0000000000
01840 0 20130 72-88 72

Some reduced expressions of the classical Weyl
groups and the Weyl groupoids of the Lie
superalgebras osp(2m|2n)

Hiroyuki Yamane!

Abstract

We give some reduced expressions of the classical Weyl groups
W(ANn-1), W(BN) = W(Cx), W(Dn) and the Wey! groupoid of the
Lie superalgebra osp(2m|2(N — m)).

1 Some reduced expressions of the classical
Weyl groups

Form,n € Z,let Jym:={k €Z|m < k <n}.

Let N € N. Let My(R) be the R-algebra of N x N-matrices. For k,
r € Jin, let Egy = [Oppbrrereny € My(R), that is Ey, is the matrix
unite such that its (k,r)-component is 1 and the other components is 0.
Then My(R) = ®res, yREk,r. Let RY denote the R-linear space of N x 1-
matrices. For k € Jyn, let e, is the element of RN such that its (k,1)-
component is 1 and the other components is 0. That is {ex|k € J1n} is the
standard basis of RY. The R-algebra My (R) acts on R” in the ordinal way,
that is By re, = 0, pe,. Let GLy(R) be the group of invertible N x N-matrices,
that is GLy(R) = {X € My(R)|det X # 0}. Let (,) : RY x RY — R be
the R-bilinear map defined by (ex, e,) := g,
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Definition 1.1. Forv € R\ {0}, define s, € GLy(R) by 5,(u) := u—
(u € RYN), that is s, is the reflection with respect to v.

Note that
(1.1) s2=1.

We say that a subset R of RY \ {0} is a root system (in RY) if |R| < oo,
sy(R) = R and RuN R = {v, —v} for all v € R, see [Hum, 1.1].

Let R be a root system in RY. We say that a subset II of R is a root
basis of II if IT is a (set) basis of Spang(II) as an R-linear space and R C
Spang,  (IT) U —Spang__(II) (this is called a simple system in [Hum, 1.3]).

Let R be a root system in RY. Let II be a root basis of R. Let R*(II) :=
RN Spang_ (IT). We call R*(IT) a positive oot system of R associated with
IT (this is called a positive system in [Hum, 1.3]).

Definition 1.2. (See [Hum, 2.10].) Let R be a root system in RY. Let II
be a root basis of R.
(1) Assume N > 2. We call R the Ay_,-type root system if

R={e;—ey|z,ye in,z#y}
We call II the Ay _;-type standard root basis if
M= {e; —ept1|z € S1n1}.

(2) Assume N > 2. We call R the By-type standard root system if
R={ce; +ceylz,ye iy, z<y,c,cd €{l,-1}}u{ce, | € {1,-1}}.
We call II the By -type standard root basis if

H={e;—ezr1|z €y n-1}U{en}.

(3) Assume N > 2. We call R the Cy-type root system if
R={ce;+ceylz,ye Jin,z <y, c c €{l,-1}}u{2,|c" € {1,-1} }.
We call IT the Cy-type standard root basis if

HZ{em—6$+1l$EleN_l}U{2€N}.



(4) Assume N > 4. We call R the Dy-type root system if
R={ce,+Cey|z,y€ hin,x<y,c c €{l,-1}}.
We call II the Dy -type standard root basts if

H={8m—em+1|$€Jl,N_1}U{eN_1 +6N}.
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Let R be a root system in R". Let II be a root basis of R. Let W(II) be
the subgroup of GLy(R) generated by all s, with v € II. We call W (II) the
Cozeter group associated with (R,IT). Let S(II) := {s, € W(II)|v € II}.
We call (W(II), S(I1)) the Cozeter system associated with (R,II), see [Hum,
1.9 and Theorem 1.5]. Define the map ¢ : W(II) — Z3, in the following
way, see [Hum, 1.6]. Let ¢(1) := 0, where 1 is a unit of W(II). Note that
an arbitrary w € W (II) can be written as a product of finite s,’s with some
v € II, say w = 8y, - -+ Sy, for some r € N and some v, € II (z € Jy,). If

N’

w # 1, let ¢(w) be the smallest r for which such an expression exists, and
call the expression reduced. For w € W (II), we call £(w) the length of w. Let

£(w) = {v € R*(IT) |w(v) € —R*(I)}.
It is well-known that
(1.2) ¢(w) = |£(w)]
(see [Hum, Corollary 1.7)). It is also well-known that for v € II,
(1.3) so(RT(I) \ {v}) = R*(I) \ {v}

(see [Hum, Propsoition 1.4}), and

L[ fw)+1 if w(v) € RH(II),
(14) tws,) = { f) -1 i w(o) € —R* ()

(see [Hum, Lemma 1.6 and Corollary 1.7]). Assume that |R| < co. By the
above properties, we can see that there exists a unique w, € W(II) such that

wo(IT) = —II, see [Hum, 1.8]. It is well-known that

(1.5) £(wo) = |R*(IT)],



which can easily be proved by (1.2), (1.3) and (1.4). Note that w, is the
only element W (II) that £(w) < £(w,) for all w € W(II), and £(w) = £(w,) —
L(wow™) for all w € W(II). We call w, the longest element of the Cozeter
system of (W (II), S(IT)).

Let k, r € Ji,v be such that k < r. For 2z, € Ji, U(=Jk,) (p € Jr) With
Jupl # 1] (5 #9), let

k k+1 ... r Zp
{ 2k Zky1 - Zp } Z )zplE!zplm+ Z it €G N(R)

pEJx 1 tedy,n\Jk,r

We have
(1.6) Ser = {_kk} (k € Ji,n),
(1.7) Sex—epr1 = { kil kzl } (k € Ji,nv-1),
and
(1.8) Sextens1 ={ _(kk+ 1) kfkl } (k € Jin-1).

Let k,p,r € Jyr withk <rand k <p <, let

IR AS R S AN £ A 3

Let k, r € Jy y—1 with k < r. Define Sk, inductively by

@9 5= i k<

Then, if r > k, we have

N k P oor=1 5 r
(1.10) S(k,r)—{k+1 ..o p+1 L. roo k}’
since (if r > k + 2)

S(kﬂ') = s(kvr—l)ser—l"er

_ ko p o r—2 i et N
(1 11) o k+1 ... p+1 ... r—1 ; & o

(by (1.7) and an induction)

_ k D oo oTr—=1 ;P
- k+1 ... p+1 ... r N
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Define s(.x) inductively by S¢.x) := Se,_1—en8(r—1,6) if 7 > k4 1. Clearly (if
r > k) we have

_ kK ; k+1 ... p ... r
(1.12) S(rk) = S(er) =
r; k ... p—1 ... r—-1

Lemma 1.3. Let I be the Any_;-type standard root basts. Let w, be the
longest element of (W (II), S(I)). Let s := Sey—ey,, € S(II) fork € Jyn_1.
(1) We have

1 ... P ... N
(113) Wo = .
N ... N—p+1 ... 1
Moreover
1.14 o = oSN e Spg) '
(1.14) Wo = (5152 oSN 1)(s182 5N 2) - (S182) s1
N-1 N-=-2 2 1

Furthermore RHS of (1.14) is the reduced ezpression of w..
(2) Let m € Jon—1. Then

(1.15)
We = (5132 “ee Sm—lj)(flsZ vee sm—Z) . e @)\SL/
7;:1 th 2 1
‘@m+13m+2 T SN—Q(3m+13m+2 T SN—j tee (3m+13m+2) Sm+1
~~ ~ ~~ N e N~

N-m-—1 N—m-2 2 1

’(§m3m+1 te SN—I)(fm—-lsm T SN—g) T (3132 “+SN-m),
Nrm sz N-m

and RHS of (1.15) is a reduced expression of w..
Proof. By (1.5), we have

(1.16) l(w) =

Let k, r € J1, with k <r. Let

k... P R &
T(k,r) -— .
r ... r—p+k ... k
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Then

(1-17) S(k,r)S(kyr—1) * * * Skk+1) = T(k,r)s

since, if r > k + 2, we have

S(k,r) (Skir=1)  * * S(k,k41))

k ... p ... r=1,;r
= * L(k,r—1)
k+1 ... p+1 ... r

(by (1.11) and an induction)
= x(k,r).

We have

(k—r+1)k—r)
2 )
where the first claim follows from (1.17) and the second claim follows from
by (1.2), since £(zkr)) = {ez —eylk <z <y <7}
We obtain the claim (1) from (1.16). (1.17) and (1.18) for k = 1 and
r=2N.
For k,r,t € Jiy_1 with k <r <t let

(1.18) Ty € W) and £(zgr) =

(1.19)
Yk, r—15mt)
.— k T oo r—=1 3 y t
T k+t—r+1 ... z+t—r+1 ... t ;o 0k ... y+k-r ... t+k-—-r
We have
(1-20) S(k+t—rt)S(k+t—r—1,t—1) * * * S(k+1,r+1)S(k,r) = Y(k,r—1L;nt)

since, if t > r,

(S(htt—rt) S(ktt—r—1,t—1) * * * S(bt1,r+1)) S (k1)
. k e P oo or=1 ; r
_y(k+1’r;r+1’t) ' { k+1 ... p+1 ... r vk }
(by (1.11) and an induction)

= Y(k,r—1;mt) -
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We have
(1.21) Ykr-tirt) € W) and  L(Y(rr-1mp) = (t —r + 1)(r — k),

where the first claim follows from (1.20) and the second claim follows from
by (1.2), since £(zk,r)) = {€z — ey|T € Jkr—1, T € Jry}.
Let m € J y—1. By (1.13), we have

(1.22) Wo = T(1,m)L(m-+1,N)Y(1,N—m;N—m+1,N)-
Then we obtain the claim (2) from (1.16), (1.18), (1.21) and (1.22), since
m(rrzz—l) + (N—m)(gl'—m—-l) + (N _ m)m — Ng]g-—lf. O

Let k, r € J1 vy with k£ < r. Let

k... R &
(1.23) blk,r) = Se* " * Sep = P ,
— -k ... =p ... —r
r—k+1
see also (1.6). By (1.10), we have
(1.24) (sger)) ™ = 1.
By (1.6) and (1.10), we have
(125) sets(k,r) = s(k,r)set_l
By (1.23), (1.24) and (1.25), for ¢t € Ji41,r, We have
(1.26) (S0 See) ¥ = (8(kr)" 50y - 8y = Dir)-

By (1.6), (1.10) and (1.12), we have

(1.27) Sex—eps1 """ Ser_1—er Ser Ser—1—er " " Sex—epi1 = S(kr)SerS(rk) = Sey-

k—r k—r
Lemma 1.4. LetII be the By-type standard root basts. Let w, be the longest
element of (W(II), S(IT)). Let s := Sep—ey,, € SII) for k € Jyn—1 and let
SN = Sey € S(H)
(1) We have

(128) Wo = b(l,N) = (3182 ce* SN >N.
N
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Moreover the rightmost hand side of (1.28) is a reduced expression of w..
(2) Letk, r € Jyn withk <r. Then

(1.29) bik,ry = (§k3k+1 ***SN-1SNSN-1'"" 8r+185)’"”“+1.

-
2N—k—r+1

Moreover RHS of (1.29) is a reduced expression of b, ). .
(3) Let Kk, ko,...,krq1 € Jl,N with k1 < ky < ... < k,_1. Let b;/ =

bky—1ky—1) (¥ € J1,), where let ko := 1 and k, :== N + 1. Then we have

Wo = byby - - - by and £(wo) = 377 _, £(b),). Moreover byb, = b.b;, fory, z € Jy,.
(4) Let m € Jyn—1. Then

W, = (fN-m+1SN—m+2 e SJ\L)m
(1.30) m
'(§182 ***SN~1SNSN-1""" SN—m+13N—m)N_m-
N:m

Moreover RHS of (1.30) is a reduced expression of ws.

Proof. We can easily show (1.29) by (1.26) and (1.27).
Let k, r € J1 5 be such that £ < r. Note that

L) ={e|t € Jery U{er+cev|ce{-1,1},t € Sy, t' € Ty }.
Hence by (1.2), we have
Lbwn) = (r—k+1) +23 (N —1)
r(r k(k—
=(r—k+1)+2N(r—k+1) - 2(Z5) - k1)

=(r—k+1)(14+2N - (r +k))
=@N—k-r+1)(r—k+1).

(1.31)

Hence we obtain the second claim of the claim (2). We also obtain the claim
(1) since |[RT(IT)| = N2
Let k, ¢, r € Ji v be such that k¥ < ¢ < r. By (1.23), we have

(1.32) b(k,t)b(t+1,7-) = b(k",-).



80

By (1.31), we have

£(b(kz)) + L(bee+1,r))
=0Q2N-k—t+1D)(t—k+1)+ 2N —-t—r)(r—1)
=2N(r—k+1)—(k+t—-1)(t—k+1) = (t+7)(r—12)
=2N(r—k+1)— (=k2+t2+2k—1) — (r - t?)

(1.33)
=2N(r—k+1)+ (k*=r> -2k +1)
=2N(r—k+1)+(k-1+r)k-1-r)
=Q2N—-r—k—-1)(r—k+1)
= £(bgk,n))-
By (1.32), (1.32) and the claim (1), we get the claim (3).
The claim (4) follows immediately from the claims (1) and (2). O

Using Lemma 1.4, we have

Lemma 1.5. Let II be the Dy -type standard root basis. Let w, be the longest
element of (W (II), S(IT)). Let si := Sey—e,,, € S(II) for k € Jyn_1 and let
SN = Septery; € SUI). Fork € Jyn_1, let

(134) d(k) = st s SN_2SN_]_3yN_k.
N—-Tc+1

Then

(1.35) Qdgy) = (N = k) (N —k +1)

and

(1.36) dgy = { bk, v) if N — k is odd,

bk, N-1) if N —k is even.
In particular,

(137) Weo = d(l)
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Proof. By (1.6), (1.7) and (1.8), we have

N-1 N
(1.38) SN_1SN = = Sep_;Sen-
—(N-1) =N

Then we have

RHS of (1.34)
= (8(k,N=1)Se_ Sen) % (by (1.38))

(139) = (5(k,N_1)SeN_1 N—k;sé\lfv—k (by (16) and (110))
= bk, n-1)s00 % (by (1.26))

= RHS of (1.36)
By (1.36), we have
Q(d(k)) = {et + cey IC € {—1) 1}: te Jk,ra t € Jt’,N }

Hence by (1.2), we have (1.35) and (1.37). This completes the proof. O

2 Weyl groupoids of super CD-type

Let m € Jin-1. Let Dpny_p, be the set of maps a : Jin = Joa1 with
e ({0} = m.

Let a € Diyn-m- Let (, )*: R¥ x RY — R be the R-bilinear map defined
by (ei €)* 1= 6;;- (=1)*”). For v € R with (v,v)® # 0, define s, € GLy(R)
by s%(u) :=u — 2(5;32:1) (u € RN),

Let

Dpn—m = {(a,d) € Dryn-m X Jo1|d € Joamv }-
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For i € J; v, define the bijection 7; : Dml Nem = bm|N—m by

7i(a,d) :=

( (@0 Se;—eiy11 @) if i € Jy y-2 and a(7) # a(i + 1),

(@0 Sey_j—en,d) ifi€N—1,d=0and a(N — 1) # b(N),
(@0 Sey_—en>1) fi=N,a(N-1)=1,a(N)=0,

(a0 8ey_,—en,0) fi=N,a(N-1)=0,a(N)=1andd=1,

\ (a,d) otherwise.

Then 77 = idgw.
Let (a,d) € Dmn—m. Let

Rg‘_”d) = {e;+teylz,ye v, e <y, te{l,—1}}
U{2e,|z € Jin,a(z) =1},
and R(®% .= R(f’d) U —-Rﬂ‘_”d). Then
(2.1) IR®Y| = N(N-1)+ (N —=m) = N2 —m.

For 1 € Ji n, let

r € — €i41 if i € Ji N-2,
eN_1 — N ifi=N-1and d=0,
aga’d):{ 2en ifi=N-1landd=1,
en-1+exy ifi=N,a(N)=0andd=0,
2en ifi=N,a(N)=1andd=0,
| en-1—en ifi=N,d=1.

Let 1@ .= {o{*?|; € J, y}. Then II®? is an R-basis of RV. Moreover

N
@D ¢ ReD ¢ (@D Z0a™?) \ {0}.

=1
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Note that

7i(a,d) = (a,d) if and only if (a(“ ,d) (a,d))a £0.
For i € Jy n, define sg“’d) € GLy(R) by
sga,d) (aga,d)) —

( (a,d
_a?(a’ )

if § = 7,
an(‘1 d)( Tz(a,d)) if 4 #] and (a(a ,d) (ad))a 7& O

Oz;-z(a ,d) if § # § and ( (a>d))a (Ot(a’d), ;a d)) =0,

Tz(a,d) +a Tz(a7d) if § £ 4, (a(ad (a d)) and (a ad), ja,d))a £ 0.

\
We can directly see
Lemma 2.1. Let (a,d) € DmIN—m; and 1 € Jin. Assume that d = 0.
Assume that i € Jyn_1 if a(N —1) =1 and a(N) = 0. Then sga’d) =S (ad),
where s oD is the one of Definition 1.1.

Notation. Let (a d) € Dyyn-m. Let Map) be a set with |Mapl| = 1.
For r € N, let Map,, be the set of all maps from J;, to Ji,n. Let Mapoo be

the set of all maps from N to Jy y. For r € Ly, [ € Mapr U Mampc>o and
t e '-]1,7‘7 let

(a,d);4 = (a,d), 10@Ds;54:=idgn
(a,d)
(@), :=Ti((a,d)s,_1), 1@Dspy = 1@dsg, 4500,

Proposition 2.2. Let (a,d) € bmlN-m be such that d = 0, b(2) =1 (2 €
Ji,N-m) and b(2') =0 (2 € In—mr1n). Letn := IRf’d)l. Define f € Map?’
by

(N —m+t (if t € Juym),
f(t—m) (if t € Tmy1m(m-1)),
(22)  f() = J t—m(m—1) (ifte Im(m—1)41,m(m=1)+N),

2N+m(m—1)—t  (ift € Jpm-1)+N+1m2+N);
ft—(N+m)) (if t € Im2yNi1,n)-




Then

b if m is odd,
(2.3) j@ds, = OV f |
ba,N-1) if m 1s even.

Proof. For y € Jy m, define ACN= DpN—m by

a,(y) (z) — 1 if z € Jl,N—m—l U {N -—m + y},

0 if z € JN—m,N—m+y—1 U JN—m+y+1,N-

Then we can directly see that for t € J ,,

.
(a, d) ifte Jl,m(m—1)+N—m-1,
(a d) _ < (a(t—(N-—m—l»,O) ifte Jm(m—1)+N—m,m(m-1)+N—1;
Rt 8 (a(m—(t—(m(m—l)—i-N))), ()) ifte Jm(m—1)+N,m(m—1)+N+ma
L (a, d)f,t—(N+m) ift e Jm2+N+1’n.

So we see that for t € Jyp,

Sef(t)—ef(t)+1 if f(t) € JI,N—I,
(a,d) .
(2:4) Sf(zt) M =0 Sen_iten if t € Ji,m(m-1) and f(t) = N,
S2en (= Sen) if t € Jm(m-1)+1,» and f(®)=N.

Define f' € Mapﬁ:’_m(m_l) by f'(t) := f(t + m(m — 1)), so

(2.5) 160D =105 0 m1) 1531;?-m<m_1)'

By (1.29) and (1.36), 1*¥s¢ m4n_1) equals bn—m+1,n) (resP. bN—m+1,N-
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1)

if m is odd (resp. even). By (1.29) and (2.4), 10954 _riim—1) = b1,N-m)-

Hence by (1.22) and (2.5), we have (2.3), as desired.

O

For (a,d) € me—m and i, j € Jyn, define C@9 = [C,'(:;,d)]i,jejl,N €

Mn(Z) by
s£a1d)(a§a’d)) — a;i(a’d) _ c§;9d)a:i(a7d).
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Then C9 is a generalized Cartan matriz, i.e., (M1) and (M2) below hold.

(M1) ¢ (ad) =2 (i € Ji,n).
(M2) ( < 0,46 (a @ 502«;,«1),0 (4, ke Jin, §F# k).

Then the data
ConiN—m = C(Jyn, Din|N—m; (Ti)iedy ns (C(a’d))(a,d)eﬁmm_m)
a (rank-N) Cartan scheme, i.e., (C1) and (C2) below hold.
(C1) 72 = idb . e ).
(C2) ¢; T‘((a’d)) = cfj D (i e J1,N)-
Note that
(a 9 — |R(a 4 A (Zaoy (a.d) o Za§~a’d))| (G,7 € Jin, ©#75).

The data _ . d
leN—m = R(Cm}N—m’ (RS?, ))(a,d)ebmuv—m)'

is a generalized root system of type C, i.e., (R1)-(R4) below hold.

(R1) ROeD =RPYU-RE  ((a,d) € Duy—m)-

(R2) R(®d) N Loy = {ai, -ai} ((CL, d)e DmIN—ma 1€ JI,N)-

(R3) sga’d)(R(“’d)) = R"@d  ((a,d) € DppN-m; t € J1.N).
—c(‘.z‘d) < ..

(R4) (mm;)™% (a,d) = (a,d) ((a, d) € DipiN-m, &, j € J1n)-

For (a,d) € ij|N_m, let
WD = {1Ds, € GLy(R) |7 € Zso, f € Map™ },
and define the map ¢4 : W@d) — 7., by
0@ (w) ;= min{r € Zxo|3If € Map?, w = 1@ds, 3.
By [HY08, Lemma 8 (iii)], we see that

(2.6) 1@, = 1695, , implies (a, d) 1= (a,d) s
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and that
(2.7) @9 (w) = w(RED) N - B Zyoc.

For (a,d) € DmjN—m, w € W@ and f € Map)a.q, (wy W= 1@9s : pad) (),
we call f a reduced word map of w.
By (2.6) and (2.7), we have formulas for W% similar to (1.3) and (1.4).

In particular, for each (a,d) € TDm| N—m, there exists a unique w9 ¢ wiad
such that
€D (wfe®) = |RE),

(a’d) (a,d) .

and we call ws ™ the longest element of W
By Proposition 2.2, we have

Theorem 2.3. Let (a,d) € ’DmlN_m be such that d = 0, a(2) = 1 (2 €

Jin-m) and a(2’) = 0 (2 € JN—m+1,n). Then a reduced word map of wi?
is given by (2.2). Moreover,

b if m s odd,
w®d = { (M) /

(2.8)
ban-1)  if m is even.

Definition 2.4. For (a,d), (d/,d) € DmlN—m, let W((:,’,Z),) be the subset of
W9 composed of all the elements 195, with r € Z5o, f € Map) and
(a,d), = (a,d), and &) = {(a,d)} x WD) x {(¢/,d)HC Doy X
GLN(R) X Dpv—m)- Let

(WmlN—m), = U Hgifz'),

(aad)’(a’>dl)ebm|N—m
and me—m = (me—m)' U {o}, where o is an element such that o ¢
(Winin-m). We regard W n—m as the semigroup by ow := wo := o (w €
Wpin-m) and
((a1, dr), wr, (a2, d2))((as3, ds), w2, (a4, ds))
((al) dl)a w1 wa, (a47 d4)) lf (a27 d2) = (a’37 d3)a
0 if (ag,d2) # (a3, ds).

We call Wm, N—m the Weyl groupoid of the Lie superalgebra osp(2m|2(N —



For (a,d) € Dpjy—m, let g<a D := ((a,d), idgw, (a,d)) € HZD. For (a,d) €
Diiv—m and i € Jyy, let o) d) = (ri(a,d), s\, (a,d)) € ?—[Ta(:)d For
r € Lo, t € Jo, and f € Map?, let 10905, = ((a,d),1%s;,, (a,d);,) €
HEZZZ;LT' For i, j S Jl,N, define fij € Mapf,vo by fm(2t - 1) = ’i, f’U(2t) =]
(t e N).

By [HY08, Theorem 1], we have

Theorem 2.5. The semigroup Wm, N—m can also be defined by the generators
0, €(a’d), U@(a’d) ((CI,, d) € bm}N—ma 1 € Jl,N),
and relations

ow=wo=0 (W€ Wpn_m),
glad) (a,d) 6(a,d)’ glad) (ad) _ ((a,d) # (a’, d’)),
g@d @) _ sod) (ad) _ led) - pmiled) (0d) _ (ad)

, O,
(@.d) _ clad
B0 maen =€ (Z#J)-

Let (a,d) € Dimn—m, ™ € Zso and f, f' € Mapl. We write fo@9 f/
if there exist 4, j € J;y and t € Jy, such that ¢ # j, t — c(a' D1k <,

flk) = f’(kl) (k1 € JipUJ,_ DTk g ), flka) =i, fi(ka) = J (k2 €

Jt+1t (ad)fkmzN—l) a‘nd f(k3)—".7') fl(k3)_z(k3ejt 1t a'd)fk: ﬁQN)

We wrlte £~ 9 f/if f = f' or there exists t € N and f} € Mapr (k € Jiz)
such that f~<a D i, fol@D frpn (k€ Jipy) and f@9 £/,
By [HY08, Theorem 5, Corollary 6], we have

Theorem 2.6. Let (a, d) € Dmuv —m and w € W(®d),

(1) Let f, f' € Mapy,, &) () D€ Such that 19D s ¢ pad) () = 1995, yaa) () =
w. Then f ~ g‘(‘af?)(w) f.

(2) Letr € N and f € Map be such that r > £ (w) and 195, = w.
Then there ezist f' € Map) and t € Jy,_; such that f D) fand f'(t) =

FE+1).
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