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Abstract. In this article, we first prove fixed point theorems for nonlinear non-self mappings
in a Hilbert space. Next, we deal with weak and strong convergence theorems for nonlinear
mappings in a Hilbert space. Using these results, we obtain new and well-known fixed point
and convergence theorems. For example, we generalizes Hojo and Takahashi’s mean strong
convergence theorem [11] for generalized hybrid mappings.

1 Introduction
Let $H$ be a real Hilbert space and let $C$ be a nonempty subset of $H$ . Kocourek, Takahashi
and Yao [19] introduced a broad class of nonlinear mappings in a Hilbert space which covers
nonexpansive mappings, nonspreading mappings [21] and hybrid mappings [30]. $A$ mapping
$T:Carrow H$ is said to be genemlized hybrid [19] if there exist $\alpha,$ $\beta\in \mathbb{R}$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2}$ (1.1)

for all $x,$ $y\in C$ , where $\mathbb{R}$ is the set of real numbers. We call such $T$ an $(\alpha, \beta)$ -genemlized
hybrid mapping. An $(\alpha, \beta)$-generalized hybrid mapping is nonexpansive for $\alpha=1$ and $\beta=0,$

i.e., $\Vert Tx-Ty\Vert\leq\Vert Tx-Ty\Vert$ for all $x,$ $y\in C$ . It is nonspreading for $\alpha=2$ and $\beta=1$ , i.e.,
$2\Vert Tx-Ty\Vert^{2}\leq\Vert x-Ty\Vert^{2}+\Vert y-Tx\Vert^{2}$ for all $x,$ $y\in C$ . Furthermore, it is hybrid for $\alpha=\frac{3}{2}$

and $\beta=\frac{1}{2}$ , i.e., $3\Vert Tx-Ty\Vert^{2}\leq\Vert x-Ty\Vert^{2}+\Vert y-Tx\Vert^{2}+\Vert y-x\Vert^{2}$ for all $x,$ $y\in C$ . They proved
fixed point theorems and nonlinear ergodic theorems of Baillon’s type [3] for generalized hybrid
mappings in a Hilbert space; see also Kohsaka and Takahashi [20] and Iemoto and Takahashi
$[15]$ . Putting $x=u$ with $u=Tu$ in (1.1), we have that for any $y\in C,$

$\alpha\Vert u-Ty\Vert^{2}+(1-\alpha)\Vert u-Ty\Vert^{2}\leq\beta\Vert u-y\Vert^{2}+(1-\beta)\Vert u-y\Vert^{2}$

and hence $\Vert u-Ty\Vert\leq\Vert u-y\Vert$ . This means that an $(\alpha, \beta)$-generalized hybrid mapping with a
fixed point is quasi-nonexpansive. Kocourek, Takahashi and Yao [19] also introduced a more
broad class of nonlinear mappings which covers generalized hybrid mappings. $A$ mapping
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$S:Carrow H$ is called super hybrid [19, 34] if there exist $\alpha,$
$\beta,$ $\gamma\in \mathbb{R}$ such that

$\alpha\Vert Sx-Sy\Vert^{2}+(1-\alpha+\gamma)\Vert x-Sy\Vert^{2}$

$\leq(\beta+(\beta-\alpha)\gamma)\Vert Sx-y\Vert^{2}+(1-\beta-(\beta-\alpha-1)\gamma)\Vert x-y\Vert^{2}$ (1.2)
$+(\alpha-\beta)\gamma\Vert x-Sx\Vert^{2}+\gamma\Vert y-Sy\Vert^{2}$

for all $x,$ $y\in C$ . We call such a mapping an $(\alpha, \beta, \gamma)$-super hybrid mapping. An $(\alpha, \beta, 0)$ -super
hybrid mapping is $(\alpha, \beta)$-generalized hybrid. So, the class of super hybrid mappings contains
generalized hybrid mappings. On the other hand, Hojo, Takahashi and Yao [12] defined the
following class of nonlinear mappings which contains generalized hybrid mappings. $A$ mapping
$U$ : $Carrow H$ is called extended hybrid if there exist $\alpha,$

$\beta,$ $\gamma\in \mathbb{R}$ such that

$\alpha(1+\gamma)\Vert Ux-Uy\Vert^{2}+(1-\alpha(1+\gamma))\Vert x-Uy\Vert^{2}$

$\leq(\beta+\alpha\gamma)\Vert Ux-y\Vert^{2}+(1-(\beta+\alpha\gamma))\Vert x-y\Vert^{2}$ (1.3)
$-(\alpha-\beta)\gamma\Vert x-Ux\Vert^{2}-\gamma\Vert y-Uy\Vert^{2}$

for all $x,$ $y\in C$ . We note that super hybrid mappings and extended hybrid mappings are not
quasi-nonexpansive generally. We also know the following relation between generalized hybrid
mappings and extended hybrid mappings

Theorem 1.1. Let $C$ be a nonempty closed convex subset of a Hilbert space $H$ and let $\alpha,$

$\beta$ and $\gamma$ be real numbers with $\gamma\neq-1$ . Let $T$ and $U$ be mappings of $C$ into $H$ such that
$U= \frac{1}{1+\gamma}T+\overline{1}+^{I}2_{\overline{\gamma}}$ , where $Ix=x$ for all $x\in H.$ Then, for $1+\gamma>0,$ $T:Carrow H$ is an
$(\alpha, \beta)$ -generalized hybrid mapping if and only if $U$ : $Carrow H$ is an $(\alpha, \beta, \gamma)-$ extended hybrid
mapping.

In this article, motivated by these mappings and results, we first prove fixed point theorems
for nonlinear non-self mappings in a Hilbert space. Next, we deal with weak and strong
convergence theorems for nonlinear mappings in a Hilbert space. Using these results, we obtain
new and well-known fixed point and convergence theorems. For example, we generalizes Hojo
and Takahashi’s mean strong convergence theorem [11] for generalized hybrid mappings.

2 Preliminaries

Throughout this paper, we denote by $\mathbb{N}$ the set of positive integers. Let $H$ be $a$ (real) Hilbert
space with inner product $\langle\cdot,$ $\cdot\rangle$ and norm $\Vert\cdot\Vert$ , respectively. We denote the strong convergence
and the weak convergence of $\{x_{n}\}$ to $x\in H$ by $x_{n}arrow x$ and $x_{n}arrow x$ , respectively. From [29],
we know the following basic equality: For any $x,$ $y\in H$ and $\lambda\in \mathbb{R}$ , we have

$\Vert\lambda x+(1-\lambda)y\Vert^{2}=\lambda\Vert x\Vert^{2}+(1-\lambda)\Vert y\Vert^{2}-\lambda(1-\lambda)\Vert x-y\Vert^{2}$ . (2.1)

Furthermore, we know that for any $x,$ $y,$ $u,$ $v\in H$

$2 \langle x-y, u-v\rangle=\Vert x-v\Vert^{2}+\Vert y-u\Vert^{2}-\Vert x-u\Vert^{2}-\Vert y-v\Vert^{2}$ . (2.2)

Let $C$ be a nonempty closed convex subset of $H$ and let $T$ be a mapping from $C$ into itself.
Then, we denote by $F(T)$ the set of fixed points of $T.$ $A$ mapping $T$ : $Carrow H$ is said to be
nonexpansive if $\Vert Tx-Ty\Vert\leq\Vert x-y\Vert$ for all $x,$ $y\in C.$ $A$ mapping $T$ : $Carrow H$ with $F(T)\neq\emptyset$
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is called quasi-nonexpansive if $\Vert x-Ty\Vert\leq\Vert x-y\Vert$ for all $x\in F(T)$ and $y\in C$ . Let $C$ be a
nonempty closed convex subset of $H$ and $x\in H$ . Then, we know that there exists a unique
nearest point $z\in C$ such that $\Vert x-z\Vert=\inf_{y\in C}\Vert x-y\Vert$ . We denote such a correspondence by
$z=P_{C}x$ . The mapping $P_{C}$ is called the metric projection of $H$ ont$oC$ . It is known that $P_{C}$

is nonexpansive and $\langle x-P_{C}x,$ $P_{C}x-u\rangle\geq 0$ for all $x\in H$ and $u\in C$ . Fhrthermore, we know
that

$\Vert P_{C}x-P_{C}y\Vert^{2}\leq\langle x-y, P_{C}x-P_{C}y\rangle$ (2.3)
for all $x,$ $y\in H$ ; see [29] for more details. For proving main results in this paper, we also need
the following lemmas proved in [31] and [2].

Lemma 2.1 ([31]). Let $D$ be a nonempty closed convex subset of H. Let $P$ be the metric
projection from $H$ onto D. Let $\{u_{n}\}$ be a sequence in H. If $\Vert u_{n+1}-u\Vert\leq\Vert u_{n}-u\Vert$ for all
$u\in D$ and $n\in \mathbb{N}$ , then $\{Pu_{n}\}$ converges strongly to some $u_{0}\in D.$

Lemma 2.2 ([2]). Let $\{s_{n}\}$ be a sequence of nonnegative real numbers, let $\{\alpha_{n}\}$ be a se-
quence of $[0,1]$ with $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ , let $\{\beta_{n}\}$ be a sequence of nonnegative real numbers with
$\sum_{n=1}^{\infty}\beta_{n}<\infty$ , and let $\{\gamma_{n}\}$ be a sequence of real numbers with $\lim\sup_{narrow\infty}\gamma_{n}\leq 0$ . Suppose
that

$s_{n+1}\leq(1-\alpha_{n})s_{n}+\alpha_{n}\gamma_{n}+\beta_{n}$

for all $n=1,2,$ $\ldots$ . Then $\lim_{narrow\infty}s_{n}=0.$

Let $l^{\infty}$ be the Banach space of bounded sequences with supremum norm. Let $\mu$ be an
element of $(l^{\infty})^{*}$ (the dual space of $l^{\infty}$ ). Then we denote by $\mu(f)$ the value of $\mu$ at $f=$
$(x_{1}, x_{2}, x_{3}, \ldots)\in l^{\infty}$ . Sometimes, we denote by $\mu_{n}(x_{n})$ the value $\mu(f)$ . $A$ linear functional $\mu$

on $\iota\infty$

’

is called a mean if $\mu(e)=\Vert\mu\Vert=1$ , where $e=(1,1,1, \ldots)$ . $A$ mean $\mu$ is called a Banach
limit on $l^{\infty}$ if $\mu_{n}(x_{n+1})=\mu_{n}(x_{n})$ . We know that there exists a Banach limit on $l^{\infty}$ . If $\mu$ is a
Banach limit on $l^{\infty}$ , then for $f=(x_{1}, x_{2}, x_{3}, \ldots)\in l^{\infty},$

$\lim_{narrow}\inf_{\infty}x_{n}\leq\mu_{n}(x_{n})\leq\lim_{narrow}\sup_{\infty}x_{n}.$

In particular, if $f=(x_{1}, x_{2}, x_{3}, \ldots)\in\iota\infty$ and $x_{n}arrow a\in \mathbb{R}$ , then we have $\mu(f)=\mu_{n}(x_{n})=a.$

See [27] for the proof of existence of a Banach limit and its other elementary properties. Using
Banach limits, Kocourek, Takahashi and Yao [19] proved the following fixed point theorem for
generalized hybrid mappings in a Hilbert space.

Theorem 2.3 ([19]). Let $C$ be a nonempty closed convex subset of a Hilbert space $H$ and let
$T:Carrow C$ be a generalized hybrid mapping. Then $T$ has a fixed point in $C$ if and only if
$\{T^{n}z\}$ is bounded for some $z\in C.$

3 Fixed $Po$ int Theorem for Non-Self Mappings
In this section, we first prove a fixed point theorem for generalized hybrid non-self mappings
in a Hilbert space. For proving it, we need the following lemmas.
Lemma 3.1. Let $H$ be a Hilbert space and let $C$ be a nonempty subset of H. Let $\alpha$ and $\beta$

be in $\mathbb{R}$ . Then, a non-self mapping $T:Carrow H$ is $(\alpha, \beta)$ -generalized hybrid if and only if it
satisfies that

$\Vert Tx-Ty\Vert^{2}\leq(\alpha-\beta)\Vert x-y\Vert^{2}+2(\alpha-1)\langle x-Tx,$ $y-Ty\rangle-(\alpha-\beta-1)\Vert y-Tx\Vert^{2}$
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for all $x,$ $y\in C.$

Using Lemma 3.1, we have the following result.

Lemma 3.2. Let $H$ be a Hilbert space and let $C$ be a nonempty bounded subset of H. If a
non-self mapping $T:Carrow H$ is generalized hybrid, then $TC$ is bounded.

The following is a fixed point theorem for non-self generalized hybrid mappings in a Hilbert
space.

Theorem 3.3 ([12]). Let $C$ be a nonempty bounded closed convex subset of a Hilbert space $H$

and let $\alpha$ and $\beta$ be real numbers. Let $T$ be an $(\alpha, \beta)$ -genemlized hybrid mapping with $\alpha-\beta\geq 0$

of $C$ into H. Suppose that there enists $m>1$ such that for any $x\in C,$ $Tx=x+t(y-x)$ for
some $y\in C$ and $t$ with $1\leq t\leq m$ . Then, $T$ has a fixed point in $C.$

Recently, Hojo, Suzuki and Takahashi [10] also proved a more general fixed point theorem
for nonlinear non-self mappings in a Hilbert space.

Theorem 3.4 ([10]). Let $C$ be a nonempty, bounded, closed and convex subset of a Hilbert
space $H$ and let $\alpha,$

$\beta,$
$\gamma,$

$\delta\in \mathbb{R}$ . Let $T$ : $Carrow H$ be an $(\alpha, \beta, \gamma, \delta)$-normal genemlized hybrid
mapping, i. e., there exist $\alpha,$

$\beta,$
$\gamma,$

$\delta\in \mathbb{R}$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+\beta\Vert x-Ty\Vert^{2}+\gamma\Vert Tx-y\Vert^{2}+\delta\Vert x-y\Vert^{2}\leq 0$

for all $x,$ $y\in C$ . Suppose that it satisfies the following condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma>0$ and $\alpha+\beta\geq 0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta>0$ and $\alpha+\gamma\geq 0.$

Assume that there exists $m>1$ such that for any $x\in C,$ $Tx=x+t(y-x)$ for some $y\in C$

and $t$ with $0<t\leq m$ . Then $T$ has a fixed point in C. In particular, a fixed point of $T$ is
unique in the case of $\alpha+\beta+\gamma+\delta>0$ on the conditions (1) and (2).

For proving this result, Hoj $0$ , Suzuki and Takahashi [10] used the following fixed point
theorem obtained by Kawasaki and Takahashi [18].

Theorem 3.5 ([18]). Let $H$ be a Hilbert space, let $C$ be a nonempty, closed and convex subset
of $H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely more genemlized hybrid mapping from $C$ into
itself, i. e., there exist $\alpha,$

$\beta,$
$\gamma,$

$\delta,$
$\epsilon,$

$\zeta,$ $\eta\in \mathbb{R}$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+\beta\Vert x-Ty\Vert^{2}+\gamma\Vert Tx-y\Vert^{2}+\delta\Vert x-y\Vert^{2}$

$+\epsilon\Vert x-Tx\Vert^{2}+\zeta\Vert y-Ty\Vert^{2}+\eta\Vert(x-Tx)-(y-Ty)\Vert^{2}\leq 0$

for all $x,$ $y\in C$ . Suppose that it satisfies the following condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma+\epsilon+\eta>0$ and $\zeta+\eta\geq 0$;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta+\zeta+\eta>0$ and $\epsilon+\eta\geq 0.$

Then $T$ has a fixed point if and only if there exists $z\in C$ such that $\{T^{n}z : n=0,1, \ldots\}$ is
bounded. In particular, a fixed point of $T$ is unique in the case of $\alpha+\beta+\gamma+\delta>0$ on the
conditions (1) and (2).

Let us give an example of mappings which is related to the conditions in Theorem 3.4. In
the case of $H=\mathbb{R}$ , consider a mapping $T:[0,1]arrow \mathbb{R}$ :

$Tx=(1+2x)\cos x-2x^{2}, \forall x\in[O, 1].$

20



Then, we have
$Tx=(1+2x)(\cos x-x)+x, \forall x\in[0,1].$

Take $m=3$ . For any $x\in[0,1]$ , take $t=1+2x$ and $y=\cos x$ . Then, we have that
$Tx=t(y-x)+x,$ $y=\cos x\in[0,1]$ and $0<t=1+2x\leq 3.$

4 Weak convergence theorems
In this section, using the technique developed by Takahashi [26], we first prove a mean conver-
gence theorem of Baillon’s type [3] for super hybrid mappings in a Hilbert space. For proving
it, we need the following lemma.

Lemma 4.1. Let $C$ be a nonempty closed convex subset of a real Hilbert space H. Let $T$

be a genemlized hybrid mapping from $C$ into itself. Suppose that $\{T^{n}x\}$ is bounded for some
$x\in C$ . Define $S_{n}x= \frac{1}{n}\sum_{k=1}^{n}T^{k}x$ . Then, $\lim_{narrow\infty}\Vert S_{n}x-TS_{n}x\Vert=0$. In particular, if $C$ is
bounded, then

$\lim_{narrow\infty}\sup_{x\in C}\Vert S_{n}x-TS_{n}x\Vert=0.$

Using Lemma 4.1, we obtain the the following mean convergence theorem.

Theorem 4.2 ([12]). Let $H$ be a Hilbert space and let $C$ be a nonempty closed convex subset
of H. Let $\alpha,$

$\beta$ and $\gamma$ be real numbers with $\gamma\geq 0$ and let $S$ : $Carrow C$ be an $(\alpha, \beta, \gamma)$-super
hybrid mapping with $F(S)\neq\emptyset$ and let $P$ be the mertic projection of $H$ onto $F(T)$ . Then, for
any $x\in C,$

$S_{n}x= \frac{1}{n}\sum_{k=1}^{n}(\frac{1}{1+\gamma}s+\frac{\gamma}{1+\gamma}I)^{k}x$

converges weakly to $z\in F(S)$ , where $z= \lim_{narrow\infty}PT^{n}x$ and $T= \frac{1}{1+\gamma}S+\overline{1}+\overline{\gamma}^{I}\Delta.$

Next, we prove a weak convergence theorem of Mann’s type [23] for nonlinear non-self
mappings in a Hilbert space. For proving the result, we need the following two lemmas.
Lemma 4.3. Let $C$ be a nonempty, closed and convex subset of a Hilbert space $H$ and let $T$

be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely more genemlized hybrid mapping from $C$ into $H$ with $F(T)\neq\emptyset$

which satisfies the condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta>0$ and $\zeta+\eta\geq 0$;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma>0$ and $\epsilon+\eta\geq 0.$

Then $T$ is quasi-nonexpansive.

We remark that if $T$ : $Carrow H$ is quasi-nonexpansive, then $F(T)$ is closed and convex; see
Itoh and Takahashi [16]. It is not difficult to prove such a result in a Hilbert space. In fact,
for proving that $F(T)$ is closed, take a sequence $\{z_{n}\}\subset F(T)$ with $z_{n}arrow z$ . Since $C$ is weakly
closed, we have $z\in C$ . Fhrthermore, from $\Vert z-Tz\Vert\leq\Vert z-z_{n}\Vert+\Vert z_{n}-Tz\Vert\leq 2\Vert z-z_{n}\Vertarrow 0,$

we have that $z$ is a fixed point of $T$ and so $F(T)$ is closed. Let us show that $F(T)$ is convex.
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For $x,$ $y\in F(T)$ and $\alpha\in[0,1]$ , put $z=\alpha x+(1-\alpha)y$ . Then we have from (2.1) that

$\Vert z-Tz\Vert^{2}=\Vert\alpha x+(1-\alpha)y-Tz\Vert^{2}$

$=\alpha\Vert x-Tz\Vert^{2}+(1-\alpha)t|y-Tz\Vert^{2}-\alpha(1-\alpha)\Vert x-y\Vert^{2}$

$\leq\alpha\Vert x-z\Vert^{2}+(1-\alpha)\Vert y-z\Vert^{2}-\alpha(1-\alpha)\Vertx-y\Vert^{2}$

$=\alpha(1-\alpha)^{2}\Vert x-y\Vert^{2}+(1-\alpha)\alpha^{2}\Vert x-y\Vert^{2}-\alpha(1-\alpha)\Vert x-y\Vert^{2}$

$=\alpha(1-\alpha)(1-\alpha+\alpha-1)\Vert x-y\Vert^{2}=0$

and hence $Tz=z$ . This implies that $F(T)$ is convex.

Lemma 4.4. Let $H$ be a Hilbert space and let $C$ be a nonempty, closed and convex subset of
H. Let $T:Carrow H$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely more genemlized hybrid mapping. Suppose
that it satisfies the following condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0$ and $\alpha+\gamma+\epsilon+\eta>0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0$ and $\alpha+\beta+\zeta+\eta>0.$

If $x_{n}arrow z$ and $x_{n}-Tx_{n}arrow 0$ , then $z\in F(T)$ .
Using Lemmas 4.3, 4.4 and the technique developed by Ibaraki and Takahashi [13, 14], we

can prove the following weak convergence theorem.

Theorem 4.5 ([10]). Let $H$ be a Hilbert space and let $C$ be a nonempty, closed and convex
subset of H. Let $T$ : $Carrow H$ be a widely more genemlized hybrid mapping with $F(T)\neq\emptyset$

which satisfies the condition (1) or (2);

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma>0$ and $\epsilon+\eta\geq 0$;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta>0$ and $\zeta+\eta\geq 0.$

Let $P$ be the mertic projection of $H$ onto $F(T)$ . Let $\{\alpha_{n}\}$ be a sequence of real numbers such
that $0\leq\alpha_{n}\leq 1$ and $\lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>0$ . Suppose that $\{x_{n}\}$ is the sequence genemted
by $x_{1}=x\in C$ and

$x_{n+1}=P_{C}(\alpha_{n}x_{n}+(1-\alpha_{n})Tx_{n}) , n\in \mathbb{N}.$

Then $\{x_{n}\}$ converges weakly to $v\in F(T)$ , where $v= \lim_{narrow\infty}Px_{n}.$

Using Theorem 4.5, we can show the following weak convergence theorem of Mann’s type
for generalized hybrid mappings in a Hilbert space.

Theorem 4.6 ([19]). Let $H$ be a Hilbert space and let $C$ be a nonempty, closed and convex
subset of H. Let $T:Carrow C$ be a genemlized hybrid mapping with $F(T)\neq\emptyset$ . Let $\{\alpha_{n}\}$ be a
sequence of real numbers such that $0\leq\alpha_{n}\leq 1$ and $\lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>0$ . Suppose that
$\{x_{n}\}$ is the sequence genemted by $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})Tx_{n}, n\in \mathbb{N}.$

Then the sequence $\{x_{n}\}$ converges weakly to an element $v\in F(T)$ .

Proof. Since $T:Carrow C$ is a generalized hybrid mapping, there exist $\alpha,$
$\beta\in \mathbb{R}$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-Ty\Vert^{2}+(1-\beta)\Vert x-Ty\Vert^{2}$

for all $x,$ $y\in C$ . We have that this mapping is an $(\alpha, 1-\alpha, -\beta, -(1-\beta), 0,0,0)$-widely more
generalized hybrid mapping which satisfies the condition (2) in Theorem 4.5. Therefore, we
have the deSired reSult frOm Theorem 45 口
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5 Strong Convergence Theorem
In this section, using an idea of mean convergence by Shimizu and Takahashi [24] and [25], we
prove a strong convergence theorem of Halpern’s type for super hybrid mappings in a Hilbert
space.

Theorem 5.1 ([12]). Let $C$ be a nonempty closed convex subset of a real Hilbert space $H$ and
let $\alpha,$

$\beta$ and $\gamma$ be real numbers with $\gamma\geq 0$ . Let $S$ : $Carrow C$ be $a(\alpha, \beta, \gamma)$-super hybrid mapping
with $F(S)\neq\emptyset$ and let $P$ be the metric projection of $H$ onto $F(S)$ . Suppose that $\{x_{n}\}$ is a
sequence genemted by $x_{1}=x\in C,$ $u\in C$ and

$\{\begin{array}{l}x_{n+1}=\alpha_{n}u+(1-\alpha_{n})z_{n}z_{n}=\frac{1}{n}\sum_{k=1}^{n}(\frac{1}{1+\gamma}S+\frac{\gamma}{1+\gamma}I)^{k}x_{n}\end{array}$

for all $n=1,2,$ $\ldots$ , where $0\leq\alpha_{n}\leq 1,$ $\alpha_{n}arrow 0$ and $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ . Then $\{x_{n}\}$ converges
strongly to Pu.

Recently, Hojo, Suzuki and Takahashi [10] also proved the following strong convergence
theorem for widely more generalized hybrid mappings in a Hilbert space.

Theorem 5.2 ([10]). Let $C$ be a nonempty, closed and convex subset of a real Hilbert space
H. Let $T$ be a widely more genemlized hybrid mapping of $C$ into itself which satisfies the
following condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma>0,$ $\epsilon+\eta\geq 0$ and $\zeta+\eta\geq 0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta>0,$ $\zeta+\eta\geq 0$ and $\epsilon+\eta\geq 0.$

Let $u\in C$ and define sequences $\{x_{n}\}$ and $\{z_{n}\}$ in $C$ as follows: $x_{1}=x\in C$ and

$\{\begin{array}{l}x_{n+1}=\alpha_{n}u+(1-\alpha_{n})z_{n},z_{n}=\frac{1}{n}\sum_{k=0}^{n-1}T^{k}x_{n}\end{array}$

for all $n=1,2,$ $\ldots$ , where $0\leq\alpha_{n}\leq 1,$ $\alpha_{n}arrow 0$ and $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ . If $F(T)\neq\emptyset$ , then $\{x_{n}\}$

and $\{z_{n}\}$ converge strongly to Pu, where $P$ is the metric projection of $H$ onto $F(T)$ .
Using Theorem 5.2, we can show the following result obtained by Hojo and Takahashi [11].

Theorem 5.3 ([11]). Let $C$ be a nonempty closed convex subset of a real Hilbert space H. Let
$T$ be a generalized hybrid mapping of $C$ into itself. Let $u\in C$ and define two sequences $\{x_{n}\}$

and $\{z_{n}\}$ in $C$ as follows: $x_{1}=x\in C$ and

$\{\begin{array}{l}x_{n+1}=\alpha_{n}u+(1-\alpha_{n})z_{n},z_{n}=\frac{1}{n}\sum_{k=0}^{n-1}T^{k}x 。\end{array}$

for all $n=1,2,$ $\ldots$ , where $0\leq\alpha_{n}\leq 1,$ $\alpha_{n}arrow 0$ and $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ . If $F(T)$ is nonempty, then
$\{x_{n}\}$ and $\{z_{n}\}$ converge strongly to $Pu\in F(T)$ , where $P$ is the metric projection of $H$ onto
$F(T)$ .
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Proof. As in the proof of Theorem 4.6, a generalized hybrid mapping is a widely more gener-
alized hybrid mapping. Therefore, we have the desired result from Theorem 5.2. $\square$
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