Some reduced expressions of the classical Weyl groups and the Weyl groupoids of the Lie superalgebras osp(2m|2n)

Hiroyuki Yamane[†]

Abstract

We give some reduced expressions of the classical Weyl groups $W(A_{N-1})$, $W(B_N) = W(C_N)$, $W(D_N)$ and the Weyl groupoid of the Lie superalgebra osp(2m|2(N-m)).

1 Some reduced expressions of the classical Weyl groups

For $m, n \in \mathbb{Z}$, let $J_{n,m} := \{k \in \mathbb{Z} \mid m \le k \le n\}$.

Let $N \in \mathbb{N}$. Let $M_N(\mathbb{R})$ be the \mathbb{R} -algebra of $N \times N$ -matrices. For k, $r \in J_{1,N}$, let $E_{k,r} := [\delta_{k,k'}\delta_{r,r'}]_{k',r'\in J_{1,N}} \in M_N(\mathbb{R})$, that is $E_{k,r}$ is the matrix unite such that its (k,r)-component is 1 and the other components is 0. Then $M_N(\mathbb{R}) = \bigoplus_{k,r\in J_{1,N}} \mathbb{R} E_{k,r}$. Let \mathbb{R}^N denote the \mathbb{R} -linear space of $N \times 1$ -matrices. For $k \in J_{1,N}$, let e_k is the element of \mathbb{R}^N such that its (k,1)-component is 1 and the other components is 0. That is $\{e_k|k\in J_{1,N}\}$ is the standard basis of \mathbb{R}^N . The \mathbb{R} -algebra $M_N(\mathbb{R})$ acts on \mathbb{R}^N in the ordinal way, that is $E_{k,r}e_p = \delta_{r,p}e_r$. Let $\mathrm{GL}_N(\mathbb{R})$ be the group of invertible $N \times N$ -matrices, that is $\mathrm{GL}_N(\mathbb{R}) = \{X \in \mathrm{M}_N(\mathbb{R}) | \det X \neq 0\}$. Let $(,): \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ be the \mathbb{R} -bilinear map defined by $(e_k, e_r) := \delta_{kr}$.

[†]Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka, 560-0043, Japan, E-mail: yamane@ist.osaka-u.ac.jp

Definition 1.1. For $v \in \mathbb{R}^N \setminus \{0\}$, define $s_v \in GL_N(\mathbb{R})$ by $s_v(u) := u - \frac{2(u,v)}{(v,v)}v$ $(u \in \mathbb{R}^N)$, that is s_v is the reflection with respect to v.

Note that

$$(1.1) s_v^2 = 1.$$

We say that a subset R of $\mathbb{R}^N \setminus \{0\}$ is a root system (in \mathbb{R}^N) if $|R| < \infty$, $s_v(R) = R$ and $\mathbb{R}v \cap R = \{v, -v\}$ for all $v \in R$, see [Hum, 1.1].

Let R be a root system in \mathbb{R}^N . We say that a subset Π of R is a root basis of Π if Π is a (set) basis of $\operatorname{Span}_{\mathbb{R}}(\Pi)$ as an \mathbb{R} -linear space and $R \subset \operatorname{Span}_{\mathbb{R}>0}(\Pi) \cup -\operatorname{Span}_{\mathbb{R}>0}(\Pi)$ (this is called a simple system in [Hum, 1.3]).

Let R be a root system in \mathbb{R}^N . Let Π be a root basis of R. Let $R^+(\Pi) := R \cap \operatorname{Span}_{\mathbb{R}_{\geq 0}}(\Pi)$. We call $R^+(\Pi)$ a positive root system of R associated with Π (this is called a positive system in [Hum, 1.3]).

Definition 1.2. (See [Hum, 2.10].) Let R be a root system in \mathbb{R}^N . Let Π be a root basis of R.

(1) Assume $N \geq 2$. We call R the A_{N-1} -type root system if

$$R = \{ e_x - e_y \mid x, y \in J_{1,N}, x \neq y \}.$$

We call Π the A_{N-1} -type standard root basis if

$$\Pi = \{ e_x - e_{x+1} \mid x \in J_{1,N-1} \}.$$

(2) Assume $N \geq 2$. We call R the B_N -type standard root system if

$$R = \{ ce_x + c'e_y \mid x, y \in J_{1,N}, \ x < y, \ c, \ c' \in \{1, -1\} \} \cup \{ c''e_z \mid c'' \in \{1, -1\} \}.$$

We call Π the B_N -type standard root basis if

$$\Pi = \{ e_x - e_{x+1} \mid x \in J_{1,N-1} \} \cup \{ e_N \}.$$

(3) Assume $N \geq 2$. We call R the C_N -type root system if

$$R = \{ ce_x + c'e_y \mid x, y \in J_{1,N}, \ x < y, \ c, \ c' \in \{1, -1\} \,\} \cup \{ \, 2c''e_z \mid c'' \in \{1, -1\} \,\}.$$

We call Π the C_N -type standard root basis if

$$\Pi = \{ e_x - e_{x+1} \mid x \in J_{1,N-1} \} \cup \{ 2e_N \}.$$

(4) Assume $N \geq 4$. We call R the D_N -type root system if

$$R = \{ ce_x + c'e_y \mid x, y \in J_{1,N}, x < y, c, c' \in \{1, -1\} \}.$$

We call Π the D_N -type standard root basis if

$$\Pi = \{ e_x - e_{x+1} \mid x \in J_{1,N-1} \} \cup \{ e_{N-1} + e_N \}.$$

Let R be a root system in \mathbb{R}^N . Let Π be a root basis of R. Let $W(\Pi)$ be the subgroup of $GL_N(\mathbb{R})$ generated by all s_v with $v \in \Pi$. We call $W(\Pi)$ the Coxeter group associated with (R,Π) . Let $S(\Pi) := \{s_v \in W(\Pi) | v \in \Pi\}$. We call $(W(\Pi), S(\Pi))$ the Coxeter system associated with (R,Π) , see [Hum, 1.9 and Theorem 1.5]. Define the map $\ell : W(\Pi) \to \mathbb{Z}_{\geq 0}$ in the following way, see [Hum, 1.6]. Let $\ell(1) := 0$, where 1 is a unit of $W(\Pi)$. Note that an arbitrary $w \in W(\Pi)$ can be written as a product of finite s_v 's with some $v \in \Pi$, say $v \in S_{v_1} \cdots S_{v_r}$ for some $v \in \mathbb{N}$ and some $v_x \in \Pi$ ($v \in S_{1,r}$). If

 $w \neq 1$, let $\ell(w)$ be the smallest r for which such an expression exists, and call the expression reduced. For $w \in W(\Pi)$, we call $\ell(w)$ the length of w. Let

$$\mathfrak{L}(w) := \{ v \in R^+(\Pi) \, | \, w(v) \in -R^+(\Pi) \}.$$

It is well-known that

$$(1.2) \ell(w) = |\mathfrak{L}(w)|$$

(see [Hum, Corollary 1.7]). It is also well-known that for $v \in \Pi$,

$$(1.3) s_v(R^+(\Pi) \setminus \{v\}) = R^+(\Pi) \setminus \{v\}$$

(see [Hum, Propsoition 1.4]), and

(1.4)
$$\ell(ws_v) = \begin{cases} \ell(w) + 1 & \text{if } w(v) \in R^+(\Pi), \\ \ell(w) - 1 & \text{if } w(v) \in -R^+(\Pi) \end{cases}$$

(see [Hum, Lemma 1.6 and Corollary 1.7]). Assume that $|R| < \infty$. By the above properties, we can see that there exists a unique $w_o \in W(\Pi)$ such that $w_o(\Pi) = -\Pi$, see [Hum, 1.8]. It is well-known that

$$\ell(w_{\circ}) = |R^{+}(\Pi)|,$$

which can easily be proved by (1.2), (1.3) and (1.4). Note that w_o is the only element $W(\Pi)$ that $\ell(w) \leq \ell(w_o)$ for all $w \in W(\Pi)$, and $\ell(w) = \ell(w_o) - \ell(w_o w^{-1})$ for all $w \in W(\Pi)$. We call w_o the longest element of the Coxeter system of $(W(\Pi), S(\Pi))$.

Let $k, r \in J_{1,N}$ be such that $k \leq r$. For $z_p \in J_{k,r} \cup (-J_{k,r})$ $(p \in J_{k,r})$ with $|u_p| \neq |u_t|$ $(p \neq t)$, let

$$\left\{\begin{array}{ccc} k & k+1 & \dots & r \\ z_k & z_{k+1} & \dots & z_r \end{array}\right\} := \sum_{p \in J_{k,r}} \frac{z_p}{|z_p|} E_{|z_p|,p} + \sum_{t \in J_{1,N} \setminus J_{k,r}} E_{t,t} \in \mathrm{GL}_N(\mathbb{R}).$$

We have

$$(1.6) s_{e_k} = \begin{Bmatrix} k \\ -k \end{Bmatrix} (k \in J_{1,N}),$$

(1.7)
$$s_{e_k-e_{k+1}} = \left\{ \begin{array}{cc} k & k+1 \\ k+1 & k \end{array} \right\} \qquad (k \in J_{1,N-1}),$$

and

(1.8)
$$s_{e_k+e_{k+1}} = \left\{ \begin{array}{cc} k & k+1 \\ -(k+1) & -k \end{array} \right\} \qquad (k \in J_{1,N-1}).$$

Let $k, p, r \in J_{k,r}$ with k < r and $k \le p \le r$, let

Let $k, r \in J_{1,N-1}$ with $k \leq r$. Define $s_{(k,r)}$ inductively by

(1.9)
$$s_{(k,r)} := \begin{cases} 1 & \text{if } k = r \\ s_{(k,r-1)} s_{e_{r-1} - e_r} & \text{if } k < r. \end{cases}$$

Then, if r > k, we have

(1.10)
$$s_{(k,r)} = \left\{ \begin{array}{ccccc} k & \dots & p & \dots & r-1 & ; & r \\ k+1 & \dots & p+1 & \dots & r & ; & k \end{array} \right\},$$

since (if $r \ge k + 2$)

Define $s_{(r,k)}$ inductively by $s_{(r,k)} := s_{e_{r-1}-e_r} s_{(r-1,k)}$ if $r \ge k+1$. Clearly (if r > k) we have

(1.12)
$$s_{(r,k)} = s_{(k,r)}^{-1} = \left\{ \begin{array}{ccccc} k & ; & k+1 & \dots & p & \dots & r \\ r & ; & k & \dots & p-1 & \dots & r-1 \end{array} \right\}.$$

Lemma 1.3. Let Π be the A_{N-1} -type standard root basis. Let w_o be the longest element of $(W(\Pi), S(\Pi))$. Let $s_k := s_{e_k - e_{k+1}} \in S(\Pi)$ for $k \in J_{1,N-1}$.

(1) We have

(1.13)
$$w_{\circ} = \left\{ \begin{array}{cccc} 1 & \dots & p & \dots & N \\ N & \dots & N-p+1 & \dots & 1 \end{array} \right\}.$$

Moreover

$$(1.14) w_{\circ} = \underbrace{(s_1 s_2 \cdots s_{N-1})}_{N-1} \underbrace{(s_1 s_2 \cdots s_{N-2})}_{N-2} \cdots \underbrace{(s_1 s_2)}_{2} \underbrace{s_1}_{1}.$$

Furthermore RHS of (1.14) is the reduced expression of w_{\circ} .

(2) Let $m \in J_{2,N-1}$. Then

(1.15)

$$w_{\circ} = \underbrace{(s_{1}s_{2}\cdots s_{m-1})}_{m-1}\underbrace{(s_{1}s_{2}\cdots s_{m-2})\cdots(s_{1}s_{2})}_{m-2}\underbrace{s_{1}}_{1} \\ \cdot \underbrace{(s_{m+1}s_{m+2}\cdots s_{N-1})}_{N-m-1}\underbrace{(s_{m+1}s_{m+2}\cdots s_{N-1})\cdots(s_{m+1}s_{m+2})}_{N-m-2}\underbrace{s_{m+1}}_{1} \\ \cdot \underbrace{(s_{m}s_{m+1}\cdots s_{N-1})}_{N-m}\underbrace{(s_{m-1}s_{m}\cdots s_{N-2})\cdots(s_{1}s_{2}\cdots s_{N-m})}_{N-m},$$

and RHS of (1.15) is a reduced expression of w_{\circ} .

Proof. By (1.5), we have

(1.16)
$$\ell(w) = \frac{N(N-1)}{2}.$$

Let $k, r \in J_{1,n}$ with k < r. Let

$$x_{(m{k},r)} := \left\{ egin{array}{cccc} k & \dots & p & \dots & r \ r & \dots & r-p+k & \dots & k \end{array}
ight\}.$$

Then

$$(1.17) s_{(k,r)}s_{(k,r-1)}\cdots s_{(k,k+1)} = x_{(k,r)},$$

since, if $r \ge k + 2$, we have

$$s_{(k,r)}(s_{(k,r-1)} \cdots s_{(k,k+1)})$$

$$= \begin{cases} k & \dots & p & \dots & r-1 & ; & r \\ k+1 & \dots & p+1 & \dots & r & ; & k \end{cases} \cdot x_{(k,r-1)}$$

$$\text{(by (1.11) and an induction)}$$

$$= x_{(k,r)}.$$

We have

(1.18)
$$x_{(k,r)} \in W(\Pi)$$
 and $\ell(x_{(k,r)}) = \frac{(k-r+1)(k-r)}{2}$,

where the first claim follows from (1.17) and the second claim follows from by (1.2), since $\mathfrak{L}(x_{(k,r)}) = \{e_x - e_y | k \le x < y \le r\}$.

We obtain the claim (1) from (1.16). (1.17) and (1.18) for k=1 and r=N.

For $k, r, t \in J_{1,N-1}$ with $k < r \le t$, let (1.19)

We have

$$(1.20) s_{(k+t-r,t)}s_{(k+t-r-1,t-1)}\cdots s_{(k+1,r+1)}s_{(k,r)} = y_{(k,r-1;r,t)}$$

since, if t > r,

$$\begin{aligned}
& \left(s_{(k+t-r,t)} s_{(k+t-r-1,t-1)} \cdots s_{(k+1,r+1)} \right) s_{(k,r)} \\
&= y_{(k+1,r;r+1,t)} \cdot \left\{ \begin{array}{cccc} k & \cdots & p & \cdots & r-1 & ; & r \\ k+1 & \cdots & p+1 & \cdots & r & ; & k \end{array} \right\} \\
& \left(\text{by (1.11) and an induction} \right) \\
&= y_{(k,r-1;r,t)}.
\end{aligned}$$

We have

$$(1.21) y_{(k,r-1;r,t)} \in W(\Pi) \text{and} \ell(y_{(k,r-1;r,t)}) = (t-r+1)(r-k),$$

where the first claim follows from (1.20) and the second claim follows from by (1.2), since $\mathfrak{L}(x_{(k,r)}) = \{e_x - e_y | x \in J_{k,r-1}, x \in J_{r,t}\}.$

Let $m \in J_{2,N-1}$. By (1.13), we have

$$(1.22) w_{\circ} = x_{(1,m)} x_{(m+1,N)} y_{(1,N-m;N-m+1,N)}.$$

Then we obtain the claim (2) from (1.16), (1.18), (1.21) and (1.22), since $\frac{m(m-1)}{2} + \frac{(N-m)(N-m-1)}{2} + (N-m)m = \frac{N(N-1)}{2}.$

Let $k, r \in J_{1,N}$ with $k \leq r$. Let

$$(1.23) b_{(k,r)} := \underbrace{s_{e_k} \cdots s_{e_r}}_{r-k+1} = \left\{ \begin{array}{cccc} k & \dots & p & \dots & r \\ -k & \dots & -p & \dots & -r \end{array} \right\},$$

see also (1.6). By (1.10), we have

$$(s_{(k,r)})^{r-k+1} = 1.$$

By (1.6) and (1.10), we have

$$(1.25) s_{e_t} s_{(k,r)} = s_{(k,r)} s_{e_{t-1}}$$

By (1.23), (1.24) and (1.25), for $t \in J_{k+1,r}$, we have

$$(1.26) (s_{(k,r)}s_{e_r})^{r-k+1} = (s_{(k,r)})^{r-k+1}s_{e_k}\cdots s_{e_r} = b_{(k,r)}.$$

By (1.6), (1.10) and (1.12), we have

$$\underbrace{s_{e_k-e_{k+1}}\cdots s_{e_{r-1}-e_r}}_{k-r}s_{e_r}\underbrace{s_{e_{r-1}-e_r}\cdots s_{e_k-e_{k+1}}}_{k-r}=s_{(k,r)}s_{e_r}s_{(r,k)}=s_{e_k}.$$

Lemma 1.4. Let Π be the B_N -type standard root basis. Let w_o be the longest element of $(W(\Pi), S(\Pi))$. Let $s_k := s_{e_k - e_{k+1}} \in S(\Pi)$ for $k \in J_{1,N-1}$ and let $s_N := s_{e_N} \in S(\Pi)$.

(1) We have

$$(1.28) w_{\circ} = b_{(1,N)} = (\underbrace{s_1 s_2 \cdots s_N}_{N})^{N}.$$

Moreover the rightmost hand side of (1.28) is a reduced expression of w_{\circ} .

(2) Let $k, r \in J_{1,N}$ with $k \leq r$. Then

(1.29)
$$b_{(k,r)} = \underbrace{(s_k s_{k+1} \cdots s_{N-1} s_N s_{N-1} \cdots s_{r+1} s_r)^{r-k+1}}_{2N-k-r+1}.$$

Moreover RHS of (1.29) is a reduced expression of $b_{(k,r)}$.

(3) Let $k_1, k_2, \ldots, k_{r-1} \in J_{1,N}$ with $k_1 < k_2 < \ldots < k_{r-1}$. Let $b'_y := b_{(k_{y-1},k_y-1)}$ $(y \in J_{1,r})$, where let $k_0 := 1$ and $k_r := N+1$. Then we have $w_0 = b'_1 b'_2 \cdots b'_r$ and $\ell(w_0) = \sum_{y=1}^r \ell(b'_y)$. Moreover $b'_y b'_z = b'_z b'_y$ for $y, z \in J_{1,r}$. (4) Let $m \in J_{1,N-1}$. Then

$$(1.30) w_{\circ} = \underbrace{(\underbrace{s_{N-m+1}s_{N-m+2}\cdots s_{N}})^{m}}_{m} \cdot \underbrace{(\underbrace{s_{1}s_{2}\cdots s_{N-1}s_{N}s_{N-1}\cdots s_{N-m+1}s_{N-m}})^{N-m}}_{N+m}.$$

Moreover RHS of (1.30) is a reduced expression of w_{\circ} .

Proof. We can easily show (1.29) by (1.26) and (1.27). Let $k, r \in J_{1,N}$ be such that $k \leq r$. Note that

$$\mathfrak{L}(b_{(k,r)}) = \{ e_t \mid t \in J_{k,r} \} \cup \{ e_t + ce_{t'} \mid c \in \{-1,1\}, t \in J_{k,r}, t' \in J_{t',N} \}.$$

Hence by (1.2), we have

(1.31)
$$\ell(b_{(k,r)}) = (r - k + 1) + 2\sum_{t=k}^{r} (N - t)$$
$$= (r - k + 1) + 2N(r - k + 1) - 2(\frac{r(r+1)}{2} - \frac{k(k-1)}{2})$$
$$= (r - k + 1)(1 + 2N - (r + k))$$
$$= (2N - k - r + 1)(r - k + 1).$$

Hence we obtain the second claim of the claim (2). We also obtain the claim (1) since $|R^+(\Pi)| = N^2$.

Let $k, t, r \in J_{1,N}$ be such that $k \le t < r$. By (1.23), we have

$$(1.32) b_{(k,t)}b_{(t+1,r)} = b_{(k,r)}.$$

By (1.31), we have

$$\ell(b_{(k,t)}) + \ell(b_{(t+1,r)})$$

$$= (2N - k - t + 1)(t - k + 1) + (2N - t - r)(r - t)$$

$$= 2N(r - k + 1) - (k + t - 1)(t - k + 1) - (t + r)(r - t)$$

$$= 2N(r - k + 1) - (-k^2 + t^2 + 2k - 1) - (r^2 - t^2)$$

$$= 2N(r - k + 1) + (k^2 - r^2 - 2k + 1)$$

$$= 2N(r - k + 1) + (k - 1 + r)(k - 1 - r)$$

$$= (2N - r - k - 1)(r - k + 1)$$

$$= \ell(b_{(k,r)}).$$

By (1.32), (1.32) and the claim (1), we get the claim (3).

The claim (4) follows immediately from the claims (1) and (2).

Using Lemma 1.4, we have

Lemma 1.5. Let Π be the D_N -type standard root basis. Let w_o be the longest element of $(W(\Pi), S(\Pi))$. Let $s_k := s_{e_k - e_{k+1}} \in S(\Pi)$ for $k \in J_{1,N-1}$ and let $s_N := s_{e_k + e_{k+1}} \in S(\Pi)$. For $k \in J_{1,N-1}$, let

(1.34)
$$d_{(k)} := \underbrace{(s_k \cdots s_{N-2} s_{N-1} s_N)^{N-k}}_{N-k+1}.$$

Then

(1.35)
$$\ell(d_{(k)}) = (N-k)(N-k+1)$$

and

(1.36)
$$d_{(k)} = \begin{cases} b_{(k,N)} & \text{if } N-k \text{ is odd,} \\ b_{(k,N-1)} & \text{if } N-k \text{ is even.} \end{cases}$$

In particular,

$$(1.37) w_{\circ} = d_{(1)}.$$

Proof. By (1.6), (1.7) and (1.8), we have

(1.38)
$$s_{N-1}s_N = \left\{ \begin{array}{cc} N-1 & N \\ -(N-1) & -N \end{array} \right\} = s_{e_{N-1}}s_{e_N}.$$

Then we have

RHS of (1.34)
$$= (s_{(k,N-1)}s_{e_{N-1}}s_{e_{N}})^{N-k} \quad \text{(by (1.38))}$$

$$= (s_{(k,N-1)}s_{e_{N-1}})^{N-k}s_{e_{N}}^{N-k} \quad \text{(by (1.6) and (1.10))}$$

$$= b_{(k,N-1)}s_{e_{N}}^{N-k} \quad \text{(by (1.26))}$$

$$= \text{RHS of (1.36)}$$

By (1.36), we have

$$\mathfrak{L}(d_{(k)}) = \{ e_t + ce_{t'} \mid c \in \{-1, 1\}, t \in J_{k,r}, t' \in J_{t',N} \}.$$

Hence by (1.2), we have (1.35) and (1.37). This completes the proof.

2 Weyl groupoids of super CD-type

Let $m \in J_{1,N-1}$. Let $\mathcal{D}_{m|N-m}$ be the set of maps $a:J_{1,n}\to J_{0,1}$ with $|a^{-1}(\{0\})|=m$.

Let $a \in \mathcal{D}_{m|N-m}$. Let $(,)^a : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ be the \mathbb{R} -bilinear map defined by $(e_i, e_j)^a := \delta_{ij} \cdot (-1)^{a(i)}$. For $v \in \mathbb{R}^N$ with $(v, v)^a \neq 0$, define $s_v \in GL_N(\mathbb{R})$ by $s_v^a(u) := u - \frac{2(u,v)^a}{(v,v)^a}v$ $(u \in \mathbb{R}^N)$, Let

$$\dot{\mathcal{D}}_{m|N-m} := \{ (a,d) \in \mathcal{D}_{m|N-m} \times J_{0,1} \mid d \in J_{0,a(N)} \}.$$

For $i \in J_{1,N}$, define the bijection $\tau_i : \dot{\mathcal{D}}_{m|N-m} \to \dot{\mathcal{D}}_{m|N-m}$ by

$$\begin{aligned} \tau_i(a,d) &:= \\ \left\{ \begin{array}{ll} (a \circ s_{e_i-e_{i+1}},d) & \text{if } i \in J_{1,N-2} \text{ and } a(i) \neq a(i+1), \\ (a \circ s_{e_{N-1}-e_N},d) & \text{if } i \in N-1, \, d=0 \text{ and } a(N-1) \neq b(N), \\ (a \circ s_{e_{N-1}-e_N},1) & \text{if } i = N, \, a(N-1) = 1, \, a(N) = 0, \\ (a \circ s_{e_{N-1}-e_N},0) & \text{if } i = N, \, a(N-1) = 0, \, a(N) = 1 \text{ and } d = 1, \\ (a,d) & \text{otherwise.} \end{aligned}$$

Then $\tau_i^2 = \mathrm{id}_{\mathbb{R}^N}$.

Let $(a,d) \in \dot{\mathcal{D}}_{m|N-m}$. Let

$$R_{+}^{(a,d)} := \{ e_x + te_y \mid x, y \in J_{1,N}, x < y, t \in \{1, -1\} \}$$

$$\cup \{ 2e_z \mid z \in J_{1,N}, a(z) = 1 \},$$

and
$$R^{(a,d)} := R_+^{(a,d)} \cup -R_+^{(a,d)}$$
. Then

(2.1)
$$|R_{+}^{(a,d)}| = N(N-1) + (N-m) = N^2 - m.$$

For $i \in J_{1,N}$, let

$$\alpha_i^{(a,d)} := \begin{cases} e_i - e_{i+1} & \text{if } i \in J_{1,N-2}, \\ e_{N-1} - e_N & \text{if } i = N-1 \text{ and } d = 0, \\ 2e_N & \text{if } i = N-1 \text{ and } d = 1, \\ e_{N-1} + e_N & \text{if } i = N, \ a(N) = 0 \text{ and } d = 0, \\ 2e_N & \text{if } i = N, \ a(N) = 1 \text{ and } d = 0, \\ e_{N-1} - e_N & \text{if } i = N, \ d = 1. \end{cases}$$

Let $\Pi^{(a,d)}:=\{lpha_i^{(a,d)}|i\in J_{1,N}\}$. Then $\Pi^{(a,d)}$ is an \mathbb{R} -basis of \mathbb{R}^N . Moreover

$$\Pi^{(a,d)} \subset R_+^{(a,d)} \subset (\bigoplus_{i=1}^N \mathbb{Z}_{\geq 0} \alpha_i^{(a,d)}) \setminus \{0\}.$$

Note that

$$\tau_i(a,d) = (a,d)$$
 if and only if $(\alpha_i^{(a,d)}, \alpha_i^{(a,d)})^a \neq 0$.

For $i \in J_{1,N}$, define $s_i^{(a,d)} \in GL_N(\mathbb{R})$ by

$$\begin{split} s_i^{(a,d)}(\alpha_i^{(a,d)}) := \\ \begin{cases} -\alpha_i^{\tau_i(a,d)} & \text{if } i = j, \\ s_{\alpha_i^{\tau_i(a,d)}}^a(\alpha_j^{\tau_i(a,d)}) & \text{if } i \neq j \text{ and } (\alpha_i^{(a,d)}, \alpha_i^{(a,d)})^a \neq 0, \\ \alpha_j^{\tau_i(a,d)} & \text{if } i \neq j \text{ and } (\alpha_i^{(a,d)}, \alpha_i^{(a,d)})^a = (\alpha_i^{(a,d)}, \alpha_j^{(a,d)})^a = 0, \\ \alpha_j^{\tau_i(a,d)} & \text{if } i \neq j \text{ and } (\alpha_i^{(a,d)}, \alpha_i^{(a,d)})^a = 0 \text{ and } (\alpha_i^{(a,d)}, \alpha_j^{(a,d)})^a \neq 0. \end{cases} \end{split}$$

We can directly see

Lemma 2.1. Let $(a,d) \in \dot{\mathcal{D}}_{m|N-m}$, and $i \in J_{1,N}$. Assume that d = 0. Assume that $i \in J_{1,N-1}$ if a(N-1) = 1 and a(N) = 0. Then $s_i^{(a,d)} = s_{\alpha_i^{(a,d)}}$, where $s_{\alpha_i^{(a,d)}}$ is the one of Definition 1.1.

Notation. Let $(a,d) \in \dot{\mathcal{D}}_{m|N-m}$. Let Map_0^N be a set with $|\operatorname{Map}_0^N| = 1$. For $r \in \mathbb{N}$, let Map_r^N be the set of all maps from $J_{1,r}$ to $J_{1,N}$. Let $\operatorname{Map}_{\infty}^N$ be the set of all maps from \mathbb{N} to $J_{1,N}$. For $r \in \mathbb{Z}_{\geq 0}$, $f \in \operatorname{Map}_r^N \cup \operatorname{Map}_{\infty}^N$ and $t \in J_{1,r}$, let

$$\begin{split} (a,d)_{f,0} &:= (a,d), \quad 1^{(a,d)} s_{f,0} := \mathrm{id}_{\mathbb{R}^N} \\ (a,d)_{f,t} &:= \tau_i((a,d)_{f,t-1}), \quad 1^{(a,d)} s_{f,t} := 1^{(a,d)} s_{f,t-1} s_{f(t)}^{(a,d)_{f,t}}. \end{split}$$

Proposition 2.2. Let $(a,d) \in \dot{\mathcal{D}}_{m|N-m}$ be such that d = 0, b(z) = 1 ($z \in J_{1,N-m}$) and b(z') = 0 ($z' \in J_{N-m+1,N}$). Let $n := |R_+^{(a,d)}|$. Define $f \in \operatorname{Map}_n^N$ by

(2.2)
$$f(t) := \begin{cases} N - m + t & (if \ t \in J_{1,m}), \\ f(t - m) & (if \ t \in J_{m+1,m(m-1)}), \\ t - m(m-1) & (if \ t \in J_{m(m-1)+1,m(m-1)+N}), \\ 2N + m(m-1) - t & (if \ t \in J_{m(m-1)+N+1,m^2+N}), \\ f(t - (N+m)) & (if \ t \in J_{m^2+N+1,n}). \end{cases}$$

Then

(2.3)
$$1^{(a,d)}s_{f,n} = \begin{cases} b_{(1,N)} & \text{if } m \text{ is odd,} \\ b_{(1,N-1)} & \text{if } m \text{ is even.} \end{cases}$$

Proof. For $y \in J_{1,m}$, define $a^{\langle y \rangle} \in \mathcal{D}_{m|N-m}$ by

$$a^{\langle y \rangle}(z) := \left\{ egin{array}{ll} 1 & ext{if } z \in J_{1,N-m-1} \cup \{N-m+y\}, \\ 0 & ext{if } z \in J_{N-m,N-m+y-1} \cup J_{N-m+y+1,N}. \end{array}
ight.$$

Then we can directly see that for $t \in J_{1,n}$,

$$(a,d)_{f,t} = \begin{cases} (a,d) & \text{if } t \in J_{1,m(m-1)+N-m-1}, \\ (a^{\langle t-(N-m-1)\rangle}, 0) & \text{if } t \in J_{m(m-1)+N-m,m(m-1)+N-1}, \\ (a^{\langle m-(t-(m(m-1)+N))\rangle}, 0) & \text{if } t \in J_{m(m-1)+N,m(m-1)+N+m}, \\ (a,d)_{f,t-(N+m)} & \text{if } t \in J_{m^2+N+1,n}. \end{cases}$$

So we see that for $t \in J_{1,n}$,

$$(2.4) s_{f(t)}^{(a,d)_{f,t}} = \begin{cases} s_{e_{f(t)}-e_{f(t)+1}} & \text{if } f(t) \in J_{1,N-1}, \\ s_{e_{N-1}+e_N} & \text{if } t \in J_{1,m(m-1)} \text{ and } f(t) = N, \\ s_{2e_N}(=s_{e_N}) & \text{if } t \in J_{m(m-1)+1,n} \text{ and } f(t) = N. \end{cases}$$

Define $f' \in \operatorname{Map}_{n-m(m-1)}^N$ by f'(t) := f(t + m(m-1)), so

(2.5)
$$1^{(a,d)}s_{f,n} = 1^{(a,d)}s_{f,m(m-1)}1_{f',n-m(m-1)}^{(a,d)}.$$

By (1.29) and (1.36), $1^{(a,d)}s_{f,m(m-1)}$ equals $b_{(N-m+1,N)}$ (resp. $b_{(N-m+1,N-1)}$) if m is odd (resp. even). By (1.29) and (2.4), $1^{(a,d)}s_{f',n-m(m-1)} = b_{(1,N-m)}$. Hence by (1.22) and (2.5), we have (2.3), as desired.

For $(a,d)\in \dot{\mathcal{D}}_{m|N-m}$ and $i,j\in J_{1,N},$ define $C^{(a,d)}=[c_{ij}^{(a,d)}]_{i,j\in J_{1,N}}\in \mathcal{M}_N(\mathbb{Z})$ by

$$s_i^{(a,d)}(\alpha_j^{(a,d)}) = \alpha_j^{\tau_i(a,d)} - c_{ij}^{(a,d)}\alpha_i^{\tau_i(a,d)}.$$

Then $C^{(a,d)}$ is a generalized Cartan matrix, i.e., (M1) and (M2) below hold.

$$\begin{array}{l} \text{(M1)} \ c_{ii}^{(a,d)} = 2 \ (i \in J_{1,N}). \\ \text{(M2)} \ c_{jk}^{(a,d)} \leq 0, \ \delta_{c_{jk}^{(a,d)},0} = \delta_{c_{kj}^{(a,d)},0} \ (j, \, k \in J_{1,N}, \, j \neq k). \end{array}$$

Then the data

$$\dot{\mathcal{C}}_{m|N-m} := \mathcal{C}(J_{1,N}, \dot{\mathcal{D}}_{m|N-m}, (\tau_i)_{i \in J_{1,N}}, (C^{(a,d)})_{(a,d) \in \dot{\mathcal{D}}_{m|N-m}})$$

a (rank-N) Cartan scheme, i.e., (C1) and (C2) below hold.

(C1)
$$\tau_i^2 = \mathrm{id}_{\dot{\mathcal{D}}_{m|N-m}} (i \in J_{1,N}).$$

(C2)
$$c_{ij}^{\tau_i((a,d))} = c_{ij}^{(a,d)} \ (i \in J_{1,N}).$$

Note that

$$-c_{ij}^{(a,d)} = |R_{+}^{(a,d)} \cap (\mathbb{Z}\alpha_{i}^{(a,d)} \oplus \mathbb{Z}\alpha_{j}^{(a,d)})| \quad (i, j \in J_{1,N}, i \neq j).$$

The data

$$\dot{\mathcal{R}}_{m|N-m} := \mathcal{R}(\dot{\mathcal{C}}_{m|N-m}, (R_+^{(a,d)})_{(a,d)\in\dot{\mathcal{D}}_{m|N-m}}).$$

is a generalized root system of type C, i.e., (R1)-(R4) below hold.

(R1)
$$R^{(a,d)} = R^{(a,d)}_+ \cup -R^{(a,d)}_+ \quad ((a,d) \in \dot{\mathcal{D}}_{m|N-m}).$$

(R2)
$$R^{(a,d)} \cap \mathbb{Z}\alpha_i = \{\alpha_i, -\alpha_i\}$$
 $((a,d) \in \dot{\mathcal{D}}_{m|N-m}, i \in J_{1,N}).$
(R3) $s_i^{(a,d)}(R^{(a,d)}) = R^{\tau_i(a,d)}$ $((a,d) \in \dot{\mathcal{D}}_{m|N-m}, i \in J_{1,N}).$

(R3)
$$s_i^{(a,d)}(R^{(a,d)}) = R^{\tau_i(a,d)} \quad ((a,d) \in \dot{\mathcal{D}}_{m|N-m}, i \in J_{1,N}).$$

(R4)
$$(\tau_i \tau_j)^{-c_{ij}^{(a,d)}}(a,d) = (a,d)$$
 $((a,d) \in \dot{\mathcal{D}}_{m|N-m}, i, j \in J_{1,N}).$

For $(a,d) \in \mathcal{D}_{m|N-m}$, let

$$W^{(a,d)} := \{ 1^{(a,d)} s_{f,r} \in GL_N(\mathbb{R}) \mid r \in \mathbb{Z}_{\geq 0}, f \in Map_r^N \},$$

and define the map $\ell^{(a,d)}:W^{(a,d)}\to\mathbb{Z}_{\geq 0}$ by

$$\ell^{(a,d)}(w) := \min\{ r \in \mathbb{Z}_{\geq 0} \, | \, \exists f \in \mathrm{Map}_r^N, \, w = 1^{(a,d)} s_{f,r} \}.$$

By [HY08, Lemma 8 (iii)], we see that

(2.6)
$$1^{(a,d)}s_{f,r} = 1^{(a,d)}s_{f',r'} \text{ implies } (a,d)_{f,r} = (a,d)_{f',r'},$$

and that

(2.7)
$$\ell^{(a,d)}(w) = |w^{-1}(R_+^{(a,d)}) \cap - \bigoplus_{i=1}^N \mathbb{Z}_{\geq 0} \alpha_i|.$$

For $(a,d) \in \dot{\mathcal{D}}_{m|N-m}$, $w \in W^{(a,d)}$ and $f \in \operatorname{Map}_{\ell^{(a,d)}(w)}^{N}$, if $w = 1^{(a,d)} s_{f,\ell^{(a,d)}(w)}$, we call f a reduced word map of w.

By (2.6) and (2.7), we have formulas for $W^{(a,d)}$ similar to (1.3) and (1.4). In particular, for each $(a,d) \in \mathcal{D}_{m|N-m}$, there exists a unique $w_{\circ}^{(a,d)} \in W^{(a,d)}$ such that

$$\ell^{(a,d)}(w_{\circ}^{(a,d)}) = |R_{+}^{(a,d)}|,$$

and we call $w_{\circ}^{(a,d)}$ the longest element of $W^{(a,d)}$.

By Proposition 2.2, we have

Theorem 2.3. Let $(a,d) \in \dot{\mathcal{D}}_{m|N-m}$ be such that d=0, a(z)=1 $(z \in J_{1,N-m})$ and a(z')=0 $(z' \in J_{N-m+1,N})$. Then a reduced word map of $w_{\circ}^{(a,d)}$ is given by (2.2). Moreover,

(2.8)
$$w_{\circ}^{(a,d)} = \begin{cases} b_{(1,N)} & \text{if } m \text{ is odd,} \\ b_{(1,N-1)} & \text{if } m \text{ is even.} \end{cases}$$

Definition 2.4. For (a,d), $(a',d') \in \dot{\mathcal{D}}_{m|N-m}$, let $W^{(a,d)}_{(a',d')}$ be the subset of $W^{(a,d)}$ composed of all the elements $1^{(a,d)}s_{f,r}$ with $r \in \mathbb{Z}_{\geq 0}$, $f \in \operatorname{Map}_r^N$ and $(a,d)_{f,r} = (a',d')$, and $\mathcal{H}^{(a,d)}_{(a',d')} := \{(a,d)\} \times W^{(a,d)}_{(a',d')} \times \{(a',d')\} (\subset \dot{\mathcal{D}}_{m|N-m} \times \operatorname{GL}_N(\mathbb{R}) \times \dot{\mathcal{D}}_{m|N-m})$. Let

$$(\dot{\mathcal{W}}_{m|N-m})':=igcup_{(a,d),(a',d')\in\dot{\mathcal{D}}_{m|N-m}}\mathcal{H}^{(a,d)}_{(a',d')},$$

and $\dot{\mathcal{W}}_{m|N-m} := (\dot{\mathcal{W}}_{m|N-m})' \cup \{o\}$, where o is an element such that $o \notin (\dot{\mathcal{W}}_{m|N-m})'$. We regard $\dot{\mathcal{W}}_{m|N-m}$ as the semigroup by $o\omega := \omega o := o$ ($\omega \in \dot{\mathcal{W}}_{m|N-m}$) and

$$((a_1,d_1),w_1,(a_2,d_2))((a_3,d_3),w_2,(a_4,d_4)) \ := \left\{ egin{align*} ((a_1,d_1),w_1w_2,(a_4,d_4)) & ext{if } (a_2,d_2) = (a_3,d_3), \\ o & ext{if } (a_2,d_2)
eq (a_3,d_3). \end{array}
ight.$$

We call $\dot{W}_{m|N-m}$ the Weyl groupoid of the Lie superalgebra osp(2m|2(N-m)).

For $(a,d) \in \dot{\mathcal{D}}_{m|N-m}$, let $\varepsilon^{(a,d)} := ((a,d), \mathrm{id}_{\mathbb{R}^N}, (a,d)) \in \mathcal{H}^{(a,d)}_{(a,d)}$. For $(a,d) \in \dot{\mathcal{D}}_{(a,d)}$ $\dot{\mathcal{D}}_{m|N-m}$ and $i \in J_{1,N}$, let $\sigma_i^{(a,d)} := (\tau_i(a,d), s_i^{(a,d)}, (a,d)) \in \mathcal{H}_{\tau_i(a,d)}^{(a,d)}$. For $r \in \mathbb{Z}_{\geq 0}, t \in J_{0,r} \text{ and } f \in \operatorname{Map}_r^N, \text{ let } 1^{(a,d)}\sigma_{f,r} := ((a,d), 1^{(a,d)}s_{f,r}, (a,d)_{f,r}) \in \mathbb{Z}_{\geq 0}$ $\mathcal{H}^{(a,d)}_{(a,d)_{f,r}}$. For $i, j \in J_{1,N}$, define $f_{ij} \in \operatorname{Map}_{\infty}^{N}$ by $f_{ij}(2t-1) := i, f_{ij}(2t) := j$ $(t \in \mathbb{N}).$

By [HY08, Theorem 1], we have

Theorem 2.5. The semigroup $\dot{W}_{m|N-m}$ can also be defined by the generators

$$o, \ \varepsilon^{(a,d)}, \ \sigma_i^{(a,d)} \quad ((a,d) \in \dot{\mathcal{D}}_{m|N-m}, \ i \in J_{1,N}),$$

and relations

$$o\omega = \omega o = o \quad (\omega \in \mathcal{W}_{m|N-m}),$$

$$\varepsilon^{(a,d)}\varepsilon^{(a,d)} = \varepsilon^{(a,d)}, \quad \varepsilon^{(a,d)}\varepsilon^{(a',d')} = o \quad ((a,d) \neq (a',d')),$$

$$\varepsilon^{\tau_i(a,d)}\sigma_i^{(a,d)} = \sigma_i^{(a,d)}\varepsilon^{(a,d)} = \sigma_i^{(a,d)}, \quad \sigma_i^{\tau_i(a,d)}\sigma_i^{(a,d)} = \varepsilon^{(a,d)},$$

$$1^{(a,d)}\sigma_{f_{ij},-2c_{ij}^{(a,d)}} = \varepsilon^{(a,d)} \quad (i \neq j).$$

Let $(a,d) \in \mathcal{D}_{m|N-m}$, $r \in \mathbb{Z}_{>0}$ and $f, f' \in \operatorname{Map}_r^N$. We write $f \dot{\sim}_r^{(a,d)} f'$ if there exist $i, j \in J_{1,N}$ and $t \in J_{0,r}$ such that $i \neq j, t - c_{ij}^{(a,d)_{f,k}} \leq r$, $f(k_1) = f'(k_1) \ (k_1 \in J_{1,t} \cup J_{t-c_{ij}^{(a,d)}f,k}, f(k_2) = i, f'(k_2) = j \ (k_2 \in J_{1,t})$ $J_{t+1,t-c_{i,i}^{(a,d)}f,k} \cap 2\mathbb{N} - 1)$ and $f(k_3) = j$, $f'(k_3) = i$ $(k_3 \in J_{t+1,t-c_{i,i}^{(a,d)}f,k} \cap 2\mathbb{N})$. We write $f \sim_r^{(a,d)} f'$ if f = f' or there exists $t \in \mathbb{N}$ and $f_k \in \operatorname{Map}_r^N$ $(k \in J_{1,t})$ such that $f \stackrel{\cdot}{\sim}_r^{(a,d)} f_1$, $f_k \stackrel{\cdot}{\sim}_r^{(a,d)} f_{k+1}$ $(k \in J_{1,t-1})$ and $f_t \stackrel{\cdot}{\sim}_r^{(a,d)} f'$.

By [HY08, Theorem 5, Corollary 6], we have

Theorem 2.6. Let $(a,d) \in \mathcal{D}_{m|N-m}$ and $w \in W^{(a,d)}$.

- (1) Let $f, f' \in \operatorname{Map}_{\ell(a,d)(w)}^{N'}$ be such that $1^{(a,d)}s_{f,\ell(a,d)(w)} = 1^{(a,d)}s_{f',\ell(a,d)(w)} = 1^{(a,d)}s_{f',\ell(a,d)(w)}$ w. Then $f \sim_{\ell^{(a,d)}(w)}^{(a,d)} f'$.
- (2) Let $r \in \mathbb{N}$ and $f \in \operatorname{Map}_r^N$ be such that $r > \ell^{(a,d)}(w)$ and $1^{(a,d)}s_{f,r} = w$. Then there exist $f' \in \operatorname{Map}_r^N$ and $t \in J_{1,r-1}$ such that $f \sim_r^{(a,d)} f'$ and f'(t) =f'(t+1).

References

- [AYY] Saeid Azam, Hiroyuki Yamane, Malihe Yousofzadeh, Classification of Finite Dimensional Irreducible Representations of Generalized Quantum Groups via Weyl Groupoids, preprint, arXiv:1105.0160
- [Hum] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, 1992
- [HY08] I. Heckenberger and H. Yamane, A generalization of Coxeter groups, root systems, and Matsumoto's theorem, Math. Z. 259 (2008), no. 2, 255-276.