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1 Assumptions
Let $(M, g)$ be a connected and complete Riemannian manifold, and we consider the
Schr\"odinger operator

$H=H_{0}+V$ ; $H_{0}=- \frac{1}{2}\triangle$

on the Hilbert space $\mathcal{H}=L^{2}(M)=L^{2}(M, (\det g)^{1/2}dx)$ . The Laplace-Beltrami opera-
$tor-\triangle$ is defined in local coordinates by

$-\triangle=p_{i}^{*}g^{ij}p_{j}=(\det g)^{-1/2}p_{i}(\det g)^{1/2}g^{ij}p_{j}$ ,

where

$p_{i}=-i\partial_{i},$ $g=g_{ij}dx^{i}\otimes dx^{j},$ $\det g=\det(g_{ij})$ , $(g^{ij})=(g_{ij})^{-1}$

Under the following Conditions 1. $1-1.4H$ is essentially self-adjoint on $C_{c}^{\infty}(M)$ . We
will denote the self-adjoint extension also by $H.$

Condition 1.1 (End structure). There exists a relatively compact open set $O\Subset M$

with smooth boundary $\partial O$ such that the exponential map restricted to outward normal
vectors on $\partial O$ :

$\exp_{0}:=\exp|_{N+\partial O}:N^{+}\partial Oarrow M$

is diffeomorphic onto $E:=M\backslash \overline{O}.$

A component of $E$ is called an end, and such $M$ a manifold with ends, cf. [Kl].
Then there exists a function $r\in C^{\infty}(M)$ such that

$r(x)=dist(x, O) , x\in E.$

Note that $r$ is not uniquely determined on $O.$

Recall that the geometric Hessian by $\nabla^{2}f\in\Gamma(T^{*}M\otimes T^{*}M)$ for $f\in C^{\infty}(M)$ is
defined in local coordinates by

$(\nabla^{2}f)_{ij}=\partial_{i}\partial_{j}f-\Gamma_{ij}^{k}\partial_{k}f$ ; $\Gamma_{ij}^{k}=\frac{1}{2}g^{kl}(\partial_{i}g_{lj}+\partial_{j}g_{li}-\partial_{l}g_{ij})$ . (1.1)
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Condition 1.2 (Mourre type condition). There exist $\delta\in(0,1]$ and $r_{0}\geq 0$ such
that for $x\in E$ with $r(x)\geq r_{0}$

$\nabla^{2}r^{2}\geq(1+\delta)g$ , (1.2)

where the ineuqality is understood as that for quadratic forms on fibers of $TM,$

Condition 1.3 (Quantum mechanics bound). There exists $\kappa\in(0,1)$ such that

$|d\triangle r^{2}|^{2}=g^{ij}(\partial_{i}\triangle r^{2})(\partial_{j}\triangle r^{2})\leq C\langle r\rangle^{-1-\kappa}$ ; $\langle r\rangle=(1+r^{2})^{1/2}$ . (1.3)

The quantities in Conditions 1.2 and 1.3 appear in the Morre-type commutator
computations: If we define

$A= i[H_{0}, r^{2}]=\frac{1}{2}\{(\partial_{i}r^{2})g^{ij}p_{j}+p_{i}^{*}g$毎 $(\partial_{j}r^{2})\}$ , (1.4)

then

$i[H_{0}, A]=p_{i}^{*}(\nabla^{2}r^{2})^{ij}p_{j}+\frac{i}{4}(\partial_{i}\triangle r^{2})g^{ij}p_{j}-\frac{i}{4}p_{i}^{*}g^{ij}(\partial_{j}\triangle r^{2})$.

Condition 1.4 (Short-range potential). The potential $V\in L^{\infty}(M;\mathbb{R})$ satisfies for
some $\eta\in(0,1]$

$|V(x)|\leq C\langle r\rangle^{-1-\eta}$ . (1.5)

2 Free propagator
Set $K(t, x)=r(x)^{2}/2t$ and let $A$ be as defined by (1.4). We define the free propagator
$U(t):\mathcal{H}arrow \mathcal{H},$ $t>0$ , by

$U(t)=e^{iK(t,\cdot)}e^{-i\frac{\ln t}{2}A}.$

Note that the function $K$ is a solution to the Hamilton-Jacobi equation

$\partial_{t}K=-\frac{1}{2}g^{\dot{\iota}\dot{\gamma}}(\partial_{i}K)(\partial_{j}K)$ on E. (2.1)

In fact, $r$ satisfies the eikonal equation

$|\nabla r|^{2}=g^{ij}(\partial_{i}r)(\partial_{j}r)=1$ on $E.$

On the other hand, $e^{-i\frac{\ln t}{2}A}$ is written explicitly by

$e^{-i\frac{\ln t}{2}A}u(x)=\exp(l^{t}\frac{1}{4s}(-\triangle r^{2})(\omega(s, x))ds)u(\omega(t, x))$ , (2.2)

where the flow $\omega=\omega(t, x),$ $(t, x)\in(0, \infty)\cross M$ , is given by

$\partial_{t}\omega^{i}=-\frac{1}{2t}g^{ij}(\omega)(\partial_{j}r^{2})(\omega) , \omega(1, x)=x$ . (2.3)
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In fact, if we differentiate $e^{-i\frac{\ln t}{2}A}u$ in $t$ , then we obtain a transport equation and thus
(2.2) by solving the equation. By (2.2) we can see that $e^{-i\frac{\ln t}{2}A}$ is the geodesic dilation
on $\mathcal{H}$ with respect to $r$ . In fact we note that, using the relation - $\triangle f=g^{ij}(\nabla^{2}f)_{ij}=$

tr $(\nabla^{2}f)$ ,

$\exp(l^{t}\frac{1}{4s}(-\triangle r^{2})(\omega(s, x))ds)=J(\omega(t, x))^{1/2}(\frac{\det g(\omega(t,x))}{\det g(x)})^{1/4}$ (2.4)

and that (2.3) is solved for $(t, x)\in(0, \infty)\cross E$ by

$\omega(t, x)=\exp_{0}[\frac{1}{t}(\exp_{0})^{-1}(x)],$

and for $(t, x)\in(O, \infty)\cross O$ by something different and complicated. The first factor in
the right-hand side of (2.4) is the Jacobian for $\omega(t, \cdot)$ , and the second is the change of
density for $\omega(t, \cdot)$ .

In particular, we learn that $U(t)$ is unitary on both

$\mathcal{H}_{aux}$ $:=L^{2}(E)\subset \mathcal{H}$ and $(\mathcal{H}_{aux})^{\perp}=L^{2}(O)\subset \mathcal{H}.$

3 Main results
Theorem 3.1 (Positive eigenvalues, [Do, K2, IS2]). Suppose Conditions 1.1-1.4.
Then the positive eigenvalues of $H$ are absent: $\sigma_{pp}(H)\cap(0, \infty)=\emptyset.$

Theorem 3.2 (Wave operator, [ISl]). Under Conditions 1. 1-1.4 there exist the
strong limits

$\Omega_{+}:=s-\lim_{tarrow+\infty}e^{itH}U(t)P_{aux}, \tilde{\Omega}_{+}:=s-\lim_{tarrow+\infty}U(t)^{*}e^{-itH}P_{c},$

where $P_{aux}$ is the orthogonal projection onto $\mathcal{H}_{aux}$ , and $P_{c}=\chi_{(0,\infty)}(H)$ . Moreover the
wave operator $\Omega_{+}$ is complete, $i.e.$

$\tilde{\Omega}_{+}=\Omega_{+}^{*}, \Omega_{+}^{*}\Omega_{+}=P_{aux}, \Omega_{+}\Omega_{+}^{*}=P_{c}.$

We denoted the characteristic function of $\mathcal{O}\subset \mathbb{R}$ by $\chi_{\mathcal{O}}$ . It follows by a standard
local compactness argument that the negative spectrum of $H$ (if not empty) consists
of eigenvalues of finite multiplicities accumulating at most at zero.

Corollary 3.3 (Intertwining property and spectrum). One has the intertwining
property:

$\Omega_{+}^{*}H\Omega_{+}=\frac{1}{2}r^{2}\mathcal{P}_{aux}.$

In particular, the singular continuous spectrum of $H$ is absent, i. e., $\sigma_{sc}(H)=\emptyset$ , and
the continuous spectrum $\sigma_{c}(H)=[0, \infty)$ .
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The following corollary implies the existence of “the asymptotic speed” For self-
adjoint operators $B$ and $B_{i},$ $i=1,2,$ $\ldots$ , we denote

$B= s-C_{c}(\mathbb{R})-\lim B_{i}iarrow+\infty,$

if for any $f\in C_{c}(\mathbb{R})$ the following equality holds:

$f(B)= s-\lim_{iarrow+\infty}f(B_{i})$ .

Corollary 3.4 (Asymptotic observables). In the continuous subspace $\mathcal{H}_{c}(H)$ there
exists $the*$ -representation

$\omega_{\infty}^{+}:=s-C_{c}(M)-\lim e^{itH}\omega(t, \cdot)e^{-itH}tarrow+\infty$. (3.1)

In particular, the asymptotic speed

$r( \omega_{\infty}^{+})=s-C_{c}(\mathbb{R})-\lim e^{itH}\frac{r(\cdot)}{t}e^{-itH}tarrow+\infty$

exists as a self-adjoint opemtor on $\mathcal{H}_{c}(H)$ . This operator is positive with zero kemel.
Moreover, for all $\varphi\in C_{c}(M)$

$\varphi(\omega_{\infty}^{+})=\Omega_{+}M_{\varphi}\Omega_{+}^{*}, H_{c}=2^{-1}r(\omega_{\infty}^{+})^{2}.$

Here $M_{\varphi}$ denotes the multiplication operator by $\varphi$ . In local coordinates $\omega(t, \cdot)$ has
$d$ (dimension of $M$) components which we can substitute for any $f\in C_{c}(M)$ , so the
limit in (3.1) makes sense.

Remarks 3.5. 1. Theorem 3.1 is generalized under weaker conditions including
asymptotically hyperbolic manifolds, [IS2].

2. This type of the free propagator in Theorem 3.2 appeared first in [Y]. For later
developments refer to [$DeG$ , CHS, HS].

3. The above results are independent of choice of $r$ on $O.$

4. As for Theorem 3.1, Conditions 1.2-1.4 are optimal in the sense that we can
construct counterexamples to the existence of $\Omega_{+}$ under the slight relaxation of
the conditions allowing either $\delta=0$ in (1.2), $\kappa=0$ in (1.3) or $\eta=0$ in (1.5).

4 Generator of the free propagator
We briefly see why the free propagator $U(t)$ works as a comparable system, and see
also the relationship with the previous result on the wave operators on manifolds with
ends, [IN], where the radial Laplacian was chosen as the free operator.
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Let $G(t)$ be the time-dependent generator of $U(t)$ :

$\frac{d}{dt}U(t)=-iG(t)U(t)$ .

By a formal computation we can see

$G(t)=- \partial_{t}K+\frac{1}{2}\{(\partial_{i}K)g^{ij}(p_{j}-\partial_{j}K)+(p_{i}-\partial_{i}K)g^{ij}(\partial_{j}K)\},$

so that

$H-G(t)=V+W(t)+\alpha(t)$ ; (4.1)

$W(t)= \frac{1}{2}(p_{i}-\partial_{i}K)^{*}g^{ij}(p_{j}-\partial_{j}K)$ ,

$\alpha(t)=\alpha(t, x)=(\partial_{t}K)+\frac{1}{2}g^{ij}(\partial_{i}K)(\partial_{j}K)$ .

The right-hand side of (4.1) is interpred to be short-range. In fact the first is so by
Condition 1.4; The second term is so from a classical point of view in the sense that
for any nontrapped classical trajectory $(x(t), p(t))$

$0 \leq\frac{1}{2}g^{ij}(x(t))\{p_{i}(t)-\partial_{i}K(t, x(t))\}\{p_{j}(t)-\partial_{j}K(t, x(t))\}\leq C\langle t\rangle^{-1-\delta}$ , (4.2)

cf. the fact that $K$ is a solution to the Hamilton-Jacobi equation; As for the third term
this is due to (2.1): For any $N>0$

$|\alpha(t, x)|\leq C_{N}t^{-2}\langle r\rangle^{-N}$

In the proof of Theorem 3.2 the translation of the classical estimate (4.2) into the
quantum mechanics plays an essential role.

We remark that, since

$G(t)= \frac{1}{2}p_{r}^{*}p_{r}-\frac{1}{2}(p_{r}-\frac{r}{t})^{*}(p_{r}-\frac{r}{t})$ on $E$ ; $p_{r}:=(\partial_{k}r)g^{kl}p_{l},$

which we can see with ease in the geodesic spherical coordinates, $G(t)$ differs from
the one-dimensional radial Laplacian by a short-range term, cf. [IN]. Note that $r(t)/t$

classically approaches the radial momentum $p_{r}(t)_{\tau}$ cf. (4.2).

5 Example: Ends of warped-product type
Here we give an example of a manifold that satisfies Conditions 1.1-1.4.

Let $V=0$ , and suppose that there exists a relatively compact open subset $O\Subset M$

such that isometrically the closure $\overline{E}$

$:=M\backslash O\cong[0, \infty)\cross S$ for some $(d-1)$-dimensional
manifold $S$ , and that

$g=dr\otimes dr+f(r)h_{\alpha\beta}(\sigma)d\sigma^{\alpha}\otimes d\sigma^{\beta}$ ; $g_{rr}=1,$ $g_{r\alpha}=g_{\alpha r}=0$ , (5.1)
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where $(r, \sigma)\in[0, \infty)\cross S$ denotes local coordinates and the Greek indices run over
2, . . ., $d.$

Then Condition 1.1 is automatically satisfied. By (1.1), it follows

$(\nabla^{2}r^{2})_{rr}=2, (\nabla^{2}r^{2})_{r\alpha}=(\nabla^{2}r^{2})_{\alphar}=0, (\nabla^{2}r^{2})_{\alpha\beta}=rf’h_{\alpha\beta}.$

Thus, if we set $f=e^{2\varphi},$ $(1.2)$ is equivalent to

$2r\varphi’\geq 1+\delta$ , (5.2)

and, by $\triangle r^{2}=g^{ij}(\nabla^{2}r^{2})_{ij}=2+2(d-1)r\varphi’,$ $(1.3)$ to

$|(r\varphi’)’|\leq C\langle r\rangle^{-(1+\kappa)/2}$ (5.3)

We see that the inequalities (5.2) and (5.3) allow, for example,

$f(r)=f_{1,\mu}(r)=r^{2}\langle r\rangle^{2\mu}, \mu\geq-(1-\delta)/2,$

$f(r)=f_{2,\nu}(r)=r^{2}e^{-2}\exp(2\langle r\rangle^{\nu}) , 0\leq\nu\leq(1-\kappa)/2.$

Note that the Euclidean space corresponds to $f(r)=f_{1,0}(r)=f_{2,0}(r)=r^{2}$ . We also
note that in [IS2] the absence of embedded eigenvalues is discussed for a wider class of
manifolds with ends including $f_{1,\mu}$ with $\mu>-1$ and $f_{2,\nu}$ with $0\leq\nu\leq 1.$
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