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1 Introduction

We consider the Cauchy-Dirichlet problem for a semilinear heat equation,

Oru = Au + uP, z€Q, t>0,
(1.1) u=0, €0, t>0,
u(z,0) = ¢(z) 20, =z€Q,

where 8, = 8/8t, p > 1, N > 3, Q is a smooth domain in RY, and ¢ € L®(Q). The
problem (1.1) has been studied in many papers since the pioneering work due to Fujita
[7], and it is well known that, for the case 2 = R,

o ifl<p<1+4+2/N and ¢ #0in Q, then the solution u of (1.1) blows up at some
time T" > 0, that is,

lim sup ||u(t)l| Lo () = 00;
t—T-0

e if p>1+42/N, then there exists a positive solution globally in time for some initial
data ¢.

These conclusions also hold for the case where 2 is the exterior domain of a compact set
(see [1] and [21]). In this paper we assume that

(1.2) € is the exterior C%* domain of a compact set for some o € (0, 1),
(1.3) p>1+2/N, (N-2)p<N+2,
(1.4) peX = {f e L®(Q) N LA, e*/4dz) : f>0in Q} ,



and study the large time behavior of global in time solution » of (1.1). In particular, we
give in Theorem 1.1 a sufficient condition for the solution u to behave like

(1.5) ()o@ = O /®Y) a5 t— oo,

and obtain in Theorem 1.2 and in Corollary 1.1 a classification of the decay rate of such
a solution.

The large time behavior of global in time solutions of (1.1) has been studied in many
papers and by various methods. It seems impossible to give a complete list of references
for studies of this direction. We here only cite [15], [17], [18], [23], [26], and a survey
[24], which includes a considerable list of references on this topic. Among others, in [17],
Kavian studied the large time behavior of the global in time solution w of (1.1) for the
case = R”" under the conditions (1.3) and (1.4). He put

(1.6) v(y,s) = 1+ )P Du(z,t), y=Q1+t)" 2z, s=1log(l+1),

and introduced the following energy,

1 1 1
1.7 E = 2pdy — / 2pdy — —— P+ pd
(1.7) [v](s) 2/RNIVvIp V=2 e P T o1 S P

where p(y) = exp(|y|?/4). Then the energy E[v](s) is monotone decreasing in the variable
s. By using the energy method together with this monotonicity of the energy E[v](s), he
proved that

(1.8)  sup|fv(s)||emny <00, thatis, [[u(t)]iemn) =0t/ V) as t— oo.
s>0

Furthermore, in [18], Kawanago gave a classification of the large time behavior of the
global in time solutions of (1.1) under the same conditions as in [17] by using the blow-up
argument together with the energy method, see e.g. [10, 17]. In particular, he proved
that, for any ¢ € X \ {0}, there exists a positive constant A, such that

((a) if 0 < A < A, then the solution u of (1.1) exists globally in time and
lu(®)llzoomny < 7% a5t = oo;

(b) if A = X, then the sc:lution u of (1.1) exists globally in time and
u()llLo@mny =< t77-1 as t — o0;

(c) if A > Ay, then the solution u of (1.1) does not exist globally in time,

and blows-up at some time Tjs > 0, that is, lim sup||u(t)|| e (rv) = 0.
\ t—?TM—O

(1.9) «

On the other hand, for any uniformly C*® smooth domain 2 in RN with 0 < a < 1,
Takaichi in [26] considered the problem (1.1) under the condition (1.3), and proved that
the global solution u of (1.1) satisfies the inequality

(1.10) sup [[u(t)|| () < C,
£>0



where C' is a constant depending only on N, p, Q, ||§||z(q), and [|¢[|z2(q)- Unfortunately,
in this case, it seems difficult to prove the estimate like (1.8) and the classification like
(1.9) by applying the arguments in [17] and [18] directly, since the energy associated with
the rescaled solution v is not necessarily monotone decreasing in the variable s even when
2 is the exterior domain of a compact set.

In this paper we study the large time behavior of global in time solutions of (1.1) when
2 is the exterior domain of a compact set. In order to state our main results, we need
to prepare some notation. For any nonnegative functions f(t) and g(¢) in (0, 00), we say
f(t) < g(t) ast — oo if there exists a positive constant C such that C~1f(¢) < g(t) < Cf(t)
for all sufficiently large ¢t. Let

Il =1 llzagys M- M= 1 lloo + [+ 2 elo?/aggy

where g € [1,00]. Then X is a closed cone of the Banach space with the norm ||| - |||. We
denote by S(t)¢ the solution of (1.1), and put

G :={¢p€ X : S(t)¢ exists globally in time},

H:={¢ecG: ||SH)lloo <t N?ast — oo} U{0},

K:={peCG:|St)d|loo <t VPV ag ¢t — co}.

Now we are ready to give the main results of this paper. The first theorem gives a

sufficient condition for the solution of (1.1) to behave like (1.5).
Theorem 1.1 Let N > 3 and u be a global in time solution of (1.1) under the conditions
(1.2)—~(1.4). If there exist a positive constant § and a point xo € Q such that

(1.11) lim sup t°u(z, t) < oo,

t—o00

then there exists a constant C such that

(1.12) 6o < C(1+8)"Y@D, 50,
Put
(1.13) M= {¢ €G : |SH)Bllos = O VP D) as t — oo} .

Then Theorem 1.1 yields
M ={¢e G : S(t)¢ satisfies (1.11) for some zg € §2 and § > 0}.

At this stage, we have no precise information concerning the relationship among M, K,
and H. The following theorem clarifies this point:

Theorem 1.2 Let N > 3 and assume the conditions (1.2)=(1.4). Then there holds the
following:

(i) M =KUH;

(ii) H is an unbounded convexr open cone with vertexr at 0 in X and H = Int M;

(iii) if ¢ € K, then

(1.14) AMeH if 0<A<]1, AXpgM if A>1.
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Combining these theorems with the estimate (1.10) (see also Proposition 2.1), we have

Corollary 1.1 Let N > 3, ¢ € G, and u be a global in time solution of (1.1) under the
conditions (1.2)-(1.4). Then there holds either

B lu®leo x t™N/2 ast — oo,
(i)  fu@loeo = 7P ast — oo, or

(iii)  sup |lu(t)|lco < 00 and supt®u(z,t) = co for any x € Q and § > 0.
t>0 ¢>0

Remark 1.1 We cannot exclude the case (iii) of Corollary 1.1 in general. In fact, a global
in time solution S(t)¢ which tends to a positive stationary solution of (1.1) ast — oo is
an example which satisfies the condition (iii). Cazenave-Lions proved in [4] that, for some
¢ € G, such a solution actually exists if Q is a bounded domain. As for the nonexistence
of nontrivial stationary solutions for (1.1) in unbounded domains, see e.g. [2], [3], and (6]
and references therein.

If Q is the exterior domain of a starshaped compact set, then we can obtain more
precise result on the relationship among M, K, and H.

Theorem 1.3 Let N > 3 and Q be an exterior C*® domain of a starshaped compact set
in RN for a € (0,1). Assume the condition (1.3). Then G = M and G is a closed convez
set in X. Furthermore there holds the following:

(i) H is an unbounded conver open cone with vertez at 0 in X;
(i) G=KUH,0G=K, and IntG =H;
(ili) for any ¢ € X \ {0}, there exists a constant Ay € (0,00) such that
ApEH if 0< A<y, Ape K if A=)y, M EG if A> A

Furthermore the unit sphere S in X and 0G are homeomorphic by the map S 3 ¢ —
Ao € 0G.

Remark 1.2 Suppose that Q is an exterior domain of a starshaped compact set and that
u(€ HE () N LPTY(Q)) is a stationary solution of (1.1). Then we have the PohoZaev
identity (see [22] and see also (27, Theorem B.3]);

1 2 N N-2 2
(1.15) : /m(x )| Vuftdo = (51_1 - —2—) IVul,
where v is the outer unit normal vector to 9. Sincez-v < 0 on 00 and p+1 < 2N/(N-2),
(1.15) yields w = 0. Thus there exist no positive stationary solutions (in HZ,_(Q)NLP1(Q))
of (1.1) in this case. On the other hand, under the same assumption on Q, by Theorem
1.3, we see that G = K U H. These facts suggest that if (1.1) (with an exterior Q) admits
no positive stationary solutions (in HZ_(Q) N LP1(Q)), then G = K U H, that is, there

exist no global in time solutions satisfying Corollary 1.1-(iii).



Now let us explain the idea for the proof of the results above. Let ¢ € G and & €
(0,1/(p - 1)]. Put

(1.16) 2(y,8) = (L+ )" [St)¢l(z), y=(1+8)""?z, s=1log(l+1),

and

Qs) :=e*2Q, W= JOs) x {s}), W :=[](89(s) x {s}).

$>0 s>0
Then 2 satisfies
05z = -:;div (pVy2z) + Kz + eKs P in W,
(1.17) z2=0 on OW,
z(y,0) = ¢(y) > 0 in Q,

where K = —k(p — 1) 4+ 1(> 0) and p(y) = e¥/*/4. Multiplying z to (1.17) and integrating
over the domain Q(s), we have the energy inequality

(118) RE <= [ loPpdy

ds Qs)
(see Lemma 2.1). Here Fj is the modified energy defined by
(1.19) Fa(s) 1= Bu(s) + 7(5)
with

1 eKs
(1.20) E.(s) := -/ |V 2|2 pdy — —-/ 22pdy — / 2P pdy,
2 Jas) p+1Jag
(1.21) Ak(s) :::/ / (y - v(8))+10,5)2(T 7)*pdodr,

where v(s) is the outer unit normal vector to 8Q(s) and ; denotes the nonnegative part.
Observe that F(s) is monotone decreasing in the variable s by virtue of (1.18). On the
other hand, with the aid of (1.11) and the interior and the boundary Harnack inequalities
for parabolic equations, we can prove

(1.22) Ak(s) < o0, s> 0,

for some k € (0,1/(p —1)] (see Lemma 3.2). Then, by combining the decreasing property
of Fi(s) and bounds (1.22) together with the energy method as in [17], we obtain estimates
of [|z(s)ll2(2(s),pay) 20d [10s2(8)ll 22 (2(s),pdy) (Se€ Lemma. 2.2). By these estimates together
with the blow-up argument which is a modification of that in [16] and [10] (see Lemma
3.1 and Remark 3.1), we have a priori bounds for ||2(s)]||oc, Which lead to

lu(t)lleo = O(max{t=#,¢=/=D}) as ¢ — o0



for some B > 1 (see Lemma 3.2). Repeating this argument n-times, we obtain
lu(t)lloo = O(max{t#"%,t=/®"D}) = 0t~ F~) as t— o0

for large n, which completes the proof of Theorem 1.1. Furthermore, if the solution u
satisfies the asymptotics (1.12) of Theorem 1.1, then we can show that A(s) < oo with
k =1/(p—1) for s > 0. This enables us to define the energy Fy(s) with k = 1/(p — 1).
By taking advantage of the monotonicity of the energy Fy(s) with xk =1/(p — 1), we can
apply the similar argument as in [18] with some modifications, and prove Theorems 1.2

and 1.3.

In the rest of this paper we give only the proof of Theorem 1.1. In Section 2 we
introduce preliminary facts and give global bounds of the approximate solutions by using
the energy F.(s). In Section 3 we improve the arguments in [10] and [16], and prove
Theorem 1.1 by using the global bounds obtained in Section 2.

2 Global bounds for the global in time solutions

In this section we give some global bounds of the global in time solutions of (1.1). We
first recall the result of [26], which gives L°°-global bounds of solutions of (1.1).

Proposition 2.1 Let Q be a uniformly C** smooth domain Q in RN for some o € (0,1).
Let ¢ € L?(2) N L*®() and u be a global in time solution of (1.1) under the condition
(1.3). Then there exists a constant C such that

(2.1) sup [|u(t)]leo < C,
t>0

where C depends only on N, Q, p, ||¢llco, and ||@|l2.

Next we assume the boundedness of Ac(s) for some « € (0,1/(p — 1)], and prove the
monotonicity of the energy Fy(s).

Lemma 2.1 Assume the conditions (1.2)-(1.4) and ¢ € G. Let k € (0,1/(p — 1)] and 2
be a function defined by (1.16). If Ac(sp) < oo for some sg > 0, then there holds

d
(2.2) 9 ps) < - / 182)(w, $)Ppdy <0, s> s0.
dS Q(s)
In particular,
(23)  Fu(s) - Fu(s0) < - / / ((8:2)(y, 7)Ppdydr <0, s> so.
S0 Q(T)

Proof. Since

05z = % .Vz = yé”&,z on ow,



we have

d d
— Vz|?pdy = ——/ zdiv (pVz)dy
ds Q(s) | I ds Q(s) ( )

= —/ 0sz div (pV z)dy —/ zdiv (pVOsz)dy
(s) (s)

= -—/ Os2div (pVz)dy + Vz - VOszpdy
Q(s) Qs)
1

=3 / (y-v)|8,2|*pdo — 2 / D5z div (pVz)dy.
2 Jaq(s) Qs)

Then, by K > 0, (1.17), and (1.20), we have

20szpdy — eKS/ 2P0szpdy

Sps) < 220 \vatpdy -« /
Q(s)

ds 2ds Jogy) a(s)

1
< 3 / (v )18, pdo - / 1Ba2?pdy
89(s) Q(s)

1d

< _-=
- 4ds

M- | [Py
S

for all s > sg. This inequality together with (1.19) implies the inequalities (2.2) and (2.3),
and the proof of Lemma 2.1 is complete. O

Then we obtain global bounds for the function z by using the monotonicity of Fi(s):
Lemma 2.2 Assume the same conditions as in Lemma 2.1. Then there holds
(2.4) F.(s) >0, s > sp.

Furthermore there exists a constant C such that

(2.5) sup / 12(8)2pdy < CF(s0) < o0,
8250 J Q(s)
(2.6) / / 1(852)(y, s)|2pdyds < CFy(s0) < 0.
so  J8s)
Proof. Put

1 )
16) =5 | 1 qae)

We apply Proposition 2.3 in [5] to the zero extension of z, and have

N
/ Vals)Pody > X [ |x(s)Ppdy, s> o0.
Q(s) 2 Ja)



By Lemma 2.1 and (1.17), we obtain
£(5) = ()12 10 appa
$) = gl Eiaa o = 3 [ PP
f”(s) = / 2052pdy = / (~|Vz|2 + KZZZ) pdy + eKs/ zp+1pdy
Q(s) Q(s) (s)

-1
=~ DE()+ B [ [V~ wl=f] pay
8

>~ F) + 25 (5 - 527) £

for all s > sg. Then we can apply the same arguments as in [17, Lemma 2.3, Proposition
3.1], and obtain (2.4)—(2.6). O

By following (1.6), we introduce a function

(2.7) w(y,s) = A+ )V Vu(z,t), y=(1+1)""%z, s=Ilog(l+1).
Then w satisfies

6w—ldiv(Vw)+Lw+w” in W,

s P p Y p _ 1 )

(2.8) w=0 on OW,

w(y,0) = $(y) > 0 in Q.
Since w(y, s) = e~*z(y, s) with ' = —x +1/(p — 1) > 0, Lemma 2.2 yields;

Lemma 2.3 Assume the same conditions as in Lemma 2.1. Let w be a function defined
by (2.7). Then there exists a constant C such that

(2.9) / lw(s) 2edy < Ce®* Fi(s0),
Q(s)
8

(2.10) / / |(85) (y, 8)|2pdydr < Ce™*Fy(so),
s0 Y (s)

for all s > sg, where ¥ = -k +1/(p—1) > 0.

3 Proof of Theorem 1.1

In this section we obtain L™ estimates of the global in time solution of (1.1) satisfying
(1.11), and prove Theorem 1.1. We first prove the following lemma, which is proved by
the modification of the arguments in [10] and [16] (see also Remark 3.1). In what follows,
we write || - | = || - |L2(q(s),pdy) (s€€ (1.19) and (1.21)) for simplicity.



Lemma 3.1 Assume the conditions (1.2)-(1.4) and ¢ € G. Let w be a function defined
by (2.7). Let 0 < 59 < 51 < 8 be numbers satisfying

(3.1) sup [Jwllzeo(s)x(sy) = SUP llwllzoo((s)x{s})-
§1<8<S s0<s<S

Assume that there exists a constant [ > 1 such that

S
(3.2) / 18swl|3ds < 1 < oo,
s0
(3.3) sup Jlw(s)||? <1< .
s0<s<8

Then there ezxists a constant A, independent of w, S, and [, which satisfies

(3.4) sup ||lwl|ze(ae)x{s)) < ALY
s0<8<S

where a =2/(c(p—1)) and o =4p/(p —1) — (N +2) > 0.

Proof. The proof is by contradiction. We assume that there exist sequences {wy,} of
solutions of (2.8), {ln} C (1,00), and {Sp} C (s1,00) such that

5n
(3.5) / 105w ||2ds < I,
S0
(3.6) sup  |lwn(s)]1? < In,
80<8<Sn,
(3.7) sup  [lwnllzeo(@(s)x{sp) = SUP  lwnll oo (a(s) x{s})
§1<8<Sn 80<8<Sn
s "
(38) A 12® sup wnlleexisp = 0

Now take (yn,sn) C U, <s<s, (©2(s) x {s}) with

1
(3.9) Wn (Yn, Sn) > 5 sup_ [wnllze(o(s)x(sh)-
$0<8<Sn

Let A, be a constant such that
(3.10) )\%/(p—l)wn(yn’ sn) = 1.
Then, by (3.8)—(3.10), we have

(3.11) lim (¢P-Y)2 = 0.

n—oo

It is easily observed from (3.11) and I, > 1 that

(3.12) im A = 0.

n—0o0
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Put d,, = dist(yn, dQ(s,)). From now on, we consider the following three cases,
(4)  sup|A\/?yn] <o and  supdn/As| = oo,
n>1 n>1
(B)  sup|AY?yal <oco and sup|dn/An| < o0,
n>1 n>1

(C)  sup|A\/?ya| = oo.
n>1

Case (A) Taking a subsequence if necessary, we can assume, without loss of generality,
that

(3.13) nhrgo |dn/An| = oc0.
Put
By, 8) = APV, (yn + Any, 50 + A25) for (y,5) € Qn,
where
Qn=J @n(s) x{s}), Qn(s) =271 (Qs) = tn), In=(~(sn~ 50)/ A2, (Sn — 8n)/AZ).
s€l,

Then, by (3.9) and (3.10), we have

(3.14) Wn(0,0) = 1,

(3.15) [ @nllzoo(@n) = AZ P sup  |lw(s)l|zeoasy) < 2-
80<8<Sn

Furthermore w,, satisfies

2

A
+An—-——y“+2 "y-vywn+p B+ 85 in Qn.

(3.16) By, = Aty

Let K be a compact set on RN x (—00,0]. Since s, — so > s1 — so > 0, by (3.12) and

(3.13), we see that
K CQn

for sufficiently large n. Then, by (A), (3.12), and (3.15), we can apply the interior Schauder
estimates to 1, and see that there exists a constant 3 € (0, 1) such that

sup || Wn | czrs1+6/2(k) < 0.
neN

Therefore, by the Ascoli-Arzeld theorem, the diagonal argument, and (3.14), we see that
there exist a subsequence {@/} of {@,} and a nonnegative function @ in RN x (—o0,0]
such that

(3.17) nll{glo ||y, — "I’”C2+ﬂ,1+ﬁ/2(K) =0



for any compact subset K of RY x (—o0,0] and
(3.18) w(0,0) = 1.

Furthermore, by (3.5) and (3.11), we have

0 Sn
/ / |05y, |2dyds = A / / |8swn|?dyds
“An2(sn—50) Y Qn(s) so < Q(s)

Sn
<A / 185w (8)]|2ds < 1nAG = o(IL~2°C=1/2) 5 0

S0

as n — 00, and see that

(3.19) (8sw)(y,s) =0 in RY x (—00,0].

Therefore w is independent of the variable s, and @ = w(y) satisfies
w>0 and AD+dP =0 in RV

in view of (A), (3.12), (3.16), (3.17), and (3.19). Then the nonexistence result in [8] yields
w = 0 in RV, which contradicts (3.18).

Case (B) Taking a subsequence if necessary, we can assume, without loss of generality,

that d, /M, converges as n — co. Let g, € 8Q(s,) be such that d, = |y, — Jn| and R,
be an orthonormal transformation in RN that maps —exn = (0,---,0, —1) onto the outer
normal vector to 9Q(sy) at §,. Put

wn(y; 3) = Ai/(p_l)wn(yn + A Rny, $n + /\ELS)
for (y, s) € Qn, where

Qn=J @n(s) x {s}),  Qn(s) = \;'R;1(Q(s) — wn).

Then i, satisfies

AR ) A2
+)\nM~anywn+ %y, + W2 in Qp.

(3.20) Byt = Adiy, : —

Furthermore, taking a subsequence if necessary, we see that {),(s) approaches (locally)

the half space
H={y=(,yn):y e RV, yn > —d},

as n — 00, where d = lim,_,, dn/Ap. By the interior and the boundary Schauder -esti-
mates, we see that there exists a constant 8 € (0,1) such that

sup || x| i A < 00
neN | ICEHAIHAIA(QnNK)

11
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for any compact set K on H x (—00,0]. Therefore, by the similar argument as in the case
(A), we see that there exists a nonnegative function ¥ in H x (—o0,0] such that

’LD(0,0) =1,

0=0,0 =AW+’ in HX(-00,0], w=0 on OH X (—o00,0].
These relations together with the nonexistence result in [9] yields the same contradiction

as in the case (A).
Case (C) Taking a subsequence if necessary, we can assume that

3.21 A2y 151 n=1,2,....
n

Put .
Wh(y, s) = wn (y +e 2 yn, S)

for y € Q(s) —e~ "2y, and s > 0. Then W,, is also a global in time solution of (2.8) such
that
Wi (0, 8n) = Wn(Yn, Sn).-

Similarly to the case (A), putting
Wn(y, s) = ’\%/(p_l)wn()‘nya Sn + /\1213) for (y,s) € Qn,

we obtain

- - - A2 L -
(3.22) Bs Wy, = AW, + ,\ﬁg VyWot S Wa+ W2 in Qn

Furthermore there hold (3.12)—(3.15) with @, replaced by Wy,. Then, by the same argu-
ment as in the case (A), we see that there exist a subsequence {Wy} of {Wy}, a function
W, and a constant a € (0,1) such that

(3.23) TLILII;IO “W,ll - W”C2+a,1+a/2(K) =0

for any compact subset K of RV x (—oc,0] and

(3.24) W(0,0) = 1.

On the other hand, (C), (3.6), (3.12), and (3.21) imply that, for any R > 0, there exists
a constant C such that

0 . , Sn
(3.25) / / |Wy|?dyds = A / / |W,|?dyds
=27%(sn—s0) Y B(0,R) so J/B(0,MR)
Sn
-3 [7] wnPdyds
S0 B(e‘(""-’n)/i-’yﬂ,)\nR)

Sn
<agetmre [ [ fwnl?p(y)dyds
so B(e—(s=sn)/2y, A\, R)

< A7 e PO sup  flwn(s)|f? < 1S eV,
80<8<Sn



where 0/ =4/(p — 1) — (N + 2). By using (3.11) (and (3.12)), we obtain

(3.26) lim 1 AS e/ = 0,

Therefore, by (3.23), (3.25), and (3.26), we see that
(3.27) W=0 in RM x(-o0,0].
This contradicts (3.24). Thus the proof of Lemma 3.1 is complete. O

Remark 3.1 Lemma 3.1 for Q = RY with Al® replaced by some constant C has been
already given in [18, Lemma 3], without the assumption (3.3). However, in [18], the author
did not give the proof of (3.3) explicitly, and as is pointed out in [16], it seems that he didn’t
consider the case where A2y, — 0o as n — oo for the equation (3.16). In our proof of
Lemma 3.1, we exclude this possibility by using the assumption (3.3) (see case (C)). Also,
the similar lemma to Lemma 3.1 with Al® replaced by some constant C is given in [16]
for the study of the large time behavior of solutions of the heat equation with a nonlinear
boundary condition, but the assumption (3.3) is replaced by a different assumption, which
s not suited for our case.

Next we give upper bounds of the global in time solutions of (1.1) under the assumption
(1.11), by using the interior and the boundary Harnack inequalities and the gradient
estimates for the parabolic equations.

Lemma 3.2 Assume the conditions (1.2)-(1.4) and ¢ € G. Let u be a solution of (1.1)
satisfying (1.11). Then there holds the following:

(i) if k <3+ (N —2)/4, then Ac(s) < oo for any s > 0,

(ii) o

N -2 1

3.28 b —— < ——

(3.28) <7

then, for any 1 < B < 4/[—(N —2)p+ N + 2], it holds that 36 < 1/(p—1) and there exists
a constant Cy, depending on 3 and &, such that

(3.29) ()|l Loy < C1(1+1¢)75°
for all t > 0y
(iif) if
N -2 1
.30 _—
(3.30) o+ i =1’

then there exists a constant Cy such that
(3.31) ()]l oo (@) < Ca(1 +1¢) @D

forallt > 0.

13
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Proof. By (2.1), we see that u is a nonnegative solution of
Ou=Au+V(z,t)u in Q2 x(0,00), u=0 in 992 x (0,00),

with V(z,t) = u(z,t)P~! € L®(Q x (0,00)). Let R > 0 and 7 > 0. Then, by using the
same arguments as in [13] and {20}, we can prove that there exists a constant C; such that

(3.32) u(z,t) < Cru(zo,t + 1), z € QN B(0,R), t € (r,00).

In fact, we construct a chain of parabolic cylinders, which connects (z,t) with (zg,t + 7),
and then can prove the inequality (3.32) by the use of the interior and the boundary
Harnack inequalities for parabolic equations (for the boundary Harnack inequality, for
example, see [12] and [25]). The inequality (3.32) together with (1.11) implies that

u(z,t) < Co(l+1)7°, z € QN B(0,R), te€ (7,00),

for some constant C;. Then we apply the gradient estimates for parabolic equations to u
(see e.g. [19, Section 5, Chapter V]), and obtain

(3.33) |(Vu)(z,t)| < Ca(1+1)7%, (z,t) € 8Q x (27, 00),
for some constant C3. This implies that
(3.34) [(Vy2)(y, 5)| < Cae==8+1/D2 (y,5) € 8Q(s) x (s7,00),

for any x € (0,1/(p — 1)}, where s, =log(1 + 27). Then, by N > 3, (1.21), and (3.34), we
can find a constant Cy4 such that

= —é+3 ® _Ngio —6+3)
(3.35) Ac(s) < C%/ / |y|e2('° +2)spdad’r < 04/ e~ 25+2(r=0+3)s 5
s aN(s) 0

for all s > s;. Therefore, if kK < 6 + (N — 2)/4, then Ac(s) < oo for s > s;. By the
arbitrariness of 7, we have the conclusion of the statement (i).

Next we assume (3.28), and prove the statement (ii). The inequality 8§ < 1/(p — 1)
easily follows from (3.28) and the assumption on . We will prove the inequality (3.29).

Put
4

F= “(N-2)p+N+2

Let 8 and &' be numbers satisfying 1 < 8 < #/, 0 < § < 4, and &8’ = §B. Also put
k=09 + (N — 2)/4. Then we have

(> 1).

N -2 1

O<k<d < .
K + 1 Sp-1

By Lemma 3.2-(i), we can define the energy Fi(s) for s > 0. By Lemma 2.3, for any
so > 0, we obtain

8
f w(s)2pdy + / / |(85w) (9, 8)|2odydr < Cse?*Fu(so), s> s0 >0,
Q(s) s0 JN(s)



for some constant Cs, where ¥’ = —xk 4+ 1/(p — 1) > 0. Then Lemma 3.1 and (2.1) yield
the existence of the constant Cg satisfying

’
lw(s)llo <max{ sup [w(r)leo, sup [lw(r)lloo} < Coe™™*?
s0<7<s0+1 s0+1<7<s

for all s > s, where « is the constant given in Lemma 3.1. This implies that

() oo < Co(1+ £)2% ~51

for all t > tg := €% — 1. Then, since

/ 1 _ . 2 1
dan— Ty = 2 (p~1)< p— 1)
, 1
- ﬁ( o= p 1)
) N 2 1 '
- ‘ﬂ6+ﬂ( i —1)“p—1
= hﬁ,dl = —/65:
we have
(3.36) [u(t)lloo < Co(1+1t)~P2

for all ¢t > tg. Therefore, by (2.1) and (3.36), we have the conclusion of the statement (ii).
If ¢ satisfies (3.30), by Lemma 3.2-(i), we can define F,(s) with k = 1/(p — 1) for s > 0.
Then, by repeating the similar argument as above with x and &’ replaced by 1/(p—1) and
0, respectively, we can prove the statement (iii); thus the proof of Lemma 3.2 is complete.
a

Now we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. Assume (1.11). If

sy -2, 1
4 p—1’
then, by Lemma 3.2-(iii), we have the inequality (1.12). If not, take 8 € (1,4/[-(N —
2)p+ N + 2]) and take a smallest natural number n satisfying
N -2 1 N -2 1
< ) > .
4 ~“p-1 pro+ 4 p—1

Since d + (N —2)/4 < 1/(p — 1), in view of Lemma 3.2-(ii), we have

(3.38) lu(®)leo < C1(1+1)7%, ¢t >0,

(3.37) g s+

for some constant Cj, in particular, limsup,_, ., t**®u(zo,t) < co. Repeating this argument
n-times, we see that limsup, ., t# %u(zo,t) < co. This relation together with (3.37)
implies that the assumption of Lemma 3.2-(iii) with 4 replaced by 8™¢ is satisfied. Hence
we have the inequality (1.12), and the proof of Theorem 1.1 is complete. O
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