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Elementary proofs of Petz-Hasegawa theorem and Hansen results
by only using Lowner-Heinz inequality
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We show elementary proofs of useful and important operator monotone functions by

Petz-Hasegawa and Frank Hansen. Also we consider some extensions of results by Hansen.

A capital letter means a bounded linear operator on a Hilbert space H. An operator T
is said to be positive (denoted by T > 0) if (T'z,z) > 0 for all z € H and also an operator
T is said to be strictly positive (denoted by T > 0) if T is positive and invertible. A real
valued continuous function f(t) on (0,00) is said to be operator monotone if f(A) > f(B)
holds for A > B.

§1 An elementary proof of Theorem B by Petz-Hasegawa

Theorem B is the essential factor of the operator monotone function giving the famous
and important Wigner-Yanase-Dyson skew information and it turns out that Wigner-
Yanase-Dyson skew information is closely ralated to the special case of quantum Fisher

information.

We cite the following almost obvious Proposition A which is an immediate consequence
of the well known celebrated result as (LH) (abbreviation of Léwner-Heinz) that ¢ is an

operator monotone for any « € [0, 1] to give a proof of Theorem B.

Proposition A ([2]).
(LH) t* is an operator monotone for any o € [0, 1].

(LH-1) Let aj, B, 7j..- € [0,1] for j =1,2,...,n. Then
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First of all, recall the following obvious Lemma, 1.



Lemma 1. For any natural number n and any positive real number t, the following in-
equality holds:
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Lemma 2. Let natural number n and k such that n — 1 > k > 1. Then the following
inequality holds for any positive real number t:
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Proof. We show (1.1) by mathematical inductioin on k such that n —1 > k>1.

(i) In case k = n — 1. In fact (1.1) holds for £ = n — 1 because (1.1) putting k =n — 1,

which just coincides with (1.0) of Lemma 1.
(ii) Assume (1.1) for some k such that n —1 > k > 1. We show that (1.1) holds for k — 1.
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and (1.2) shows that (1.1) holds for any k such that n —1 > k > 1 by mathematical
induction on k by (i) and (ii). O

Next we state an elementary proof of the following Theorem B (see Remark 1.1).

(t—1)

CERGEESY is an operator monotone function

Theorem B ([6], [1]). f,(t) = p(1 — p)
for -1 <p<2.
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Proof. (i) Incase 0 < p < 1. Since p(1—p) > 0 holds, we show that g, (t)

is operator monotone. We have only to prove the result for p = — € (0, 1) for natural num-
n
ber n and k such that n — 1 > k > 1 by continuity of an operator.
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and replacing k by n — k in (1.3),
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Since g,(t) is the product of (1.3) and (1.4), we have
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because the product of the first term of (1.3) and the first one of (1.4) equals to ¢ as follows:
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Thanks to an appropriate modification of (1.5) to apply Proposition A, we have
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so that g,(t) is operator monotone by (LH-1) of Proposition A ans so is f,(t) = p(1—p)g,(t).

(ii) In case 1 < p < 2. Since p(1 — p) < 0 we have only to prove that
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is an operator monotone function for natural number n and & such that n — 1 > k > 1 by

(1.6)

hp(t) =

continuity of an operator. Then we have by (1.6)
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By applying modified Lemma 2 replacing t by t% to (1.7), so that the part of [ | of
the numerator in (1.7) can be rewritten as follows:
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By (1.8) we have
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is operator monotone by (LH-1).

(iii). In case —1 < p < 0. f,(t) is operator monotone because the result reduces to the case
1 < p < 2 by symmetry.

(iv) lim f,(¢) = lim fy(t) =
operator monotone.

Whence the proof is complete by (i), (ii), (iii) and (iv). O

tlo—gtl and f_1(t) = fot) = _2+_ 1 and these functions are both

Remark 1.1. The proof of the case 0 < p < 1 in Theorem B was obtained in [6], who
also conjectured the case 1 < p < 2. Imcomplete proofs of this statement have appeared in
the literature, but it seems that the first correct proof was obtained by Cai And Hansen {1,
Theorem 5.2] (see the footnote on page 11 of [1]). The proof of Theorem B in this paper is
based on [3].
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§2 Elementary proofs of the results by Hansen and related ones

Theorem C ([4]).

t7—-1 .
i) f@) = w7 s an operator monotone function for 1 > qg>p >0 andt > 0.

(i) f(v) ) is also an operator monotone, where f(t) is in (i)
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(iii) fH(t) =tf(t™") is also an operator monotone, where f(t) is in (i).

k m
Proof. (i). We have only to prove the result for p = = and ¢ = - for natural numbers
n
n,m, k such that n > m > k > 1 by continuity of an operator.
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so that f(t) is an operator monotone function by (LH-1) of Proposition A.
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is operator monotone by (LH-1) of Proposition A.
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so that f*(t) is operator monotone by (LH-1) of Proposition A. O

Proposition 2.1. If f(t) and g(t) are both positive operator monotone ont > 0, then
(i) f(t)=2g(t)> is positive operator monotone for any a € {0,1] ont > 0. (2.2)

In particular,

(ii) f(t)'~2*t* is positive operator monotone for any o € [0,1] ont > 0. (2.3)

(iii) f(¢)1-=f(t~1)*t* is positive operator monotone for any o € [0,1] on t > 0. (2.4)

Proof. Let A > B > 0. Since f(A)f.9(A) > f(B)fag(B) for a € [0, 1], so we have (2.2).
Since g(t) = f*(t) = L is operator monotone, (2.3) follows by (2.2).

f(8)
Also since g(t) = f*(t) = tf(t™!) is operator monotone, (2.4) follows by (2.2). O

Proposition 2.2. Let 1 > q¢>p> 0 and o € [0,1]. Then

t9-1
(i) Frpa= - lt(l‘q+”)" is operator monotone ont > 0
and
" t9—1\1-2a a
(ii) Graa = ( )" t* is operator monotone on t > 0.
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Proof. (i). Put f(t) = §=2for1 > ¢>p >0o0nt > 0and g(t) = f(T) =

tf(t!) = E=3t1"9*P on t > 0. Since f(t) and g(t) are operator monotone shown in §1,
t79-1

ft)g(t)* = mt(l‘q“’)“ is operator monotone by (2.2). And (ii) follows by (2.3). O

Theorem D ([5]).Let the exponent v € (0,1]. The functions

1) = 30+ D) = (5

are operator monotone, normalized in the sense fy(1) =1 and f,(t) = tf,(t7!) fort >

)1—27

e

Proof. Since f(t) = 1! is operator monotone and f,(t) = f(t)'"2t" = t7(3t)'=>

is operator monoyone by (2.3) of Proposition 2.1. Others are immediate consequences of
calculations. (O
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Remark 2.1. F,,,(t) = P

2.2 contains the following useful operator monotone functions as follows;

g-atple i operator monotone on ¢t > 0 in Proposition

q _.
Fopo(t) =t*for e € [0,1] and F,,0(t) = ; — 1 for1>¢>p>0.
Although it is well known that f*(t) = fgz-tj and f*(t) = tf(t7!) in Theorem C in §2 are

both operator monotone if f(t) is operator monotone, we give elementary direct proofs of
(ii) and (iii) in Theorem C without use of the operator monotonicity of f(t) in (i).

Both Proposition 2.1 and Proposition 2.2 for a = 1 in §2 are shown in [4] and Theorem
D is shown in [5] by using a canonical representation and these results are considered in
[4][5] closely associated with useful Morozova-Chentsov function.

Acknowledgment. We would like to express our cordial thanks to Professor Frank
Hansen since he kindly informs us of the content of Remark 1.1 and also the results in §2

are obtained via useful and instructive discussions with him.
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