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Scattering theory from a geometric view point
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This article is based on the author’s recent joint works with Erik Skibsted [IS1, IS2].

1 Assumptions

Let (M, g) be a connected and complete Riemannian manifold, and we consider the
Schrodinger operator

1

on the Hilbert space H = L*(M) = L?(M, (det g)*/?dz). The Laplace-Beltrami opera-
tor —A is defined in local coordinates by

—A = p}gp; = (det g) 7/ pi(det g) /2 p;,
where
pi = —i0; g = gij dz' @ dz?, det g = det (g;5), (gij) = (gij)'l.

Under the following Conditions 1.1-1.4 H is essentially self-adjoint on C®(M). We
will denote the self-adjoint extension also by H.

Condition 1.1 (End structure). There exists a relatively compact open set O € M
with smooth boundary 0O such that the exponential map restricted to outward normal
vectors on 00:

eXpp := exp |y+o0: NTOO — M

is diffeomorphic onto E := M \ O.

A component of E is called an end, and such M a manifold with ends, cf. [K1].
Then there exists a function » € C*°(M) such that

r(z) = dist(z,0), z € FE.

Note that r is not uniquely determined on O.
Recall that the geometric Hessian by V2f € I(T*M ® T*M) for f € C*(M) is
defined in local coordinates by

1
(V2f)is = 0:0;f —T50cf; T = 59“(@'% + 0;g1 — 019i5). (1.1)
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Condition 1.2 (Mourre type condition). There exist § € (0,1] and 7o > 0 such
that for z € E with r(z) > ry

Vit > (1 +4)g, (1.2)
where the ineuqality is understood as that for quadratic forms on fibers of T M,
Condition 1.3 (Quantum mechanics bound). There exists x € (0, 1) such that
|dAP?|? = ¢¥(8;A7%)(8; A7) < C{r)~1="; (r) = (1 + )2 (1.3)

The quantities in Conditions 1.2 and 1.3 appear in the Morre-type commutator
computations: If we define

. 1 ij x_ij
A= 1[[—[0,7"2] = —2—{(6,-r2)g Ip; +pigj(8jr2)}, (1.4)
then
. % (2, 2\ij i 2\ ij 1, 4 2
i[Ho, A] = pi(V°r*)p; + (8:5r%)g"p; — 10797 (8; 7).

Condition 1.4 (Short-range potential). The potential V € L*(M;R) satisfies for
some 7 € (0, 1]

V(@) < C{r)~ . (1.5)

2 Free propagator

Set K(t,z) = r(z)?/2t and let A be as defined by (1.4). We define the free propagator
Ult): H—>H,t>0, by

Ut) = i (t)-i5 A
Note that the function K is a solution to the Hamilton-Jacobi equation

8K = —%gij(aiK)(ajK) on E. 2.1)

In fact, r satisfies the eikonal equation
|Vr|? = ¢g9(0r)(07) =1 on E.
On the other hand, e~i'3*4 is written explicitly by
sint t 1
e 7 Ay(z) = exp(/ —(=Ar?) (w(s, z)) ds)u(w(t,x)), (2.2)
1 4s
where the flow w = w(t, z), (¢, z) € (0,00) x M, is given by

i_ L (8.2 —
ow' = — 59 (w)(0;r)w), w(l,z)==z. (2.3)



In fact, if we differentiate e~ 4y in t, then we obtain a transport equation and thus

In

(2.2) by solving the equation. By (2.2) we can see that e~z 4 is the geodesic dilation
on ‘H with respect to r. In fact we note that, using the relation —Af = ¢g"¥(V2f);; =
tr (V2f),

det g, 2))y 4

exp ( /1 t 4—:Lg(—Ar2)(w(s,x)) ds) = J(w(t, x))1/2( detga) (2.4)

and that (2.3) is solved for (¢,z) € (0,00) X E by

w(t, ) = expo 3 (ex00) ™ (2)]

and for (¢, z) € (0,00) x O by something different and complicated. The first factor in
the right-hand side of (2.4) is the Jacobian for w(t, -), and the second is the change of
density for w(t, -).

In particular, we learn that U(t) is unitary on both

Haux = L*(E) CH and (Hauw)™ = L*(0) C H.

3 Main results
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Theorem 3.1 (Positive eigenvalues, [Do, K2, IS2]). Suppose Conditions 1.1-1.4.

Then the positive eigenvalues of H are absent: opp(H) N (0,00) = @.

Theorem 3.2 (Wave operator, [IS1]). Under Conditions 1.1-1.4 there exist the
strong limits

Q4 = s-lim e U (t) Py, §+ = s-lim U(t)e *H P,

t—r+00 t—+4o00

where Pyux 1s the orthogonal projection onto Haux, and P = x(0,00)(H). Moreover the
wave operator (), is complete, i.e.

Qo =, 0 =Py, U =P

We denoted the characteristic function of O C R by xo. It follows by a standard
local compactness argument that the negative spectrum of H (if not empty) consists
of eigenvalues of finite multiplicities accumulating at most at zero.

Corollary 3.3 (Intertwining property and spectrum). One has the intertwining
property:

1
Q3 HQ = 57" Pasx

In particular, the singular continuous spectrum of H is absent, i.e., os.(H) = &, and
the continuous spectrum o.(H) = [0, 00).
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The following corollary implies the existence of “the asymptotic speed”. For self-
adjoint operators B and B;, i = 1,2,..., we denote

B = 5-C,(R)-lim B;,

1—+00
if for any f € C.(R) the following equality holds:

f(B) = s-lim f(B;).

1—+00

Corollary 3.4 (Asymptotic observables). In the continuous subspace Hc.(H) there
exists the x-representation

wl = s-Co(M)-lime™ w(t, -)e A, (3.1)

t—+4o00

In particular, the asymptotic speed
r(wh) = s-Co(R)-lime*¥ r() o—itH
t—+o00

ezists as a self-adjoint operator on H.(H). This operator is positive with zero kernel.
Moreover, for all p € Cc.(M)

owk) = QM %, H.=2"'r(wk)

Here M, denotes the multiplication operator by ¢. In local coordinates w(t,-) has
d (dimension of M) components which we can substitute for any f € C.(M), so the

limit in (3.1) makes sense.

Remarks 3.5. 1. Theorem 3.1 is generalized under weaker conditions including
asymptotically hyperbolic manifolds, [IS2].

2. This type of the free propagator in Theorem 3.2 appeared first in [Y]. For later
developments refer to [DeG, CHS, HS].

3. The above results are independent of choice of 7 on O.

4. As for Theorem 3.1, Conditions 1.2-1.4 are optimal in the sense that we can
construct counterexamples to the existence of {2, under the slight relaxation of
the conditions allowing either § = 0 in (1.2), k =0 in (1.3) or n = 0 in (1.5).

4 Generator of the free propagator

We briefly see why the free propagator U(t) works as a comparable system, and see
also the relationship with the previous result on the wave operators on manifolds with
ends, [IN], where the radial Laplacian was chosen as the free operator.



Let G(t) be the time-dependent generator of U (%):

d

ZU(t) = —-iGOU(?).

By a formal computation we can see
G(t) = ~0K + 5{(BK)g" (ps — ) + (pi — BK)g ()},

so that

G(t) = V + W(t) + a(t); (4.1)

W(t) = ( iK)"g" (p; — 0;K),

a(t) = alt, ) = (BK) + %g“(&K)(c’?,-K).

The right-hand side of (4.1) is interpred to be short-range. In fact the first is so by
Condition 1.4; The second term is so from a classical point of view in the sense that
for any nontrapped classical trajectory (z(t), p(t))

0< %gij(:c(t)){pi(t) — 0;K(t, m(t))}{pj(t) - 0;K(t, :U(t))} < C(t)_l_‘s, (4.2)

cf. the fact that K is a solution to the Hamilton-Jacobi equation; As for the third term
this is due to (2.1): For any N >0

la(t, z)| < COnt~2(r)~N,

In the proof of Theorem 3.2 the translation of the classical estimate (4.2) into the
quantum mechanics plays an essential role.
We remark that, since

1 1 T\ * T
=_*T___  — — . — — E-: . = kl ,
o) =spim—5(m—2) (- =%) on B pei= (Br)g"m
which we can see with ease in the geodesic spherical coordinates, G(t) differs from
the one-dimensional radial Laplacian by a short-range term, cf. [IN]. Note that r(t)/¢
classically approaches the radial momentum p,(¢), cf. (4.2).

5 Example: Ends of warped-product type

Here we give an example of a manifold that satisfies Conditions 1.1-1.4.

Let V =0, and suppose that there exists a relatively compact open subset O € M
such that isometrically the closure £ := M\O 2 [0, 00) x S for some (d—1)-dimensional
manifold S, and that

g=dr ®dr + f(r)hes(c)do*® do?; g =1, gra = gor =0, (5.1)
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where (r,0) € [0,00) x S denotes local coordinates and the Greek indices run over
2,...,d.
Then Condition 1.1 is automatically satisfied. By (1.1), it follows

(V) =2, (Ve = (Vr)ar =0, (V2r?)ap =1 f'hap.
Thus, if we set f = e%#, (1.2) is equivalent to
2r¢' > 144, (5.2)
and, by Ar? = g¥(V?r?);; =2+ 2(d - 1)y, (1.3) to
|(r)| < Cr) 7072, (53)
We see that the inequalities (5.2) and (5.3) allow, for example,

f(r) = fra(r) =r*(n)*, p2=-(1-96)/2
F(r) = fau(r) =r’eexp (2(r)"), 0<v <(1-k)/2.
Note that the Euclidean space corresponds to f(r) = fio(r) = foo(r) = r2. We also

note that in [IS2] the absence of embedded eigenvalues is discussed for a wider class of
manifolds with ends including fi, with 4 > —1 and fo, with0 < v < 1.
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