as a two-matrices case: Let A, B € P,,. Then

(3.2) log B < log A => (AZ2BA%)? < A.

Moreover the above (3.2) is well known result as the most essential
inequality of the famous Furuta inequality [7]. Hence, we obtain an
extension of Furuta inequality for several variables by using Theorem
4,

Theorem 5 ([12]). Let A = (Ay,...,An) € P2 and q > 0. Then
Al > A2 >0 (i=1,..,n~1) implies
Alw; AT, AT AP < AT < AT

n

; A 1 1 -1
forallp, >0,i=1,....,n—1 and p, > q, where & = (p1+q, ven pn_1+q,p’;_q)

and w = 2.
[@]l1
In fact, Furuta inequality can be obtained as a two-matrices case of
Theorem 5, that is, if B < A, then
p—114+r
p+rip+r

A%T(A%BpA%)ﬁ—:A%'ZA(< );A—T,BP)SBSA

holds for p > 1, r > 0.
The Karcher mean extends so-called Ando-Hiai inequality. Let A =
(A1,...,An) € Pr. For p € R, AP := (A7, ..., AP).
Theorem 6 ([23]). Let A = (A, ,An) € P, andw = (wy, -+ ,wy,) €
A,. Then
Aw;A) <] = Aw;AP) < T forp>1.

In fact, we can obtain Ando-Hiai inequality in the two-matrices case

2],
Af,B<I= AP{,B? <] forp>1

Using the anti-symmetric tensor technique to Theorem 6, the follow-
ing extension of the main result in [2] holds:
Theorem 7 ([10]). Let A = (Ay,--- , A,) € P, andw = (wy, -+ ,wy,) €
A,. Then
A(w; A) <og) Aw; AP)?
holds for all p € (0,1).
Moreover the following log-majorisation result holds.

A(w; A) <(0g) €xp (Z w; log Ai) :
i=1



4. POWER MEANS

As in the definition of Karcher mean, the Karcher mean is defined
for only positive definite matrices. To define the Karcher mean for
bounded linear operators, we need to consider the following power mean
of several operators in P.

Definition 2 (Power mean, [18, 17]). Let A € P* and w € A,. For
t € (0,1], the w-weighted power mean P;(w;A) of ordert of A is defined
by the unique positive solution of

X = iw,-(XtttAi) (or I= En:wi(X_TlAiX:il)‘) .
=1

1=1
FOT‘t € [_170)1 deﬁne Pt((/J,A) = P_t(w;A—l)"l,

Existence and uniqueness of P;(w; A) are shown in [18]. For a prov-
ability vector w = (%,...,1) € A,, we write it P,(A) for short. By
the definition of power mean, we obtain )., w;A* = I if and only if
P(w; A) = I holds, easily.

Power mean satisfies the following properties [18]: Let a = (ay, ..., an) €

(0,00)™, A,B € P*, w € A, and M be an invertible operator on H.
(P1) Commutative case. If A;, ..., A, commute with each other,

then 1
Piw; A) = (ZwiAﬁ) .
i=1

(P2) Scalar multiple. Let ay, ..., a, be positive numbers. Then

1

Py(w;ah) = (Z w) Py(wa'; A),
=1

where wa® = (atw, ..., abwy).
(P3) Permutation invariance. Let o be a permutationon (1,2, - -
Then

Pi(w; A) = Pi(ws1), -, Wo(n); Ac(1)s -+ Ac(n))-
(P4) Monotonicity. For each¢ = 1,2, ...,n, assume A; < B;. Then
Py(w; A) < P(w;B).

(P5) Continuity. For eachi = 1,2, ...,n, if the sequences Agk) — A;
as k — +o00, then

Py(w; Agk), oy AR 5 Py(w;A) ask — +oo .
(P6) Joint concavity. For 0 < A <1,
(1= X)Py(w; A) + APy (w; B) < Pyy(w; (1 = M)A + AB).
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(P7) Congruence invariance.
Py(w; MAM®) = MP,(w; A)M*.
(P8) Self-duality.
Pyw; AT = Poy(w; A).
(P9) Determinantial inequalities. If A;,..., 4, € P,,, then

det P_j(w; A) < H det A < det Py (w; A).
i=1
(P10) Arithmetic-power-harmonic means inequality.

n -1 n
(Z wz’Ai-l) < Bi(w;A) < ZwiAz
=1

i=1

It is obvious that P(w;A) and P_;(w;A) are arithmetic and har-

monic means, respectively. Moreover power mean interpolates these
means. For G, H : A, x P" — P, we define

G<H if Gw;A)<H(w;A)
for all w € A,, and A € P,
Theorem 8 ([18, 17, 19]). For0 < s <t <1,
H=P,<P;<P,<---<P<P<P=A

Furthermore, the limit of power means lim;_,o Py(w; A) ezists. If A €

7., then it coincides with the Karcher mean, i.e., %irré P (w;A) = A(w; A).
: —

Here we shall consider matrlx inequalities similar to Theorem 4. De-

fine Qy(w; A) = (Z szt) We call Q:(w; A) quasi-arithmetic mean.

Theorem 9 ([19]). Let A = (Ay,..., A,) € P andletw = (wy, ..., w,) €

A,,. Then
(1) fort € (0,1], Qe(w;A) < I = Py(w;A) < I
(2) fort € [-1,0), Qi(w;A) > I = Py(w;A) > 1.

It is well known that lim Qi(w; A) = exp Z w; log Ai). Hence by
=1
‘Theorem 8, we can con81der Theorem 9 as a limit of Theorem 4 as

follows:

tht(w A) =exp (Z w; logA) <I = hmPt(w A)=Aw;A)<T

1=1
Moreover we obtain that for t € (0,1], | Py(w; A)| < ||Q:(w; A)||. How-
ever it is not known whether this norm inequality holds for all unitarily
invariant norm or not.
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Theorem 10 (Ando-Hiai property, [19]). Let A = (As,..., A,) € Pp,,
w=(wy,...,wp) € A, and t € (0,1]. Then

(1) Py(w;A) < I implies P% (w; AP) < I for allp > 1,

(2) P_¢(w;A) > I implies P_i(w; AP) > T forallp > 1.

Theorem 10 can be also considered as a limit of Theorem 6.

5. KARCHER MEAN FOR INFINITE DIMENSIONAL OPERATORS

As in the definition of Karcher mean, it is defined in only matrices.
In this section, we shall introduce a way to extend the Karcher mean
of n-matrices to n-operators. The main idea is to define Karcher mean
as a unique positive solution of Karcher equation.

Theorem 11 ([17]). For any A = (A4, ..., Ay) € P* andw = (wy, ..., w,) €
A,, the Karcher equation

Y wilog (X%Aix%l) =0
i=1
has positive definite solution.
Especially, A(w; A) = %5% P,(w; A) is a solution of the Karcher equa-
tion. _
Theorem 12 ([17]). Forany A = (A;, ..., A,) € P* andw = (wy, ..., wy,) €
A, the Karcher equation

. Slaogeat)
izzlw,-log(XZAzX2) 0

has unique positive definite solution.

Definition 3 ([17]). Let A = (Ay, ..., A,) € P" and w = (wy, ..., wy) €
A,. Then the Karcher mean A(w;A) is defined by the unique positive
solution of the Karcher equation

- . FaxH) o
;w,log(XzA,Xz) 0

In this case, the Karcher mean also satisfies all ten properties (P1)-
(P10) mentioned above [17].
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