MORE ON OPERATOR MONOTONE FUNCTIONS

HAMED NAJAFI

ABSTRACT. We investigate some properties of operator monotone functions. In particular, we show that if f is a non-constant operator monotone function on an interval J and A, B are self-adjoint operators with spectra in J such that A > B, then f(A) > f(B). As an application we extend the celebrated Löwner-Heinz inequality.

1. Introduction

Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $\mathbb{B}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} equipped with the operator norm $\|\cdot\|$. An operator $A \in \mathbb{B}(\mathcal{H})$ is called *positive* if $\langle Ax, x \rangle \geq 0$ holds for every $x \in \mathcal{H}$ and then we write $A \geq 0$. For self-adjoint operators $A, B \in \mathbb{B}(\mathcal{H})$, we say $A \leq B$ if $B - A \geq 0$. Also for self-adjoint operators $A, B \in \mathbb{B}(\mathcal{H})$, we say $A \succ B$ if $\langle Ax, x \rangle > \langle Bx, x \rangle$ holds for all non-zero elements $x \in \mathcal{H}$. Also A > B if $A \geq B$ and A - B is invertible.

A continuous real valued function f defined on an interval J is called operator monotone if $A \geq B$ implies $f(A) \geq f(B)$ for all self adjoint operators A, B acting on a Hilbert space with spectra in J.

The Löwner theorem says that a function f is operator monotone on an interval J if and only if f has an analytic continuation to the upper half plan Π_+ such that f maps Π_+ into itself. If f(t) is an operator monotone function on (a,b), then clearly $f\left(\frac{2t-a-b}{b-a}\right)$ is operator monotone on (-1,1), so in this paper we study the family of operator monotone functions on (-1,1).

Let \mathcal{K} denote the family of all operator monotone functions on (-1,1) such that f(0)=0 and f'(0)=1. Hansen and Pedersen [8] showed that \mathcal{K} is a compact convex subset of the space of all bounded functions on (-1,1) with pointwise convergence topology and that the extreme points of \mathcal{K} are of the form $f_{\lambda}(t)=\frac{t}{1-\lambda t}$ with $|\lambda|<1$. They [8] also proved that every $f\in\mathcal{K}$ can be represented as

$$f(t) = \int_{-1}^{1} \frac{t}{1 - \lambda t} d\mu(\lambda),$$

where μ is a positive measure on (-1,1), see also [3].

The Löwner-Heinz inequality says that, $f(x) = x^r$ ($0 < r \le 1$) is operator monotone on $[0, \infty)$. Löwner proved the inequality for matrices. Heinz proved it for positive

operators acting on a Hilbert space of arbitrary dimension. Based on the C^* -algebra theory, Pedersen [14] gave a shorter proof of the inequality.

There exist several operator norm inequalities each of which is equivalent to the Löwner-Heinz inequality. One of them is $||A^rB^r|| \le ||AB||^r$, called the Cördes inequality in the literature, in which A and B are positive operators and $0 < r \le 1$. A generalization of the Cördes inequality for operator monotone functions is given in [5]. It is shown in [2] that this norm inequality is related to the Finsler structure of the space of positive invertible elements.

Kwong [10] sowed that if A > B ($A \succ B$, resp.), then $A^r > B^r$ ($A^r \succ B^r$, ressp.) for $0 < r \le 1$. Uchiyama [15] showed that for every non-constant operator monotone function f on an interval J, $A \succ B$ implies $f(A) \succ f(B)$ for all self-adjoint operators A, B with spectra in J.

There are several extensions of the Löwner–Heinz inequality. The Furuta inequality [6], which states that if $A \geq B \geq 0$, then for $r \geq 0$, $(A^{r/2}A^pA^{r/2})^{1/q} \geq (A^{r/2}B^pA^{r/2})^{1/q}$ holds for $p \geq 0$ and $q \geq 1$ with $(1+r)q \geq p+r$, is known as an exquisite extension of the Löwner–Heinz inequality; Also Ando [1] extended the Löwner Heinz inequality for a pair of J-selfadjoint matrices.

Let Ω be a open subset of \mathbb{C} . A set $\mathcal{F} \subseteq C(\Omega)$ is bounded if for each compact subset $K \subseteq \Omega$, $\sup\{\|f\|_K : f \in \mathcal{F}\} < \infty$. The Montel theorem states that if \mathcal{F} is a bounded subset of the set $A(\Omega)$ of all analytic functions on Ω , then \mathcal{F} is a normal family, i.e, each sequence $\{f_n\}$ in \mathcal{F} has a subsequence $\{f_{n_j}\}$ converging uniformly on each compact subset of Ω .

2. The results

Throughout this note, let $\Omega = \Pi_+ \bigcup \Pi_- \bigcup (-1, 1)$, where Π_- is the lower half plan.

Theorem 2.1. The family K is bounded in $A(\Omega)$, so it is a normal family.

Proof. Let S be the convex hull of $\{f_{\lambda}: |\lambda| < 1\}$ where $f_{\lambda}(t) = \frac{t}{1-\lambda t}$. By Krein–Millman's theorem, K is the closed convex hull of it's extreme points, so $\overline{S} = K$. Fix $K \subseteq \Omega$ as a compact set. Then $h(\lambda, z) = |1 - \lambda z|$ is continuous on $[-1, 1] \times K$ and so takes its minimum value. It should be noticed that the minimum value m of h $[-1, 1] \times K$ is nonzero. Put $M_K := \sup\{|z|: z \in K\}$. Then

$$|f_{\lambda}(z)| = \frac{|z|}{|1 - \lambda z|} \le \frac{M_K}{m}$$

If $g = \sum_{i=1}^{n} c_i f_{\lambda_i} \in \mathcal{S}$, then

$$|g(z)| = |\sum_{i=1}^{n} c_i f_{\lambda_i}(z)| \le \sum_{i=1}^{n} c_i |f_{\lambda_i}(z)| \le \sum_{i=1}^{n} c_i \frac{M_k}{m} = \frac{M_k}{m},$$

whence $||g||_K \leq M_K$. Now assume that $g \in \mathcal{K}$ is arbitrary. There exists $\{f_n\}$ in \mathcal{S} such that $f_n(t) \to g(t)$ for each $t \in (-1,1)$. Since S is bounded, the sequence $\{f_n\}$ is bounded. By Montel's theorem there exists a subsequence $\{f_{n_i}\}$ converging to g'

in uniform compact convergence topology on Ω . Since g=g' on (-1,1), we have g(z)=g'(z) for each $z\in\Omega$. Hence

$$|g(z)| = |g'(z)| = \lim_{n_j \to \infty} |f_{n_j}(z)| \le \frac{M_K}{m}.$$

Therefore K is a normal family.

Proposition 2.2. Let $f \in \mathcal{K}$ and $f(-1,1) \subseteq (-1,1)$. Then f(t) = t for each $t \in (-1,1)$.

Proof. Since $f(-1,1) \subseteq (-1,1)$, so $f^n = f \circ f \cdots \circ f \in \mathcal{K}$. Hence by Theorem (2.11), f^n has a convergent subsequence that converges to a function $h \in \mathcal{K}$. Assume that $f(t_0) < t_0$ for some $t_0 \in (-1,1)$. Hence $\{f^{(n)}(t_0)\}$ is an increasing sequence converging to $h(t_0)$. Thus

$$h(f(t_0)) = \lim_{n \to \infty} f^n(f(t_0)) = \lim_{n \to \infty} f^{n+1}(t_0) = h(t_0)$$

Since h is one-one, we infer that $f(t_0) = t_0$, which is a contradiction and this completes the proof.

Remark 2.3. We can prove Proposition 2.2 directly as follows.

It follows from

$$f(t) = \int_{-1}^{1} \frac{t}{1 - \lambda t} d\mu(\lambda),$$

that

$$-1 \leqq \int_{-1}^{1} \frac{t}{1 - \lambda t} d\mu(\lambda) \leqq 1 \quad (-1 < t < 1).$$

Since for each λ the integrand $\frac{t}{1-\lambda t}$ is positive and increasing on 0 < t < 1, by the Lebesgue's monotone convergence theorem

$$\int_{-1}^{1} \frac{1}{1 - \lambda} d\mu(\lambda) = \lim_{t \to 1-} \int_{-1}^{1} \frac{t}{1 - \lambda t} \le 1.$$

Similarly we have

$$\int_{-1}^{1} \frac{-1}{1+\lambda} d\mu(\lambda) = \lim_{t \to -1+} \int_{-1}^{1} \frac{t}{1-\lambda t} \ge -1.$$

Thus we have

$$\int_{-1}^{1} \frac{1}{1 - \lambda^{2}} d\mu(\lambda) = \frac{1}{2} \int_{-1}^{1} (\frac{1}{1 - \lambda} + \frac{1}{1 + \lambda}) d\mu(\lambda)$$

$$\leq 1 = \int_{-1}^{1} 1 d\mu(\lambda).$$

From this it follows that $\frac{1}{1-\lambda^2} = 1$ almost everywhere with respect to μ , Thus $\mu\{0\} = 1$, which implies f(t) = t.

Corollary 2.4. Let f be an odd operator monotone function on (-1,1) and A is a bounded linear operator on a Hilbert space with spectrum in (-1,1). Then $f(|A|) \ge f'(0)|A|$.

Proof. If $f(t_0) < f'(0)t_0$ for some $t_0 \in (0,1)$, then $f_1(t) = \frac{1}{f'(0)t_0}f(t_0t) \in \mathcal{K}$ and $f_1(-1,1) \subseteq (-1,1)$, so, by Proposition (2.2), we have $f_1(1) = 1$, which is a contradiction. Hence

$$f(|t|) \ge f'(0)|t|, \qquad t \in (-1,1)$$
 (2.1)

Therefore $f(|A|) \ge f'(0)|A|$.

Remark 2.5. A direct proof of (2.1) reads as follows. Notice that f(0) = 0. Hence

$$f(t) = f'(0) \int_{-1}^{1} \frac{t}{1 - \lambda t} d\mu(\lambda).$$
 (2.2)

Since f(t) = -f(-t), we obtain

$$\int_{-1}^{1} \frac{1}{1-\lambda t} d\mu(\lambda) = \int_{-1}^{1} \frac{1}{1+\lambda t} d\mu(\lambda).$$

Thus

$$\int_{-1}^{1} \frac{1}{1 - \lambda t} d\mu(\lambda) = \frac{1}{2} \int_{-1}^{1} (\frac{1}{1 - \lambda t} + \frac{1}{1 + \lambda t}) d\mu(\lambda)$$
$$= \int_{-1}^{1} \frac{1}{1 - (\lambda t)^{2}} d\mu(\lambda) \ge \int_{-1}^{1} \frac{1}{1 - (\lambda t)^{2}} d\mu(\lambda) = 1.$$

(2.2) yields
$$|f(t)| \ge f'(0)|t|$$
.

In the sequel we need the following lemma.

Lemma 2.6. [3, Lemma 2.4] If f is an operator monotone function on an interval (a,b), then $f^{2p+1}(t) \ge 0$ for all $p=0,1,2,\cdots$ and all a < t < b.

Corollary 2.7. Let f be an odd operator monotone function on (-1,1). Then f is concave on (-1,0) and convex on (0,1).

Proof. Without loss of generality we may assume that $f \in \mathcal{K}$. We shall show that f is convex on (0,1). The proof of Lemma 4.1 of [8] shows that $f'(t) \geq \frac{f(t)^2}{t^2}$. It follows from Corollary (2.4) that $f'(t) \geq 1$ for each $t \in (0,1)$. Therefore

$$f''(0) = \lim_{t \to 0^+} \frac{f'(t) - f'(0)}{t} = \lim_{t \to 0^+} \frac{f'(t) - 1}{t} \ge 0.$$

By Lemma (2.6), $f^{(3)}(t) \ge 0$ for all $t \in (-1,1)$, so $f''(t) \ge 0$ for all $t \in (0,1)$ since $f''(t) \ge 0$ is monotone. Hence f is a convex function on (0,1). Since f is an odd function, f is concave on (-1,0).

Theorem 2.8. An odd operator monotone function on (-1,1) is of the form

$$f(t) = f'(0) \int_{-1}^{1} \frac{t}{1 - (\lambda t)^2} d\mu(\lambda), \tag{2.3}$$

where μ is a probability measure on (-1,1).

Proof. As before, we may assume that $f \in \mathcal{K}$. The function f can be represented as a power series $f(t) = \sum_{n=1}^{\infty} a_n t^n$, which is convergent for |t| < 1, cf. [3]. Since f is odd, $a_{2n} = 0$ for all n. Due to f is operator monotone, there is a probability measure μ on (-1,1) such that

$$f(t) = \int_{-1}^{1} \frac{t}{1 - \lambda t} d\mu(\lambda) = \int_{-1}^{1} \sum_{n=1}^{\infty} t(\lambda t)^{n} d\mu(\lambda) = \sum_{n=1}^{\infty} t^{n+1} \int_{-1}^{1} \lambda^{n} d\mu(\lambda)$$

Therefore $a_{2n} = \int_{-1}^{1} \lambda^{2n-1} = 0$ and so

$$f(t) = \int_{-1}^{1} \sum_{n=1}^{\infty} t(\lambda t)^{2n-1} d\mu(t) = \int_{-1}^{1} \frac{t}{1 - (\lambda t)^{2}} d\mu(\lambda).$$

If f is of the form (2.3), then it is trivially odd. In addition,

$$f(t) = \int_{-1}^{1} \frac{t}{1 - (\lambda t)^2} d\mu(\lambda) = \frac{1}{2} \int_{-1}^{1} \frac{t}{1 - \lambda t} + \frac{t}{1 + \lambda t} d\mu(\lambda) = \frac{1}{2} (g(t) - g(-t)),$$

where $g(t) = \int_{-1}^{1} \frac{t}{1-\lambda t} d\mu(\lambda)$. Hence f is an odd operator monotone function on (-1,1).

We start main results with the following useful lemma.

Lemma 2.9. Let $A, B \in \mathbb{B}(\mathcal{H})$ be invertible positive operators such that $A - B \ge m > 0$. Then

$$B^{-1} - A^{-1} \ge \frac{m}{(||A|| - m) ||A||}. (2.4)$$

Proof. Since $f(t) = \frac{1}{t}$ is a decreasing operator monotone function on $[0, \infty)$ we have $B^{-1} \geq (A - m)^{-1}$. On the other hand

$$(A - m)^{-1} \ge A^{-1} + \frac{m}{(||A|| - m)||A||}$$

$$\iff (A^{-1} + \frac{m}{(||A|| - m)||A||})(A - m) \le 1$$

$$\iff \frac{A^2}{(||A|| - m)||A||} - \frac{mA}{(||A|| - m)||A||} \le 1$$

$$\iff A^2 - mA \le (||A|| - m)||A||$$

$$\iff ||A^2 - mA|| \le (||A|| - m)||A||.$$

There exists $\lambda_0 \in \operatorname{sp}(A)$ such that $||A|| = \lambda_0$. Since $A \geq m > 0$, we have

$$||A^{2} - mA|| = \max\{\lambda : \lambda \in \operatorname{sp}(A^{2} - mA)\}$$

$$= \max\{\lambda^{2} - m\lambda : \lambda \in \operatorname{sp}(A)\}$$

$$= \lambda_{0}^{2} - m\lambda_{0}$$

$$= (||A|| - m)||A||.$$

So
$$B^{-1} \ge (A-m)^{-1} \ge A^{-1} + \frac{m}{(||A||-m)||A||}$$
.

Proposition 2.10. Let f be a non-constant operator monotone function on an interval J and A, B be self-adjoint operators with spectra in J such that A > B. Then f(A) > f(B).

Proof. Without loss of generality we assume that J=(-1,1). Let $A,B\in\mathbb{B}(\mathscr{H})$ be self-adjoint operators with spectra in (-1,1) and A-B is positive and invertible. So there exists m>0 such that $A-B\geq m>0$. Put $f_{\lambda}(t)=\frac{t}{1-\lambda t}$ for each λ with $|\lambda|<1$. We shall show that $f_{\lambda}(A)-f_{\lambda}(B)$ is bounded blow and so invertible. It is clear that the claim is true for $\lambda=0$. If $0<\lambda<1$, then $(1-\lambda B)-(1-\lambda A)=\lambda(A-B)>\lambda m>0$ as well as $1-\lambda B$ and $1-\lambda A$ are positive invertible operators. Since

$$\frac{t}{1-\lambda t} = \frac{-1}{\lambda} + \frac{1}{\lambda} \left(\frac{1}{1-\lambda t} \right),$$

by Lemma 2.9, we have

$$f_{\lambda}(A) - f_{\lambda}(B) = \frac{1}{\lambda} \left(\frac{1}{1 - \lambda A} - \frac{1}{1 - \lambda B} \right)$$

$$\geq \frac{1}{\lambda} \left(\frac{\lambda m}{(||1 - \lambda B|| - \lambda m) ||1 - \lambda B||} \right) \qquad \text{(by (2.9))}$$

$$= \frac{m}{(||1 - \lambda B|| - \lambda m) ||1 - \lambda B||} > 0$$

A similar argument shows that

$$f_{\lambda}(A) - f_{\lambda}(B) \ge \frac{m}{(||1 - \lambda A|| + \lambda m) ||1 - \lambda A||} > 0$$

for each $-1 < \lambda < 0$. Since f is operator monotone on (-1,1), it can be represented as

$$f(t) = f(0) + f'(0) \int_{-1}^{1} f_{\lambda}(t) d\mu(\lambda),$$

where μ is a nonzero positive measure on (-1,1). Since f is nonconstant, f'(0) > 0, [3, Lemma 2.3]. Hence

$$f(A) - f(B)$$

$$= f'(0) \int_{-1}^{1} \left(\frac{A}{1 - \lambda A} - \frac{B}{1 - \lambda B} \right) d\mu(\lambda)$$

$$= f'(0) \int_{-1}^{1} (f_{\lambda}(A) - f_{\lambda}(B)) d\mu(\lambda)$$

$$\geq f'(0) \int_{-1}^{1} m_{\lambda} d\mu(\lambda),$$

where

$$m_{\lambda} = \frac{m}{(||1 - \lambda B|| - \lambda m) ||1 - \lambda B||}$$

if $0 \le \lambda < 1$, and

$$m_{\lambda} = \frac{m}{(||1 - \lambda A|| + \lambda m) ||1 - \lambda A||}$$

if $-1 < \lambda < 0$. Since μ is a nonzero positive measure and $m_{\lambda} > 0$, we have

$$f(A) - f(B) \ge f'(0) \int_{-1}^{1} m_{\lambda} d\mu(\lambda) > 0.$$

Therefore f(A) > f(B).

Theorem 2.11. Let $A, B \in \mathbb{B}(\mathcal{H})$ be positive operators such that $A - B \ge m > 0$ and $0 < r \le 1$. Then

$$A^r - B^r \ge ||A||^r - (||A|| - m)^r$$
.

Proof. Let 0 < r < 1. It is known that

$$t^{r} = \frac{\sin(r\pi)}{\pi} \int_{0}^{\infty} \frac{t}{\lambda + t} \lambda^{r-1} d\lambda, \tag{2.5}$$

in which 0 < r < 1, see e.g. [4, Chapter V]. First note that,

$$\frac{A}{\lambda + A} - \frac{B}{\lambda + B} = \lambda \left(\frac{1}{\lambda + B} - \frac{1}{\lambda + A} \right)$$

$$\geq \frac{\lambda m}{(||A + \lambda|| - m)||A + \lambda||} \text{ by (2.4)}$$

$$= \frac{\lambda m}{(||A|| + \lambda - m)(||A|| + \lambda)}$$

for each $\lambda > 0$. By using (2.5) we have

$$\begin{split} A^r - B^r \\ &= \frac{\sin(r\pi)}{\pi} \int_0^\infty \lambda^{r-1} \left(\frac{A}{\lambda + A} - \frac{B}{\lambda + B} \right) d\lambda \\ &\geq \frac{\sin(r\pi)}{\pi} \int_0^\infty \left(\frac{m\lambda^r}{(||A|| + \lambda - m)(||A|| + \lambda)} \right) d\lambda, \end{split}$$

We need to compute

$$I = \int_0^\infty \frac{\lambda^r}{(\lambda + ||A||)(\lambda + (||A|| - m))} d\lambda$$

where 0 < r < 1. We will need the branch cut for $z^r = \rho^r e^{ir\theta}$, in which $z = \rho e^{i\theta}$ and $0 \le \theta \le 2\pi$. Consider

$$\int_C \frac{z^r}{(z+||A||)(z+(||A||-m))} dz,$$

where the keyhole contour C consists of a large circle C_R of radius R, a small circle C_ϵ of radius ϵ and two lines just above and below the branch cuts $\theta=0$; see Figure 1. The contribution from C_R is $O(R^{r-2})2\pi R=O(R^{r-1})=0$ as $R\to\infty$. Similarly the contribution from C_ϵ is zero as $\epsilon\to0$. The contribution from just above the branch cut and from just below the branch cut is I and $-e^{2r\pi i}I$, respectively, as $\epsilon\to0$ and $R\to\infty$. Hence, taking the limits as $\epsilon\to0$ and $R\to\infty$,

FIGURE 1. Keyhole contour

$$(1 - e^{2r\pi i})I = \int_C \frac{z^r}{(z + ||A||)(z + (||A|| - m))} dz$$
$$= -2\pi i e^{r\pi i} \left(\frac{||A||^r - (||A|| - m)^r}{||A|| - (||A|| - m)} \right)$$

by the Cauchy residue theorem. So

$$I = \frac{\pi}{m \sin(r\pi)} (||A||^r - (||A|| - m)^r) .$$

Therefore

$$A^{r} - B^{r}$$

$$\geq \frac{\sin(r\pi)}{\pi} \int_{0}^{\infty} \left(\frac{m\lambda^{r}}{(||A|| + \lambda - m)(||A|| + \lambda)}\right) d\lambda$$

$$= ||A||^{r} - (||A|| - m)^{r}.$$

Corollary 2.12. Let $A, B \in \mathbb{B}(\mathcal{H})$ be positive operators such that $A - B \ge m > 0$. Then

$$\log A - \log B > \log ||A|| - \log(||A|| - m)$$
.

Proof. Put $f_n(t) = n(t^{\frac{1}{n}} - 1)$ on $[0, \infty)$. Then the sequence $\{f_n\}$ uniformly converges to $\log t$ on any compact subset of $(0, \infty)$. Hence

$$\log A - \log B = \lim_{n \to \infty} f_n(A) - f_n(B)$$

$$\geq \lim_{n \to \infty} n(||A||^{\frac{1}{n}} - (||A|| - m)^{\frac{1}{n}})$$

$$= \log ||A|| - \log(||A|| - m).$$

REFERENCES

- 1. T. Ando, Löwner inequality of indefinite type, Linear Algebra Appl., 385 (2004), 73-80.
- 2. E. Andruchow, G. Corach and D. Stojanoff, Geometrical significance of Löwner-Heinz inequality, Proc. Amer. Math. Soc. 128 (2000), no. 4, 1031-1037.
- 3. J. Bendat and S. Sherman, Monotone and convex operator functions, Trans. Amer. Math. Soc. 79 (1955), 58-71.
- 4. R. Bhatia, Matrix Analysis, Springer, New York, 1997.
- 5. J. Fujii and M. Fujii, A norm inequality for operator monotone functions, Math. Japon. 35 (1990), no. 2, 249-252.
- 6. T. Furuta, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0$, $p \ge 0$, $q \ge 1$ with $(1+r)q \ge p+2r$, Proc. Amer. Math. Soc., **101** (1987), 85-88.
- 7. T. Furuta, Norm inequalities equivalent to Lowner-Heinz theorem, Rev. Math. Phys. 1 (1989), 135-137.
- 8. F. Hansen and G. Pedersen, Jensen's inequality for operators and Lowner's theorem, Math. Ann. **258** (1981/82), no. 3, 229-241.
- 9. E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann. 123 (1951), 415-438.
- 10. M.K. Kwong, Inequalities for the powers of nonnegative Hermitian operators, Proc. Amer. Math. Soc. 51 (1975), 401-406.
- 11. C. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216.
- 12. M.S. Moslehian and H. Najafi, An extension of the Lowner-Heinz inequality, Linear Algebra Appl. 437 (2012), no. 9, 2359-2365.
- 13. M.S. Moslehian, H. Najafi and M. Uchiyama, A normal family of operator monotone functions, Hokkaido Math. J., to appear.
- 14. G.K. Pedersen, Some operator monotone functions, Proc. Amer. Math. Soc. 36 (1972), 309-310.
- 15. M. Uchiyama, Strong monotonicity of operator functions, Integral Equations Operator Theory 37 (2000), no. 1, 95–105.

DEPARTMENT OF PURE MATHEMATICS, FERDOWSI UNIVERSITY OF MASHHAD, P.O. Box 1159, Mashhad 91775, Iran.

E-mail address: hamednajafi20@gmail.com