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MORE ON OPERATOR MONOTONE FUNCTIONS
HAMED NAJAFI

ABSTRACT. We investigate some properties of operator monotone functions. In par-
ticular, we show that if f is a non-constant operator monotone function on an inter-
val J and A, B are self-adjoint operators with spectra in J such that A > B, then
f(A) > f(B). As an application we extend the celebrated Lowner-Heinz inequality.

1. INTRODUCTION

Let (%, (-,-)) be a complex Hilbert space and B(5) denote the algebra of all
bounded linear operators on J# equipped with the operator norm || - ||. An operator
A € B(5#) is called positive if (Az,z) > 0 holds for every z € # and then we write
A > 0. For self-adjoint operators A, B € B(%), wesay A < Bif B— A > 0. Also for
self-adjoint operators A, B € B(J¢), we say A > B if (Az,z) > (Bz,z) holds for all
non-zero elements z € . Also A > B if A > B and A — B is invertible.

A continuous real valued function f defined on an interval J is called operator
monotone if A > B implies f(A) > f(B) for all self adjoint operators A, B acting on
a Hilbert space with spectra in J.

The Lowner theorem says that a function f is operator monotone on an interval J
if and only if f has an analytic continuation to the upper half plan I, such that f
maps IL, into itself. If f(t) is an operator monotone function on (a,b), then clearly
f (22=2) is operator monotone on (—1,1), so in this paper we study the family of

b—a
operator monotone functions on (—1,1).

Let K denote the family of all operator monotone functions on (—1,1) such that
f(0) = 0 and f'(0) = 1. Hansen and Pedersen [8] showed that K is a compact convex
subset of the space of all bounded functions on (—1,1) with pointwise convergence
topology and that the extreme points of K are of the form f)(t) = 1% with || < 1.
They [8] also proved that every f € K can be represented as

1
1) = [ g,

where p is a positive measure on (—1, 1), see also [3].
The Léwner-Heinz inequality says that, f(z) = 2" (0 < r < 1) is operator monotone
on [0,00). Lowner proved the inequality for matrices. Heinz proved it for positive
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operators acting on a Hilbert space of arbitrary dimension. Based on the C*-algebra
theory, Pedersen [14] gave a shorter proof of the inequality.

There exist several operator norm inequalities each of which is equivalent to the
Lowner-Heinz inequality. One of them is || A"B"|| < ||AB||", called the Cérdes inequal-
ity in the literature, in which A and B are positive operators and 0 < r < 1. A
generalization of the Cordes inequality for operator monotone functions is given in [5].
It is shown in [2] that this norm inequality is related to the Finsler structure of the
space of positive invertible elements.

Kwong [10] sowed that if A > B (A > B, resp.), then A" > B" (A" = B", ressp.)
for 0 < r < 1. Uchiyama [15] showed that for every non-constant operator monotone
function f on an interval J, A > B implies f(A) > f(B) for all self-adjoint operators
A, B with spectra in J.

There are several extensions of the Lowner-Heinz inequality. The Furuta inequality
[6], which states that if A > B > 0, then for r > 0, (A"/2APA™/2)Y/4 > (A"/2BP AT/2)1/4
holds for p > 0 and ¢ > 1 with (1 4+ r)g > p+r, is known as an exquisite extension of
the Lowner-Heinz inequality; Also Ando [1] extended the Léwner Heinz inequality for
a pair of J-selfadjoint matrices.

Let €2 be a open subset of C. A set F C C() is bounded if for each compact subset
K C Q, sup{||fllx : f € F} < 0o. The Montel theorem states that if F is a bounded
subset of the set A(2) of all analytic functions on (2, then F is a normal family, i.e, each
sequence {f,} in F has a subsequence {f,,} converging uniformly on each compact
subset of €.

2. THE RESULTS
Throughout this note, let Q = I, |JII_ |J(—1, 1), where II_ is the lower half plan.
Theorem 2.1. The family K is bounded in A(QY), so it is a normal family.

Proof. Let S be the convex hull of {fy : |A| < 1} where fy(t) = ;. By Krein-
Millman’s theorem, K is the closed convex hull of it’s extreme points, so S = K. Fix
K C Q) as a compact set. Then h(},2) = |1 — A\z] is continuous on [-1,1] x K and
so takes its minimum value. It should be noticed that the minimum value m of h
[-1,1] x K is nonzero. Put My :=sup{|z| : 2 € K}. Then

M
Al = i < 2

Ifg=737", cifr €S, then
n n n
M, M,
l9(2) = |Zczf/\z(z)‘ < Zczlf/\l(z)l < Zcz"',n? =
i=1 i=1 i=1
whence ||g||x < Mgk. Now assume that g € K is arbitrary. There exists {f,} in S

such that f,(t) — g(t) for each ¢t € (—1,1). Since S is bounded, the sequence {f,}
is bounded. By Montel’s theorem there exists a subsequence { fn;} converging to g
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in uniform compact convergence topology on €. Since g = ¢ on (~1,1), we have
g(z) = g'(2) for each z € . Hence
Mg
_ / i 3 -
92 =19/}l = Jim_|foy(2) < S E-

Therefore K is a normal family. O
Proposition 2.2. Let f € K and f(-1,1) C (-1,1). Then f(t) =t for each t €
(_1’ 1)'
Proof. Since f(—1,1) C (=1,1),s0 f* = fo f---o f € K. Hence by Theorem (2.11),
f™ has a convergent subsequence that converges to a function h € K. Assume that
F(to) < to for some ty € (—1,1). Hence {f(™(to)} is an increasing sequence converging
to h(tg). Thus

h(f(to)) = lim f"(£(to)) = lim f**(to) = h(to)

Since h is one-one, we infer that f(to) = to, which is a contradiction and this completes
the proof. (]

Remark 2.3. We can prove Proposition 2.2 directly as follows.
It follows from

1
1= [ e,

that

1
_15/ 1_t/\tdp()\)§1 (~1<t<1).
-1

Since for each A the integrand i—t_,\t is positive and increasing on 0 < t < 1, by the
Lebesgue’s monotone convergence theorem

1
t
- = i <
/ d“ t1—1>1}1/ 1—-At ~ L
t
[ -t [ g

<1= /_1 1dp()).

1

Similarly we have

Thus we have

From this it follows that -7 = 1 almost everywhere with respect to u, Thus p{0} = 1,
which implies f(t) =t. a.



MORE ON OPERATOR MONOTONE FUNCTIONS

Corollary 2.4. Let f be an odd operator monotone function on (=1,1) and A is a
bounded linear operator on a Hilbert space with spectrum in (—1,1). Then f (JA]) >

F(0)14].

Proof. If f(to) < f'(0)t for some t, € (0,1), then fit) = mf(tot) € K and
fi(=1,1) € (~1,1), so, by Proposition (2.2), we have f;(1) = 1, which is a contradic-
tion. Hence

FE) = F O,  te(-1,1) (2.1)
Therefore f(|A]) > £ (0)|A]. O
Remark 2.5. A direct proof of (2.1) reads as follows. Notice that f(0) = 0. Hence
1
$0 = £O) [ TEdun (22

Since f(t) = —f(—t), we obtain

| L |
/,11—>\td”(’\):/_1 T M)

Thus
1 L .
/_1 TN = 5/_1(1 BV vILC)
1 1 1 1
-/ ooz [ Tl =1
(2:2) yields | £(2)] 2 f(0)[¢]. o

In the sequel we need the following lemma.

Lemma 2.6. [3, Lemma 2.4] If f is an operator monotone function on an interval
(a,b), then f?*1(t) >0 for allp=0,1,2,-- and alla <t < b.

Corollary 2.7. Let f be an odd operator monotone function on (=1,1). Then f is
concave on (—1,0) and convez on (0,1).

Proof. Without loss of generality we may assume that f € K. We shall show that f
A ’ 2

is convex on (0,1). The proof of Lemma 4.1 of [8] shows that f(¢) > f—gtz)— It follows

from Corollary (2.4) that f'(¢) > 1 for each ¢ € (0,1). Therefore

" ' - ’ ' t - ].
f(0) = lim ———-—f () - 1(0) = lim ————f ®) >0.
t—0+ t t—07+ t
By Lemma (2.6), f®(¢) > 0 for all t € (—=1,1), so f'(t) > 0 for all t € (0,1) since f”
is monotone. Hence f is a convex function on (0,1). Since f is an odd function, f is
concave on (—1,0). O
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Theorem 2.8. An odd operator monotone function on (—1,1) is of the form

1

, t
f(t) = r(0) /_1 1_—()\,5)2‘1“()‘)’ (2.3)
where p 1s a probability measure on (—1,1).

Proof. As before, we may assume that f € K. The function f can be represented as a
power series f(t) = 3. | a,t™, which is convergent for [t| < 1, cf. [3] . Since f is odd,
aq, = 0 for all n. Due to f is operator monotone, there is a probability measure p on
(—1,1) such that

1) = [ ) = [ Yo e00r au =3 er [ aedui

n=1 -

Therefore as, = f_ll A2"~1 =0 and so

o = [ 00 dute) = / T

If f is of the form (2.3), then it is trivially odd. In addition,

10 = [ ) =5 [ o+ T = 500 - o)

where g(t) = [, T57du(X). Hence f is an odd operator monotone function on (—1,1).
O

We start main results with the following useful lemma.

Lemma 2.9. Let A, B € B(J#) be invertible positive operators such that A—B > m >
0. Then

Bl-A1l> m

2 AT =m) A (24)

Proof. Since f(t) = } is a decreasing operator monotone function on [0,00) we have

B~! > (A —m)~!. On the other hand

(A=m) 2 A A=A

<1

= A=Ay ™

A? mA
R
s A —mA < (||| - m)|lA]

— (147 —mA|| < (|A] - m)]|A]l.

=
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There exists A\g € sp(A) such that [|A]| = Xg. Since A > m > 0, we have

|A%> = mA|| = max{\ : € sp(42—mA)}
max{\? —m\ : X €sp(4)}
= )\(2) - m)\o

= (|[All =m)||A]l.
So B 2 (A-m)™ 2 A7 + e -

Proposition 2.10. Let f be a non-constant operator monotone function on an interval
J and A, B be self-adjoint operators with spectra in J such that A > B. Then f(A) >

f(B).

Proof. Without loss of generality we assume that J = (—1,1). Let A, B € B(#) be
self-adjoint operators with spectra in (—1,1) and A — B is positive and invertible. So
there exists m > 0 such that A~ B >m > 0. Put fy(t) = L for each A with |A| < 1.
We shall show that f(A)— fr(B) is bounded blow and so invertible. It is clear that the
claim is true for A=0. If 0 < A < 1, then (1 =AB) — (1 = XA) = X(A—B) > Am >0
as well as 1 — AB and 1 — AA are positive invertible operators. Since

¢ _—1+1 1
1—=X X  d\1—2xt)’

by Lemma 2.9, we have

H(A) - fi(B) = ; <1 _1)\,4 1 —1)\8)
1 rm
Z X ((111 ~ AB|| = Am) |]1 - ABH) (o 290

m >0
(Ilt = ABJ| = Am) ||1 — AB|

A similar argument shows that

I = HB) 2 AT T AT >

0

for each —1 < A < 0. Since f is operator monotone on (=1,1), it can be represented
as

f(t) = £0) + £/(0) / A,
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where y is a nonzero positive measure on (—1,1). Since f is nonconstant, f (0) > 0,
[3, Lemma 2.3]. Hence

f(4) - f(B) 1
= fO /_1 (1 —A/\A N I—BAB) ap())

= 7O [ (4) - 5(B) dul

> £0) [ mdu(y),

where
m
my =
* 7 (I =XB[[ = Am) []1 = AB]]
if0 <A<1,and
m
my =

(Il = AA[[ + Am) [[1 - AA]|
if =1 < A < 0. Since p is a nonzero positive measure and my > 0, we have

£(4) - £(B) > £ (0) / madu(n) > 0.

Therefore f(A) > f(B). O

Theorem 2.11. Let A, B € B(5#) be positive operators such that A—B >m > 0 and
0<r<1. Then
A" — B 2 ||A]" - (I|Al] = m)".

Proof. Let 0 < r < 1. Tt is known that

sin(rm) [ t .
"= —A""dA .
t T /0 A+ t)‘ ’ (25)

in which 0 < r < 1, see e.g. [1, Chapter V]|. First note that,

A B )\( 11 >
A+A A+B A+B A+ A
> Am by
— ([A+ Al =m)llA+ Al
Am
(Al + A —m)([|A]| + X)
for each A > 0. By using (2.5) we have

A" - BT

_sin(rm) [, A B
B /OA ()\+A A+ B ax

sin(rm) [ mA”
> =0 [ Ay

(2.4)
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We need to compute
I= / N al
o (A+I[ANA+ (Al = m))
where 0 < r < 1. We will need the branch cut for 2" = p"e¢"®, in which z = pe? and
0 < 8 < 2m. Consider

dA

zT

/c (z + 1Az + (1Al = m))
where the keyhole contour C consists of a large circle Cy of radius R, a small circle
C. of radius € and two lines just above and below the branch cuts = 0; see Figure 1.
The contribution from Cg is O(R™2)2rR = O(R™!) = 0 as R — co. Similarly the
contribution from C; is zero as € — 0. The contribution from just above the branch
cut and from just below the branch cut is I and —e? ™I, respectively, as ¢ — 0 and
R — oo. Hence, taking the limits as ¢ — 0 and R — oo,

dz,

3

+

FIGURE 1. Keyhole contour

-emr = [ TG + QAT =m))

g (AL = (Al = my
. (HAH—(IIAH—m)>

by the Cauchy residue theorem. So
v

I= msn(rr) (A" = (14l = m)") .
Therefore
A" - BT
sin(rm) [ mA"

w Jy TATA —maar sy

= [l4I" = (1Al =m)".
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O

Corollary 2.12. Let A, B € B(J#) be positive operators such that A— B > m > 0.

Then
log A — log B > log ||A|| — log(|[A[| —m).

Proof. Put f,(t) = n(ts —1) on [0,00). Then the sequence {f,} uniformly converges
to logt on any compact subset of (0,00). Hence

logA—logB = ll)m fn(A)_fn(B)
> lim n(All* - (4] - m)»)
= log||Al| - log(||All - m).
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