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Fixed Point Theorems and Convergence Theorems
for Non-self Mappings in Hilbert Spaces
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Abstract. In this article, we first prove fixed point theorems for nonlinear non-self mappings
in a Hilbert space. Next, we deal with weak and strong convergence theorems for nonlinear
mappings in a Hilbert space. Using these results, we obtain new and well-known fixed point
and convergence theorems. For example, we generalizes Hojo and Takahashi’s mean strong
convergence theorem [11] for generalized hybrid mappings.

1 Introduction

Let H be a real Hilbert space and let C' be a nonempty subset of H. Kocourek, Takahashi
and Yao [19] introduced a broad class of nonlinear mappings in a Hilbert space which covers
nonexpansive mappings, nonspreading mappings [21] and hybrid mappings [30]. A mapping
T:C — H is said to be generalized hybrid [19] if there exist o, 8 € R such that

o|Tz = Tyl + (1 - &)z — Ty|* < BI|Tz — yl* + (1 - B) = — | (L1

for all z,y € C, where R is the set of real numbers. We call such T an (a, B)-generalized
hybrid mapping. An (o, 3)-generalized hybrid mapping is nonexpansive for & = 1 and 8 = 0,
Le, [Tz — Ty|| < ||Tz — Ty|| for all z,y € C. 1t is nonspreading for & = 2 and 8 = 1, i.e.,
2| Tz — Ty|? < ||z — Ty||2 + |ly — T|]? for all z,y € C. Furthermore, it is hybrid for a = 3
and § = 4, i.e., 3Tz —Ty|? < ||z —Ty|>+|jy— Tz| + |ly— z||? for all z,y € C. They proved
fixed point theorems and nonlinear ergodic theorems of Baillon’s type [3] for generalized hybrid
mappings in a Hilbert space; see also Kohsaka and Takahashi [20] and Iemoto and Takahashi
[15]. Putting z = u with u = T in (1.1), we have that for any y € C,

allu=Tyl* + (1~ a)u—Tyl* < Bllu—y|* + (1 - B)llu — y|?

and hence ||u — Ty|| < |ju—y||. This means that an («, 3)-generalized hybrid mapping with a
fixed point is quasi-nonexpansive. Kocourek, Takahashi and Yao [19] also introduced a more
broad class of nonlinear mappings which covers generalized hybrid mappings. A mapping
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S : C — H is called super hybrid [19, 34] if there exist «, 3, € R such that

allSz — Syl* + (1 — a+ )|z - Syl®
<B+B-a))Sz—ylP+(1-B-(B—a-1))lz -yl (1.2)
+ (e — Byl — Sz|* +vlly — Syll?

for all z,y € C. We call such a mapping an (e, 3, v)-super hybrid mapping. An (a, 3, 0)-super
hybrid mapping is («, 8)-generalized hybrid. So, the class of super hybrid mappings contains
generalized hybrid mappings. On the other hand, Hojo, Takahashi and Yao [12] defined the
following class of nonlinear mappings which contains generalized hybrid mappings. A mapping
U:C — H is called extended hybrid if there exist o, 8,7 € R such that

o1+ U=Uy|* + (1 = a1 +7))llz — Uyl)?
< (B+an)Uz = yl® + (1 = B+ o)z — 9l (1.3)
- (@~ B)ylle ~ Uz||* —~lly - Uy|®

for all z,y € C. We note that super hybrid mappings and extended hybrid mappings are not
quasi-nonexpansive generally. We also know the following relation between generalized hybrid
mappings and extended hybrid mappings

Theorem 1.1. Let C be a nonempty closed convexr subset of a Hilbert space H and let o,
B and v be real numbers with v # —1. Let T and U be mappings of C into H such that
U= ﬁT+ﬁ;I, where Iz = x for allx € H. Then, for 1+~ >0, T : C = H is an
(o, B)-generalized hybrid mapping if and only if U : C — H is an (o, B, 7v)- extended hybrid
mapping.

In this article, motivated by these mappings and results, we first prove fixed point theorems
for nonlinear non-self mappings in a Hilbert space. Next, we deal with weak and strong
convergence theorems for nonlinear mappings in a Hilbert space. Using these results, we obtain
new and well-known fixed point and convergence theorems. For example, we generalizes Hojo
and Takahashi’s mean strong convergence theorem [11] for generalized hybrid mappings.

2 Preliminaries

Throughout this paper, we denote by N the set of positive integers. Let H be a (real) Hilbert
space with inner product (-,- ) and norm || - ||, respectively. We denote the strong convergence
and the weak convergence of {z,} to z € H by z,, = = and z, — z, respectively. From [29],
we know the following basic equality: For any z,y € H and A € R, we have

1Az + (1= A)yll* = Allzll? + (1 = Myl - 21 = Wz - yl>. (21)
Furthermore, we know that for any z,y,u,v € H
2(z - y,u—v) = & — ol + lly = ul® = llz -l ~ |y - vll*. (2.2)

Let C be a nonempty closed convex subset of H and let T be a mapping from C into itself.
Then, we denote by F(T) the set of fixed points of T. A mapping T : C — H is said to be
nonexpansive if | Tz — Ty|| < ||z — y|| for all z,y € C. A mapping T : C = H with F(T) # 0



is called quasi-nonezpansive if ||z — Ty| < ||z — y|| for all z € F(T) and y € C. Let C be a
nonempty closed convex subset of H and z € H. Then, we know that there exists a unique
nearest point z € C such that ||z — z|| = infyec ||z — y||. We denote such a correspondence by
z = Pcz. The mapping Pc is called the metric projection of H onto C. It is known that Py
is nonexpansive and (z — Poz, Poz —u) > 0 for all € H and u € C. Furthermore, we know
that

|Pez — Poyl? < (z — y, Poz — Poy) (23)

for all z,y € H; see [29] for more details. For proving main results in this paper, we also need
the following lemmas proved in [31] and [2].

Lemma 2.1 ([31]). Let D be a nonempty closed conver subset of H. Let P be the metric
projection from H onto D. Let {un} be a sequence in H. If ||upnt1 — ul| < |lun — ul| for all
u€ D and n € N, then {Puyn} converges strongly to some ug € D.

Lemma 2.2 ([2]). Let {s,} be a sequence of nonnegative real numbers, let {an} be a se-
quence of [0,1] with Y7 | ay, = oo, let {B,} be a sequence of nonnegative real numbers with
Yo 1 Bn < o0, and let {n} be a sequence of real numbers with limsup,,_, ., ¥, < 0. Suppose
that :

Sn+1 < (1 - an)sn + anYn + Bn
for alln=1,2,.... Then lim,_,« s, = 0.

Let [ be the Banach space of bounded sequences with supremum norm. Let u be an
element of ({°°)* (the dual space of [*°). Then we denote by u(f) the value of y at f =
(z1, 22,23, ...) € I°°. Sometimes, we denote by py,(z,) the value u(f). A linear functional W
on {* is called a mean if p(e) = [|u|| = 1, where e = (1,1,1,...). A mean y is called a Banach
limit on I°® if pp(Tn41) = pn(zn). We know that there exists a Banach limit on 1°°. If 4 is a
Banach limit on {*°, then for f = (z1, 22, z3,...) € I°°,

liminf z,, < pp(z,) < limsup x,.

n—00 n—»00
In particular, if f = (z1,%2,23,...) € I°° and z, — a € R, then we have u(f) = pn(zn) = a.
See [27] for the proof of existence of a Banach limit and its other elementary properties. Using
Banach limits, Kocourek, Takahashi and Yao [19] proved the following fixed point theorem for
generalized hybrid mappings in a Hilbert space.

Theorem 2.3 ([19]). Let C be a nonempty closed convex subset of a Hilbert space H and let
T :C — C be a generalized hybrid mapping. Then T has a fized point in C if and only if
{T™z} is bounded for some z € C.

3 Fixed Point Theorem for Non-Self Mappings

In this section, we first prove a fixed point theorem for generalized hybrid non-self mappings
in a Hilbert space. For proving it, we need the following lemmas.

Lemma 3.1. Let H be a Hilbert space and let C be a nonempty subset of H. Let a and B
be in R. Then, a non-self mapping T : C — H is (o, B)-generalized hybrid if and only if it
satisfies that

1Tz = Tyl* < (a = B)llz ~ yl* + 2(a — 1){x = Tz,y — Ty) — (a = — 1)|ly — Tx|]?
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forallz,y € C.
Using Lemma 3.1, we have the following result.

Lemma 3.2. Let H be a Hilbert space and let C be a nonempty bounded subset of H. If a
non-self mapping T : C — H is generalized hybrid, then TC is bounded.

The following is a fixed point theorem for non-self generalized hybrid mappings in a Hilbert
space.

Theorem 3.3 ([12]). Let C be a nonempty bounded closed convex subset of a Hilbert space H
and let a and B be real numbers. Let T be an (a, B)-generalized hybrid mapping with o.— > 0
of C into H. Suppose that there exists m > 1 such that for any z € C, Tz = z + t(y — x) for
somey € C andt with1 <t <m. Then, T has a fized point in C.

Recently, Hojo, Suzuki and Takahashi [10] also proved a more general fixed point theorem
for nonlinear non-self mappings in a Hilbert space.

Theorem 3.4 ([10]). Let C be a nonempty, bounded, closed and convex subset of a Hilbert
space H and let o,B,7,0 € R. Let T : C = H be an (a,pB,~,6)-normal generalized hybrid
mapping, i.e., there exist a, 3,7,0 € R such that

of| Tz - Tyl* + Blie — Tyl|* +7I|ITz ~ y|I* + llz — y|* < 0

for all z,y € C. Suppose that it satisfies the following condition (1) or (2):

1) a+B8+v+620, a+vy>0and a+p2>0;
(2) a+B8+7+8>0, a+B>0 and a+7v>0.

Assume that there exists m > 1 such that for any z € C, Tz = z + t(y — x) for somey € C
and t with 0 <t < m. Then T has a fized point in C. In particular, a fized point of T is
unique in the case of a + B+ v+ 6 > 0 on the conditions (1) and (2).

For proving this result, Hojo, Suzuki and Takahashi [10] used the following fixed point
theorem obtained by Kawasaki and Takahashi [18].

Theorem 3.5 ([18]). Let H be a Hilbert space, let C be a nonempty, closed and convex subset
of H and let T be an (a,B,7,9,¢€,(,n)-widely more generalized hybrid mapping from C into
itself, i.e., there exist , B,7,9,¢,(,n € R such that
a||Tz—Ty|® + Bllz — Ty|? + Tz — y||* + dllz — y|?
+ellz — Tl + Clly — Tyll* +nll(c - Tz) = (y - Ty)[> < 0

for all z,y € C. Suppose that it satisfies the following condition (1) or (2):

(1) a+B+v+6>20, a+y+e+n>0 and (+n=>0;
2) a+B8+7+6>0, a+B+(+n>0 and e+n>0.

Then T has a fized point if and only if there ezists z € C such that {T"z : n = 0,1,...} is
bounded. In particular, a fized point of T is unique in the case of a+ B+ v+ 6 > 0 on the
conditions (1) and (2).

Let us give an example of mappings which is related to the conditions in Theorem 3.4. In
the case of H = R, consider a mapping T : [0,1] — R:

Tz = (14 2z)cosz — 222, Vz e 0,1].



Then, we have
Tx=(1+42z)(cosz—2z)+z, Vzel01].

Take m = 3. For any z € [0,1], take t = 1 + 2z and y = cosz. Then, we have that
Tr=t(y—z)+z,y=cosze[0,]]and0<t=1+2z<3.

4 Weak convergence theorems

In this section, using the technique developed by Takahashi [26], we first prove a mean conver-
gence theorem of Baillon’s type (3] for super hybrid mappings in a Hilbert space. For proving
it, we need the following lemma.

Lemma 4.1. Let C be a nonempty closed convexr subset of a real Hilbert space H. Let T
be a generalized hybrid mapping from C into itself. Suppose that {T"x} is bounded for some
z € C. Define Spz = 230 TF2. Then, limpye0 ||Snz — T'Spz|| = 0. In particular, if C is
bounded, then

lim sug |Spx — T'Spz| = 0.

n—oo €

Using Lemma 4.1, we obtain the the following mean convergence theorem.

Theorem 4.2 ([12]). Let H be a Hilbert space and let C be a nonempty closed convez subset
of H. Let o, B and vy be real numbers with v > 0 and let S : C — C be an (a, B, v)-super
hybrid mapping with F(S) # 0 and let P be the mertic projection of H onto F(T). Then, for
any z € C,

1, 1 v
W = — —_ D
Spz nk§=1(1+75+1+7)m

converges weakly to z € F(S), where z = lim,_,oo PT"x and T = —1_}_—75 + -1—_7*_71.

Next, we prove a weak convergence theorem of Mann’s type [23] for nonlinear non-self
mappings in a Hilbert space. For proving the result, we need the following two lemmas.

Lemma 4.3. Let C be a nonempty, closed and convez subset of a Hilbert space H and let T
be an (e, B,4,9,€,¢,n)-widely more generalized hybrid mapping from C into H with F(T) # 0
which satisfies the condition (1) or (2):

(1) a+B+7+6>0, a+8>0 and (+n>0;
(2) a+B+7v+6>0, a+y>0 and e+71>0.

Then T is quasi-nonezpansive.

We remark that if T : C — H is quasi-nonexpansive, then F(T) is closed and convex; see
Itoh and Takahashi [16]. It is not difficult to prove such a result in a Hilbert space. In fact,
for proving that F(T') is closed, take a sequence {2} C F(T) with 2, — z. Since C is weakly
closed, we have z € C. Furthermore, from ||z — Tz|| < ||z — z,|| + [|2n — T2|| € 2||z = 2a|| = O,
we have that z is a fixed point of T and so F(T') is closed. Let us show that F(T') is convex.
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For z,y € F(T) and a € [0,1], put 2 = az + (1 — a)y. Then we have from (2.1) that

l2 = T2||? = laz + (1 - a)y — T2||”
= aflz = T2 + (1~ a)lly - T2|* - (1 ~ &) |z — y|?
<alz—2*+ (1 - a)lly - z[* — a(l - a)|lz — y]I*
=o(l - )|z -yl + (1 - @)a?||z - y|* — (1 ~ o) ||z — yI?
=a(l-a)l-a+a-1)|z-y|>=0
and hence Tz = 2. This implies that F(T) is convex.

Lemma 4.4. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of
H. Let T : C — H be an (a, 8,7, 96,¢&,(,n)-widely more generalized hybrid mapping. Suppose
that it satisfies the following condition (1) or (2):

(1) a+pB+~v+6>0 and a+vy+e+n>0;

(2) a+B+v+6>0 and a+p+¢+n>0.

If 2, — z and z, — Tz, — 0, then z € F(T).

Using Lemmas 4.3, 4.4 and the technique developed by Ibaraki and Takahashi [13, 14], we
can prove the following weak convergence theorem.

Theorem 4.5 ([10]). Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let T : C — H be a widely more generalized hybrid mapping with F(T) # 0
which satisfies the condition (1) or (2):

1) a+B8+v+6>0, a+y>0 and e+n=>0;
(2) a+B+7+6>0, a+B>0 and (+7n>0.

Let P be the mertic projection of H onto F(T). Let {an} be a sequence of real numbers such
that 0 < ap <1 and liminf, 00 @n(l — apn) > 0. Suppose that {z,} is the sequence generated
by zy =2 € C and

Zny1 = Po(anzn+ (1 —a,)Tz,), neN.

Then {z,} converges weakly to v € F(T), where v = lim,_,oc Pzp.

Using Theorem 4.5, we can show the following weak convergence theorem of Mann’s type
for generalized hybrid mappings in a Hilbert space.

Theorem 4.6 ([19]). Let H be a Hilbert space and let C be a nonempty, closed and conver
subset of H. Let T : C — C be a generalized hybrid mapping with F(T) # 0. Let {a,} be a
sequence of real numbers such that 0 < a, <1 and liminf,, o an(1 — a,) > 0. Suppose that
{zn} is the sequence generated by z; =z € C and

Tntl = CnZn+ (1 —ap)Tz,, neN
Then the sequence {z,} converges weakly to an element v € F(T).
Proof. Since T : C — C is a generalized hybrid mapping, there exist a, 8 € R such that
af| Tz — Ty|? + (1 - )|z — Tyl* < BTz — Ty||* + (1 - B)llz — Ty|?

for all z,y € C. We have that this mapping is an (a,1 — o, —f8, —(1 — 5),0, 0, 0)-widely more
generalized hybrid mapping which satisfies the condition (2) in Theorem 4.5. Therefore, we
have the desired result from Theorem 4.5. O



5 Strong Convergence Theorem

In this section, using an idea of mean convergence by Shimizu and Takahashi [24] and [25], we
prove a strong convergence theorem of Halpern’s type for super hybrld mappings in a Hilbert
space.

Theorem 5.1 ([12]). Let C be a nonempty closed convex subset of a real Hilbert space H and
let a, B and v be real numbers with v > 0. Let S: C — C be a (a, B, v)-super hybrid mapping
with F(S) # @ and let P be the metric projection of H onto F(S). Suppose that {x,} is a
sequence generated by t1 =x € C, u € C and

Tn+1 —anu+(1_an)zna
== — Ik
Z(1+7 1+ )"zn

for alln = 1,2,..., where 0 < ap <1, a, = 0 and Y oo | @y = co. Then {z,} converges
strongly to Pu.

Recently, Hojo, Suzuki and Takahashi [10] also proved the following strong convergence
theorem for widely more generalized hybrid mappings in a Hilbert space.

Theorem 5.2 ([10]). Let C' be a nonempty, closed and convex subset of a real Hilbert space
H. Let T be a widely more generalized hybrid mapping of C into itself which satisfies the
following condition (1) or (2):

(1)a+B+v+6>20, a+y>0, e+n>0 and (+n>0;
(2) a+B8+7+620, a+B8>0, (+n>0and e¢+n>0.

Let u € C and define sequences {z,} and {z,} in C as follows: z; = z € C and

Tnt+1 = anu+ (1 — an)zn,
1 n—1
Zn = — E Tk:cn
n
k=0

foralln =1,2,..., where 0 < o < 1, oy = 0 and S oo | @y = 00. If F(T) # 0, then {z,}
and {zn} converge strongly to Pu, where P 1is the metric projection of H onto F(T).

Using Theorem 5.2, we can show the following result obtained by Hojo and Takahashi [11].

Theorem 5.3 ([11]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T be a generalized hybrid mapping of C into itself. Let u € C and define two sequences {zn}
and {z,} in C as follows: z; =z € C and

Tnt1 = anu + (1 — o) 2n,
1 n-1
2y = - Z T*z,
k=0

foralln=1,2,..., where 0 < ap <1, an — 0 and Y oo, @ = 00. If F(T) is nonempty, then
{zn} and {zn} converge strongly to Pu € F(T), where P is the metric projection of H onto
F(T).
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Proof. As in the proof of Theorem 4.6, a generalized hybrid mapping is a widely more gener-
alized hybrid mapping. Therefore, we have the desired result from Theorem 5.2. |
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