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1. INTRODUCTION

In this paper we consider the Cauchy problem for homogeneous,
isotropic, hyperelastic wave equations :

(1.1) (82 — L)u(t,z) = F(Vu, V), (t,z) € (0,T) x R,
(1.2) u(0,z) = ef(z), (Gu)(0,z) = eg(z), =z € R?,

where u(t,z) = *(u1(t, z), ua(t, 7), us(t, 7)) is the displacement vector
from the configuration, Vu = (diu, du, dsu), 8; = 8/0z; (j = 1,2,3),
and
L=cA+(cd—c)graddiv, A = divgrad

with material constants c;, ¢ satisfying 0 < ¢y < ¢;. Here grad and
div stand for the spatial gradient and divergence, respectively. Besides,
f, g are smooth functions with compact support and ¢ is a positive
parameter. In addition, the nonlinearity is expressed as

(1.3) F(Vu, V*u) =A, grad (divu)? + A, grad |rotul?
+ Az rot ((divu)(rotu)) + N(u).

Here, Ay, A, and Aj; are real constants and each components of N(u)
is a linear combination of the so-called null-forms. (for the detail, see
Appendix below; also [1]).

We denote the lifespan of the problem (1.1)-(1.2) by 7. which is the
supremum of all 7" > 0 such that the problem admits a unique smooth
solution in [0,7) x R3. In John [10] the lower bound for the lifespan
T. > €°/¢ with a positive number C was obtained for sufficiently small
£ (see also [13]). Moreover, if A; = 0, then the global solvability of the
problem for sufficiently small initial data was proved by Agemi [1] and
Sideris [14], independently.

On the other hand, concerning the Cauchy problem for scalar wave
equations:

(1.4) (82 — A(t,z) = Z gin(8;0)(BkOw), (t,z) € (0,T) x R3,

7,k,=0

(1.5) v(0,z) =eg(z), (Bw)(0,z) = ey(x), =€ R?,
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not only the estimate of the lifespan 7. of this problem from below
but also much precise information of T, are known (here, g;x are real
constants and ¢, ¥ € C(R?)). More explicitly, it was independently
shown by Hérmander [5] and John [9] that

(1.6)
~ ~ -1
liminf elog T, > (max {~271G(6) 62R[, ¥](s,6); s € R, O € 5 }) ,

e—+0

provided the right-hand side is a finite number. Here, the functions G
and R[¢, 1] are defined by

3
GO) = g 006 with 6= —1, (61,62,685) € S*,

5.k, 1=0
716, 1(5,6) = = (RWI(5.6) ~ ORI(5,0), (5,6) R x 5,

where R[¢] is the Radon transform of ¢, that is,

(1.7) R[¢](s,0) = $(y)dSy, (s,0) € R x S

0-y=s
The counter part of the estimate (1.6) has been studied by Alinhac
[2]. We remark that G = 0 on $? is equivalent to the null condition
introduced by Klainerman [12], and the condition implies T; = +00
(see also [3]). While, R[¢, %] = 0 on R x S? is equivalent to g = =0
on R3.

Therefore, a natural question is if it is possible to derive an analogous
estimate to (1.6) for the lifespan T, of the problem (1.1)-(1.2) or not.
The difficulty for dealing with the elastic wave equation (1.1) comes
from the fact that the equation has two distinct propagation speeds.
For this, the hyperbolic boosts z;0; + t0; do not work well, and con-
struction of a nonlinear approximate solution is not straightforward as
in the case of the wave equation. Nevertheless, by using a higher order
approximation (see (5.36) below) together with careful treatments of
the decay factor (1+]|c;t—|z||)~*, we are able to overcome the difficulty.

In order to state our result, we define

(18) Rilf,al(s.0) = 1= (T'Rls)(s,6) — BRISN(5,8)) (i=1,2)

for (s,0) € RxS?, where the Radon transform R[f] of f = *(f1, f2, f3) €
(C(R?))? is given by R[f] = Y(R[fi], R[f2], R[fs]). We note that

-~

Rilf, 9] is bounded on R x S? and compactly supported in s for f,



g € (CP(R3))°. In particular, if

(1.9) po(s,0) == 0 - Rilf, g](s,0)

is not identically zero on R x S?%, then 8%py(s, ) takes both positive
and negative values. Therefore, one can define a positive number

(1.10) 7, = (max{—cy’A; &po(s,0); s € R, € })_1>

provided A; # 0 and py Z 0 on R x S2.
Then, our main result is the following:

Theorem 1.1. Let f, g € (CP(R3))°. If Ay # 0 and pp # 0 on
R x S?, then we have

(1.11) limJir%felogTE > T,.

Remark 1.2. (i) Unfortunately, we do not have the estimate in the
opposite direction to (1.11), that is to say

(1.12) limsupelog7, < 7
e—+0

in general. But, when the initial data take the following form :
f(z)=¢(r)z, g(z)=y(r)z, z€R?,

(1.12) was shown by John (8], provided A; # 0 and the corresponding
po does not identically vanish on R x S2. Hence, the lower bound (1.11)
seems to be optimal.

(i) The number 7, is related to the lifespan of the following Cauchy
problem for p = p(s,0,7) :

(1.13) 2¢3 8,p+ A1(8sp)* =0 in R x S% x [0,7,.),
(1.14) p(s,60,0) = po(s,0) for (s,8) € R x S°.

Indeed, it is known that the solution to the above problem uniquely exists
in R x S? x [0, 7.) (for the proof, see Lemma 6.5.4 with G(w) = 2A,/c?

This paper is organized as follows. In the next section we gather
notation. In Section 3 we give some preliminaries. Baisc results on the
linear elastic wave equation are introdued in Section 4. An approxi-
mate solution is constructed in Section 5, and useful estimates for the
approximation are established in Proposition 5.5. Outline of the proof
of Theorem 1.1 is given in Section 6. In Appendix a way to deduce
(1.1) is discussed.
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2. NOTATION

In this section, we introduce notation which will be used throughout
this paper. We denote r = |z| and w = z/r. We set 0, = Z;Ll(xj/r)aj
and O = (0, 0,,03) = z A*(d1, 02, 03), where A stands for the outer
product in R3. Then we have

(2.1) t(8y,09,03) = wO — 1w A O.
We denote Z = {Zy, Z,, ..., 2} = {0;, 01, 0a,03,01,0,,03}. We write
Ze for Z§° - -+ Zg® with a multi-index o = (ag, ..., as). Note that we

have [Z,,02 — A] = 0 (a = 0,...,6), where we have set [A,B] =
AB — BA. _ o _ o

We also use Z = {Z(), Zl, ceey Zﬁ} = {BtI, 81], 62], 331, 01, 02, 03}
for R3-valued functions, where I is the 3 x 3 identity matrix and

(2.2) O0;=0;I+U; (j=1,2,3)
with
00 0 00 -1 0 10
Uip=0 0 1], Ub=[00 0 |, U= -100
0 -10 10 0 0 00

The vector fields 5j is closely related to the fact that if u(¢,z) solves
(1.1), then so does A~1u(t, Az) for any orthogonal matix A. This obser-
vation leads to the good algebraic relations [Z;, L] =0 fora =0,...,6.
We write Z¢ for Z{,"O e Zg‘ﬁ with a multi-index a = (ay, . . ., ag).

For functions of (s,6,7) € R x S? x [0,00), we denote the differen-
tiation with respect to s, 8 and 7 by

(23) AO = 881 Al = 01, A2 = 02, A3 = 03, A4 = 87')

where differential operators o; on S? are (formally) defined by (01, 02,03) =
OAY(Bp,, Bs,, Os,). We write AP for A% ... A% and A7 = A - - - AP with
multi-indeceis 8 = (B, ...,0s) and v = (70, -.,73).

For a non-negative integer k, and a real-valued smooth function

o(t, z), we define
lo(t,z)lk = D [(Z%)(t,2)l, 180t @)l = D D 1(Z2%0ap)(t,2)
|| <k ja|<k a=0

For a R3-valued function u(t,z), we use the same notation |u(t, z)|k
and |0u(t, z)|, with Z replaced by Z.



For v > 0, a non-negative integer k, and ¢ € S(R3?), we define
1/2

l6lles = | sup D~ (1+2f) 856 (=)?

3
2ER% o)<k

Here, S(R?) is the Schwartz class, the set of rapidly decreasing real-
valued functions. Besides, for f, g € (S (RS))3, we set

(2.4) Aeulf, 9] = Z i llk+1 + llgillen) -

As usual, various positive constants which may change line by line
are denoted just by the same letter C' throughout this paper.

3. PRELIMINARIES

First we recall basic properties of the Radon transform discussed
in the section 4 of [11] for the case of n = 3 and x = 1 (note that
when x = 1, S, (R?) and ||¢||y,. in [11] become to S(R3?) and |||,
respectively). It holds that

(31) 8,Rl¢](5,6) =R[(0 - grad)e](s,0),
(3.2) oR[2)(5,60) =R[Os](s,6), i=1,2,3,
(33) R[az(p] (37 9) =0; 3372[4,0](8, 9), 1=1,2,3

for a real-valued function ¢ € S(R?®). Moreover, for v > 0, a nonnega-
tive integer k, and a multi-indix o, we have

(3.4) |070°RI¢](5,8)| < Cllplkiatp+s+ial(l+ %) 72
for (s,0) € R x S2. Here C = C(k,v, o) is a positive constant.

Next we define

(35) Qulel(t,z) = Zl;r‘ /6652 0 0(z +10)dS), (1) € (0,00) x R?

for a multi-index v = (71,72,73), a real-valued function ¢ € S(R3).
Here, dSj is the area element on S2. Note that Qo[p] is the spherical
mean of . We shall derive decay property of Q. [¢].

Proposition 3.1. Let k be a nonnegative integer, v > 0, and v be a
muti-index. Then there exists a positive constant C such that we have

(3.6) |0FQ41¢](t,2)| < Cllellkasa(l+t+7) (1 +|r — )™
for (t,z) € (0,00) x R® with r = |z|, provided that ¢ € S(R?).
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Proof. It follows that

1
3.7 oF t,z) = — 2 0770 + t0)dS;
e el =3 ¢ [ eoe@zee +19)as,

with some approriate constants c,. Therefore, we get

183 [01(,2)] < Cllgllensa / (1+ [z + 16])~~2dS,
€

6eS?
271' t+r :
= Cllollkp+2 X — AL+ 2)7"%dX
tr jt—r|

Hence, the desired estimate follows from
1 t+r
(38) AM1I+A) 2N CA+t+n) 2L+ r—t])™
lt—r|
for t,r > 0. By symmetry, it suffices to show (3.8) for 0 <r <.
First suppose 0 < r < t < 1. Then the desire estimate follows from

1 t+r 1 t+r
o AM14+A)"72dN < — AdA = 2.
tr Jyt—r| tr Jip—r|

Next suppose t > 1 and 0 <7 <t. Since t > (t+ 7+ 1)/3, we get

L t+r/\ 1+ 2724\ 3 o 14+ A Ldx

— FA2A S — —v-1gy
tr [t—r] ( ) B (1 +i+ T)T v/|t—r[( * )

Observing that t —r > (¢t +r)/3 for t > 2r and that r > (¢t +1r)/3 for

t < 2r, we obtain (3.8). This completes the proof. a

The following proposition shows that the leading term of Q,[¢] is
described by the Radon transform. Since the proof of the proposition
is similar to that of Lemma 4.3 in [11], we omit it.

Proposition 3.2. Let k be a nonnegative integer, v > 0, -y be a muti-
indez, and ¢, > 1. Then there ezist a positive constant C and an

integer No (> v + 4) such that we have
(3.9 [18EQulel(t ) — () () (~B)FRIg]) (r — t,0)
< Cllellesimo(l +t+r) 21+ |r —th™
for (t,z) € (0,00) x R3 satisfying r > t/(2c.) > 1 with r = |z| and
w = z|z|™!, provided that ¢ € S(R?).

Next we derive a couple of estimates of the following integral operator
for the latter sake:

c1t

(3.10) T,fel(t,z) = / Q. [ol(r,x)dr, (1) € (0,00) x R,

cat
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Proposition 3.3. Let k be a nonnegative integer, v > 0, v be a muti-
index, and ¢ € S(R3). When (t,z) € (0,00) x R? satisfies one of
> 2ct, r<cot/2 or 0 <t+r <1, we have

(3.11) T3 )6, )] < Cliloma (1 +t4+7) 2.

While, when (t,z) € (0,00)xR? satisfies ct/2 < T < 2¢1t and t+r > 1,
we have

(3.12) 1Ty [e)(t, 2)] < Cllgllopsa (L +t+7)7°,
provided v > 1. Moreover, if k > 1, then we have

(3.13) |0 Tylel(t, )]
< Cllellpsa (1 +H7H 1+t +7) " max{ (1 + |r — eit]) ™}

for (t,z) € (0,00) x R3. Furthermore, we have

(3.14)
T, (6;2)(2. )] < Clellan (1+ 1+ ) max{(1 +Ir — ) ™),

where Ny is the number from Lemma 3.2.

Proof. First we prove (3.11). By (3.6) we have
cit

T, [l (¢, 2)| < C“‘P”o,wz/ T+ +0) 2+ |r — 7)) Vdr

cat
cit

(3.15) < Cllgllowss (1 + cat +7) 2 / 1+ |r — 7)) "vdr.
cat

Observe that if 7 < ct/2 and 7 > ¢yt then |7 — r| > (cot +7)/3, and

that if r > 2¢;t and 7 < c;t, then |r — 7| > (¢t +7)/3. Thus we get

(3.11) for 7 < ¢pt/2 or r > 2¢yt. On the one hand, from (3.15) we have

cit

T, e)(t,2)] < Cllgllowsz / +ldr < Cliglloas,

cat

which yields (3.11) for 0 <t +r < 1.

Next we prove (3.12). Since 7 > C(1+t+7r) for 7 > o, ct/2 <
r < 2cit, and t + 7 > 1, we get (3.12) from (3.15) by v > 1.

Next we prove (3.13). It follows from (3.10) that
(316) AT e(t) =t (@ lel(at,2) — Qulel(cat, )

When t > 1, we easily have (3.13) by (3.6). While, when 0 < ¢t < 1, we
rewrite the right-hand side of (3.16) as

(c1 — c2)/0 (0:Q,]¢]) (a1t + cot(1 — o), z)do.
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Since 0 < ¢ito + cpt(1 — o) < C for 0 < 0,t < 1, we get from (3.6)
|8:6T7[‘P](t’ .'r)l < C”‘P||k,v+2 (1 + ,r)_z—u,

which yields (3.13) for 0 <t < 1.

Finally, we prove (3.14). When one of r > 2¢it, 7 < cpt/2 or 0 <
t+r < 1 holds, (3.11) with v = 2 yields (3.14). Therefore, we have
only to consider the case where cpt/2 <1 < 2citand t+7 > 1. We
rewrite

cit

T, 10;0](t, 2) = (4mr)~! / 2(~w)" R[By0](r — 7, w)dr

4 /C: 772 (1Q,[85](7, ) — (477) " (~w) R[9;¢](r — 7,w)) dr.

Let v > 1 in the following. Then, by (3.9) with k = 0 the second term
on the right-hand side is estimated by

cit
Cllollan, / P21 4 7+ 1)2(1 + |r — 7])Vdr

2t

< C”‘PHZ,NO (1 +i+ 7‘)_4,

because 7 > C(1 +t + r) in this case. Using (3.3), we can make
integration by parts in 7 in the first term. Then it is rewritten as

(4mr)~t ! (=277 3)w;(—w)"Rp)(r — T,w)dr

cat

— (4mr) ™" ((ext) "wj(—w) Rl (r — ert,w)
—(cat) 2w (—w) Rl (r — cat,w)) -

By (3.4) we have |R[p](s,w)| < C|l¢llop+3 (1 +s)™. Since v > 1, we
thus find (3.14) in this case. This completes the proof. a

4. LINEAR ELASTIC WAVE EQUATIONS
First of all, we consider the Cauchy problem:
(4.1) (82 — L)uo(t,z) =0, (t,z) € (0,00) x R?,
(4.2)  w(0,2) = f(z), (Bruo)(0, ) = g(2), z € R?,

where f, g € (S (R3))3. We recall the explicit representation of the
solution ug. We define

(4.3) Elg)(t, z) = Ex[g](t, z) + E2[g)(t, z) + Es[g](t, 2),



with

(4.4)  Eig)(t, ) :-f; [ H6)g(a+ ete)as,
45 Blota) =g [ (1 -T0)g(e+en)is;
(4.6) Eg,[g](t,gc)z_ziF C: 1y

. / (g(z +76) — 3(0 - g(s + 76))6)dS),
6es?
Here, for each fixed § € S%, [1(#) : R® — R3 is the projection defined
by II(6)v = (8 - v)6 for v € R3. Then it is known that
(4.7)  wo(t,z) = 8E[f](t,x) + E[g](t,z), (t,z) € (0,00) x R?

holds (see, e.g., John [10]). By virtue of Propositions 3.1 and 3.3,
we can prove the following estimates which are refinement of those in
Theorem 1 in [10] in the sense that we can replace the decaying factor
147 by 14+ t+r and that the derivatives enjoy better decay property
with respect to 1 + |r — ¢;t| with i =1, 2.

Proposition 4.1. Let k be a nonnegative integer, f, g € (S(R3))3,
v > 1, and Ny be the number from Proposition 3.2. Then, for (t,z) €
(0,00) x R3, we have

(4.8) [uo(t, z)|, < CAkpsalf gl (L +t+7r) T W_i(t,7)
and
(4.9)  [Ouo(t, )|, < CAksanolfsg) (L+t+7)" Wea(t,r),
where Ay, (f, g] is defined by (2.4), and for v € R we put
(4.10) W, (t,r) = 52?}5{(1 + |r — eit])"}
Next we consider the radiation field for the free elastic wave (for
the case of the scalar wave equation, see Friedlander [4], and also

[11]). Having Proposition 3.2 in mind, we define the radiation field
Filf, 9] (i =1,2) for uy associated with the propagation speed c; by

(4.11) Filf, 9l(s,0) =I(O)R:[f, 9] (s,6),
(4.12) Falf, 9)(s,60) =(I — II(8))Ra[f, g)(s, 6)

for (s,0) e Rx S?,and f, g € (8(R3))3. Here, ﬁi[f, g](s, 0) is defined
by (1.8). We remark that (3.4) implies

(4.13) 1050 Fi[f,9](s,0)| < C(1+s)7", (s,0) € R x S
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for any v > 0, nonnegative integer k, multi-indix «, and f, g €
(S (R3))3. Then we have the following.

Proposition 4.2. Let f, g € (S (Ra))3 and let ug be the solution to
the problem (4.1)-(4.2). Then for any non-negative integer k and any
multi-index « with |a| > 1, there exists a positive constant C' such that

2
(4.14)  |up(t,z) — Z r Y Fnlf, g)(r = emt,w)| < CA+t+7)72
m=1 k
and
(415)  |Buo(t,z) = Y (—em)r T (BoFmlf, (T — emt,w)
m=1 k
+|0%uo(t,z) = > wor (O Fnlf, g]) (r — cmt, w)

<C(L+t+7)2W_y(t,7)

for (t,z) € (0,00) x R® with r > cpt/2 > 1. Here, w = (wy,wq,w3) =
r-lz.

Next we consider the inhomogeneous elastic wave equation with zero
initial data:

(4.16) (82 — L)u(t,z) = h(t,z) for (t,z) € (0,T) x R3,

' u(0,z) =0, (Bu)(0,z) =0 for z € R3.
The following estimate is an improvement of the corresponding estimate
given by [1, Proposition 5.1] in the sense that the exponent of the
weight in the right hand side 1 + p is replaced by 1 — u. This kind of

modification was well studied in the case of the scalar wave equation,
and the detail of the proof of (4.17) will appear elsewhere.

Proposition 4.3. Let u be the solution to (4.16) and let u > 0, co = 0.
Then we have

(4.17)  |ou(t,z)] < C(L+7)'W_i(t,r) sup (1+]z|)
(s,z)€[0,t] xR3

X (1+ s+ |a]) ' (max {1+ |eis — [2]]}) ™" |h(s, 2)ln
for (t,z) € [0,T) x R3.

On the other hand, the following estimate was proved by [10, Theo-
rem 3.
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Proposition 4.4. Let u be the solution to (4.16). Then we have
(4.18) |Ou(t,z)| < C(1+7)'W_i(t,7)

x log(2+t+r) sup min {1 + |¢;s — |z||} (s, x)|7dy
se[0,t] JR3 =12

for (t,z) € [0,T) x R3, and

(4.19) /R 10u(t, ) I‘% < Clog(2+1)

$€[0,¢]

1/2
< s ([ (+ g 0+ fes = DRG]

fort €[0,T).

5. APPROXIMATE SOLUTIONS

This section is the core of the present paper. We shall construct an
approximate solution and derive important estimates given in Propo-
sition 5.5 below in proving Theorem 1.1. Throughout this section we

assume that f, g € (C°(R3))® satisfy
(5.1) f(z)=g(z)=0for |z| > R

with some R > 1, and that A; # 0 and py # 0 on R x S2, where pj is
defined by (1.9).

Lemma 5.1. Let p(s,0,7) be the solution to (1.13)-(1.14) vanishing
for |s| > R. Let 0 < 10 < 7, with 7, being defined by (1.10). Then
for any N > 0, and for any multi-indicies § = (Bo,...,Ps) and v =
(Y0, ---,73), there exists a positive constant C = C(10,08,7v,N) such
that

(5.2) [A%p(s,0,7)] < C,

(5.3) |A%9,p(s,8,7)| < C(L+5)",

(5.4) IAZ{p(s,6,7) — po(s,0)}| < C,

(5.5) A28,{p(s,6,7) — po(s, 0)}| < Cr(1+ )™

for all (s,0,7) € R x S% x [0, 10).

Proof. First of all, we note that (5.2) and (5.4) follows from (5.3) and
(5.5) with N > 1 respectively, because both p(s, 8, 7) and py(s, #) vanish
for |s| > R.
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Next we prove (5.3). If we set P = O,p, then it satisfies

(5.6) 28, P+ A PO,P=0 inRxS*x[0,7),

(5.7) P(s,8,0) = 8, po(s,0) for (s,0) € R x S°.
Observe that for (s, s0,8,7) € R x R x 52 x [0,7), the equation
(5.8) F(s,80,0,7) = ci(s0 — ) + Ospo(s0, 0) Ar7 =0

determies the implicit function so = so(s, 6, 7), because
85, F(s,50,0,7) = ¢ + 02po(s0, 0) A1 > 2(1 — 7/7) > 0.
Therefore, the solution to (5.6)-(5.7) is given by P(s,8,7) = (9spo)(s0(s,8,7),8),
and hence for (s,6,7) € R x $2 x [0,79), we have
(5.9) 9sp(s,8,7) = (9spo)(so(s,0,7),8).

Since (3.4) implies |Afpo(s,8)| < C(1+s)~" for any (s,0,7) € R x §?
and N > 0, we see that APsy(s,6,7) is bounded for any (s,6,7) €
R x S% x [0, 1), because we have
4

ct + (0%p0)(s0(s,0,7),0)Ar7’

—Al(asPO)(SO(S’ 9) 7')) 9)
2 + (82po)(s0(s,0,7),0) A7’
_AIT(OiaSPO)(SO(S) 9’ T)) 0)
¢t + (0%po)(so(s,0,7),0) A1’
Therefore, we get (5.3) by using (5.9).

Next we prove (5.5). Since so(s,8,0) = s, we get

9s80(s,0,7) =

Or50(s,0,7) =

0;s0(s,0,7) =

1
0sp(s,0,7) — Ospo(s,8) = 7'/ (0%po)(s0(s, 8, 07),6)0,50(s,0,07)do.
0

In view of (5.8), we see that (1+so(s,0, 7))~ is equivalent to (1+s)™"
for (s,0,7) € R x 8% x [0,7), because |A7(dspo(so(s,H,7),0)A17)| is
bounded. Thus we find (5.5) holds. This completes the proof. O

For a real-valued function ¢ = (s, 8, 7), we shall write
@(t, ) :== p(r — a1t, w, e log(et))

1. Then we have

with r = |z| and w =7~
(5100 P =-cdp+et e, OF=6p (i=1,2,3),
(5.11) grad g = wé:& —rrTwAop,

where we have used (2.1) to get (5.11).
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Let p(s,0,7) be the solution to (1.13)-(1.14) vanishing for |s| > R.
Using the above notation, we define

(5.12) wi(t,z) = er ™t (p(t, )w + Fa[f, g](r — cot,w))
for (¢,z) € [1/e,exp(r./e)) x (R®\ {0}). Note that
(5.13) wi(t,z) =0 for |z| > a1t + R.

The following eastimates, which shows that w; is a good approximation
of up near the characteristic cones r = ¢;t (i = 1,2), are reduced from
Lemma 5.1.

Corollary 5.2. Let 0 < 79 < 7, and let 0 < ¢ < 1. Then for any
nonnegative integer k, there exists a positive constant C = C(7y,k)
such that

(5.14) |wi (¢, )| <Ce(1+t+7)71,

(5.15) |Ows (t, x) |k <Ce(1+t+7)TW_y(t,7),

(5.16) |dviwy (t, )]s <Ce(l+t+7)" (1 +]|r —ct]) 7,
(5.17) |rotw; (t, 2)|x <Ce(l+t+7r)" 11+ |r —ct|)7!
foreot/2 < |z| < ct+ R and 1 <t < exp(/e). Moreover, we have
(5.18) lwi (t, ) — eup(t, )| <Ce(l 4t +1)~2,

(5.19) 10 {wy(t, ) — euo(t, )} <Ce(1 4+t +71)2W_i(t,7),

forcot/2 < |z| < at+ R and 1/e <t < 2/e. Here, ugy is the solution
of the Cauchy problem (4.1)-(4.2).

Proof. We suppose that c;t/2 <r < c¢t+ Rand 1 <t < exp(mn/e) in
what follows. Then we have

(5.20) [t e+ e e+ A+t +r) e < CA+t4+7)7

First we prove (5.14) and (5.15). It follows from (4.13), (2.1), and
(5.20) that

|F2[f, 9](r — eat,w)|e < C(1+|r — o)™
While, from (5.2), (5.3) with N =1, (5.10), (5.11), and (5.20), we get

(5.21) Bt 2)le < C Y [A%p(t,2)| < C,
Bl<k
(5.22)
105(t, @) <C S |A3,p(t,0)| + C(L+t+7)7 S |APp(t, )]
1B1<k 1B <k+1

<C(l+|r—ct])™".
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Thus we obtain (5.14) and (5.15) from (5.12).
Next we prove (5.16). A direct computation shows that

(5.23) dvi(r '3(t, z)w) = r18,p(t, z) + r2p(t, z),
(5.24) dvi(r ' A[f, gl(r — ot w)) =

~ 7722w - Ralf, g)(r — cat,w) + Q- Rolf, g)(r — cat,w)),
where we put Q- f(z) = }:?:1 Q; fi(z) with Q = w A O (recall also

(4.12)). Therefore, by (5.2), (5.3) with N = 1, and (3.4), we get (5.16).
Next we prove (5 17). A direct computation shows that
1

(5.25) rot (r'5(t, z)w) = —r2Q A (B(t, T)w),

(5.26)
rot (r " F[f, 9](r — cat,w)) = rrot Ralf, g)(r — cat,w)
— 72 (wA ﬁz[f, gl(r — cot,w) — QA H(w)ﬁg[f, g](r — cot,w)).

Thus (5.2) and (3.4) yields (5.17).
Next we prove (5.19). Suppose that we also have 1/e <t < 2/¢ from
now on. In view of (4.15), it suffices to show

|0, {w(t, z) Zsr‘lf [f, 9)(r — cmt,w) i < Ce(1 +t+ 1) 2W_y(¢, 1),

or
lat{ﬁ(t’x)w - F [fa g](’f‘ - Clt’w)}|k < C(l +t+ T)—IW—l(ta'r)u

because of (5.12) and (5.20). We see from (4.11) and (1.9) that the
above estimate follows from

(5:27)  |8{B(t,z) — po(r — crt, W)}k < CL+t+ 1) Woa(t,r).

It follows from (5.10), (5.11), (5.2), and (5.5) with N =1 that the left
hand side of (5.27) is bounded by

CY INIB,p(t, 7) — (AZ8po)(r — xt, )|

i<k
+Ce(1+t+1)70 S MBS p(t, o)
18I<k
< Ce((log(et))1+|r—cal) '+ (1 +t+7)7),
which yields (5.27), because t < 2/e implies e < C(1+ ¢+ 7).

Similarly, one can show (5.18) by using (4.14), (5.4) instead of (4.15),
(5.5), respectively. This completes the proof. O



47

Next we examine how well w;(t,z) satisfies the original equation
(1.1) near the characteristic cones r = ¢;t (i = 1,2). We set

(5.28) El(t,z) = (87 — L)u(t,z) — F(Vu(t,z), Vu(t, T)).

Lemma 5.3. Let 0 < 70 < 7, and let 0 < ¢ < 1. Then for any
nonnegative integer k, there exists a positive constant C = C(7o,k)

such that
(5.29)

|E[wi](t,z) — (2 — R)er 2w A 08,p(t, z) + (8:Y)(r — cot, w)w}
+ Ay grad|rotwy (¢, z)*|r < Ce(1+t+71)73,
forept/2 <|z| < cit+ R and 1 <t < exp(7o/e). Here we have set
Y(s,w) = 2w - Rylf, gl (s,w) + Q- Ra[f, 9](s, w).

Proof. Let cot/2 < |z| < ct+ Rand 1 <t < exp(m/e). Then, t and 7
are equivalent to 1 4+ ¢ + r.
It holds that

O25(t, x) = 2O2p(t, @) — 2c16t~18, Dop + t~2(282p — B, p),
A(r15(t, z)w) = r182p(t, 2)w + 73 AL (B(E, 2)w),
grad div (r ' p(t, r)w) = r”lgs%(t, T)w — 172w A m(t, )
—2r73p(t, r)w — 73w A 0 p(t, T),
where A, = Z?:l O?. Therefore, we have
(5.30) |(82 — L)(er™5(t, x)w) + 2¢162(tr) 18 9,p(t, z)w
(2 — A)erw A 0 0p(t, 7) S Ce(l+r+1t)73.
While, we have
(82 — SA)(r R[S, 9)(r — cat,w)) = —E r3ALF|S, 9)(r — cot, w),
Hence, recalling (5.24), (5.10), and (5.11), we obtain
(5.31) |(87 — L)(er ' Fa[f, g)(ra,w))
—(2 =) er 2(8,Y)(r - cyﬁ,w)w',c <Ce(l+r+1t)72
Next we consider the nonlinear term. It follows from (5.16), (5.17)
that
|rot ((div w;(t,z))(rot wy(t,2)))|x < CE* (1 +t+1)73.
By using (2.1), we get from (5.14)
IN(wi(t,z))|e < Ce*(L+t+7)72



We see from (5.23), (5.24) that
|grad (divw,)? — grad (er"'8,p(t, z))*|x < Ce* (L +t+1)73,
and hence
lgrad (divw;)? — 2e%r~20,p(t, 7)82p(t, x) ]y < Ce?(1+t+1)75.

Thus we obtain
(5.32)
IF(le, V2w,) — Az grad |rot w; |?

—2A152r_2(§;})(t,$)5§;7(t, T)w . <Cel+r+t)72
Observe that (5.2) and (5.3) (with N = 1/2) yield
(5.33) 18.p(t, )]k < O+ et — )72,
By (5.6) with P = 9,p, and (5.33), we obtain

(5.34) ‘2@ (tr)718,0,p + 241 172 B,p 02p)|

= ‘2A1(r - clt)e2(c1t)—1r_25;})5§ .

<Ce*(1+t+r)2
Now (5.30), (5.31), (5.32), and (5.34) imply (5.29). This completes
the proof. O

In order to eliminate 7~ 2{w A 00sp(t, ) + (8,Y)(r — cat,w)w} in the
estimate (5.29), we need to construct a more precise approximation.
For this reason, we set

(5.35)
q1(3,9,7')=/ O A (op)(s',0,7)ds, q2(5,0)=/ Y(s,0)60ds,

8

and define
(5.36) w(t,z) = wi(t,z) +er 2 (qi(t, z) + gar — ot w))

for (t,z) € [1/e,exp(ri/€)) x (R®\ {0}). Then, w enjoys the same
estimates as in Corollary 5.2 togeter with a suitable estimates for E[w]
as follows.

Lemma 5.4. Let 0 < 79 < T«. We assume that 0 < & < 1. Then for
any nonnegative integer k, there exists a positive constant C = C (10, k)
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such that

(5.37) lw(t,z)|x <Ce(1+t+71)7",

(5.38) |0w(t, )|k <Ce(1+t+7)""W_y(t,T)

(5.39) |dviw(t, z)|, <Ce(l+t+7r)" 1+ |r —ct]) ™,
(5.40) |rotw(t, z)|x <Ce(l+t+7)" Y1+ |r — caot]) 7,
(5.41)

|E[w](t, z) + Ag grad|rotw;(t,z)*|y <Ce(1 +t+71)73

forct/2 < |z| < at+ R and 1 <t < exp(my/e). Moreover, we have
(5.42) lw(t, ) — eugp(t, z)|x <Ce(l+t+7)72,

(5.43) 10, {w(t, z) — eup(t,z)}x <Ce(l +t+7)2W_i(t,7),

for cot/2 < |z| < it + R and 1/e <t < 2/e. Here, ug is the solution
of the Cauchy problem (4.1)-(4.2).

Proof. Since p(s,8,7) = 0 for |s| > R, we see from (5.2), (5.3), and
(3.4) that

(5.44) |APqi(s,8,7)| < C, |APO,qi(s,0,7)] < C(1+ )7,
(5.45) |APga(s,0)] < C, |APO,qa(s,0)| < C(1+s)7,
for multi-indicies 4 and (s,6,7) € R x S% x [0, 7o]. Therefore, if we set

ws(t,z) = gr2 (q1(t, ) + go(r — cot,w)),

then we get
(5.46) lwy (¢, )| <Ce(14t+17)72,
(5.47) |0ws (t, )|k <Ce(1+t+7)2W_1(t,7),

so that the estimates in Lemma 5.4 except for (5.41) immediately follow
from Corollary 5.2.
In order to show (5.41), we write

(5.48)
E[w] + A, grad |rot w; |?
= (Blw)] + (¢ ~ B)er™{2q(t, z) + (022)(r — cat, w)}
+ A grad |rot wy |?)
+ (@~ Lywe ~ (&~ Qer* (Bt 3) + (@) (r — e2t,0)))
+ (F(Vw, Vi) — F(Vw, V?w))
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By (5.15), (5.47) we get
(5.49) |F(Vwy, Vwy) — F(Vw, V2w)|, < Ce2(1+t+1)7°

Using (5.44), we find

(8 = S8)(r*Ei (1, ) — (¢ = APt D)l < CUL+E+7)7°,
Since 6 - ¢:1(s,0) = 0, we have dvi(r—2q;(t,z)) = —r73Q - qi1(t,z) by
(2.1). Therefore, we get
(5.50)

(82 = D)(r @i (t,2)) = (& = D Bar(t,2)le < C(L+t+7)7°
While, we have from (5.45)

(8% = EA)(r2qy(r — cot, W)k CC(L+t+7)7°

Since dvi (r~2gy(r — cot,w)) = —r~2Y (r — cot,w), we obtain
(5.51)

(87 = L)(r~*qa(r — cat,w))

— (& = A Bq)(r — cat,w)|s S C(L+t+71)72
Now, in view of (5.48), we see from (5.49), (5.50), (5.51), and (5.29)

that (5.41) holds, because é—fv(h(t, T)+(82q2) (r—cot,w) = wNo d,sp(t, z)+
(0sY)(r — cot,w)w. This completes the proof. O

Now we are in a position to construct an approximate solution u;
for all (¢,z) € [0,exp(r./€)) x (R*\ {0}): Let x and £ be smooth and
nonnegative functions on [0, c0) such that

M$={3SSL §@={Q85@”’

, §>2, 1, s> 3cy/4.

Let 0 < ¢ < 1 in the following. We put x.(t) = x(et) and n(t,z) =
&(|z|/t). Since

(5.52) e<C(l+t)™! ifo<et <2,
we get
(5.53) d;f(t) _em %i%(st) <C(L+8™ fort>0,

where m is a nonnegative integer. While, we easily have O;n(t,z) =0
for 1 < j < 3. Since cyt/2 < r < 3cot/4 for (t,z) € supp In, we have

(554) Y |8°n(t,z)| < CA+t+r1)™ for (t,z) € [1,00) x R,

la|=m
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where m is a nonnegative integer, 8 = (8;, V,), and « is a multi-index.
Besides, we get

(5.55) W_i(t,r) <C(L+t+r)"t if0<7r < 3et/4

Let ug be the solution of the Cauchy problem (4.1)—(4.2), and let w
be given by (5.36). We define

(5.56) ur(t, ) = xe(t)euo(t, z) + (1 — xe(t))n(t, z)w(t, z)

for (t,z) € [0,exp(r./e)) x R®. By (5.1) and the property of finite
propagation, we have |z| < ¢;t + R in supp ug. Hence, recalling (5.13),
we find that

(5.57) uo(t, z) = w(t,z) = u1(t,z) =0 for |z| > c;t + R.
Then we have the following:

Proposition 5.5. Let 0 < 79 < 7,, k be a nonnegative integer, 0 <
A<1/2,0<pu<1/4, and 0 < e < 1. Then there exists a positive
constant C = C(79, k, A\, ) such that

(5.58) lui(t, z)|x < Ce(l+t+171)71,

(5.59) |Our(t, )|k < Ce(l+t+ 1) " W_i(t, 1),

(5.60) |Elui](t, 2)|x < Ce M1+t + )2 #W_ (¢, 7)
for (¢t,z) € [0,exp(10/€)] x R3, and

(5.61) [Blu] (¢, k]| o < Ce™TH(L 4 ¢)=G/2+

for t € [0,exp(ro/€)].

Proof. We write z = rw with r = |z| and w € S2. First we prove (5.58)
and (5.59). It follows from (4.8) that

(5.62) luo(t, 2)|k < C(1L+t+ 1) W_i(t,7)

for (¢, z) € [0,00) xR®. We see from (5.57) that (1+¢)~! < C(1+t+r)~?
for (¢,z) € suppw. Therefore, we get (5.58) and (5.59) from (5.37),
(5.38), (5.53), (5.54), and (5.62).

Next we consider (5.60) and (5.61). If we set

(5.63) v(t,z) = n(t, z)w(t, ) — euo(t, x),
then we have u; = eug + (1 — x.)v by (5.56). Therefore, it follows that
(564) E[ul] :IO+II +12+[3,
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where we put

Iy= —-xe(t)F(Vul, V2u,),

I = =x!(t)v(t, z),

I = —2x;(t)8tv(t,:c),

Iy = (1 = x:(t)) {(82 = L) (n(t, x)w(t, z)) — F(Vu, Viu)}.

We will estimate [; for 0 < j <3. Let 0< A <1/2and 0 < p < 1/4
in the following.
By (5.52) and (5.57), we have

(565) €< C(A+t+r)"" for (¢t x) € supp o Usupp I; Usupp I.
From (5.59) and (5.65) we get
(5.66) |Io|x SCE2(1 4t + 1) 2W_o(t,7)
<CE™M 1+t + 1) Woo(t, 1),
which yields
(5.67) 1ol < CEF (1 + 1)

Next we estimate I;. We may assume ¢t > 1, because et > 1 in
supp x~. Therefore, (5.54), (5.55) and (5.62) yield

(5.68) (1 = n(t,2))uo(t,z)|, < CA+t+71)72
Observe that We have 1/e < t < 2/e and cpt/2 < r in supp(x”n). Thus,
writing I; = —e2x"(et) (n(w — eup) —e(1 - n)uo) by (5.42), (5 68), and
(5.65), we get
(5.69) |L|x <CE(1+t+7)2<Ce¥(1+t+71)°

In order to evaluate I, we use
(5.70) |(1 = n(t, z))Bstio(t, ‘k <CA+t+7)73

which follows from (5.54), (5.55) and (4.9). Then, writting
I, = — 2ex/(et) ((Bm) (w — euo) + (Fem)euo
+ n(Qyw — edyug) — (1 — n)e@tuo),
by (5.42), (5.43), (5.54), (5.62), and (5.70) that

(5.71) |L|x < CE* (1 +t+1)2W_y(t,71).

By (5.69), (5.71), and (5.65) we get

(5.72) Iy + DLfp < CeE™ M1+t + 1) AWy (¢, 7),
(5.73) |11 + Lali| . < Ce™A(L+8)72F

Next we consider I3 by rewritting it as
(574) 13 = (1 - Xs(t)) (131 + 132 + .[33),



where we have set

Iy = — F(Vu, Vi) + nF(Vw, Vw),
I3 = [322 — L,njw
Is3 = 1((6} — L)w — F(Vw, V2w)).

In the following, we assume ¢ > 1, because et > 1 in supp(1 — x).

We first estimate I3;. We may assume et < 2 or r < 3¢yt /4, because
I3; = 0 otherwise. If 0 < et < 2, then we have (5.65) in suppu; U
supp w. Therefore, by (5.38) and (5.59), we get

(1 = Xxe)a1]x < CEMAA 4+t + )3 PW_o(t, 1),

similarly to (5.66). While, if r < 3cyt/4, then (5.38), (5.59), and (5.55)
yield

(1= xe) a1l < CE1+t+7)7

Summing up, we have proved

(5.75) |(1 = xe) a1k SCe™ (1 4+t + )3 AW (8, 7)
+ Ce®(1+t+7)""

By (5.37), (5.38), (5.54) with m = 1,2, and (5.55), we get
(5.76) |(1 = xe) a2l < Ce(l+t+7)72
From (5.41), we have
(5.77) (1 — xe)Isslx < Ce(L+t+7)73
Thus, (5.75), (5.76), and (5.77) lead to
(5.78)  |I3lk < Ce(1+t+7) 3+ Ce'™M1 4+t + )3 AW_y(t, 7).
Since €t > 1 in supp /3, we have ¢ > ¢~ > (1 +¢+7)~!. Hence, we get
(5.79) I3k < Ce'™ M1+t + )73
which yields
(5.80) | Esle]| 2 < CE™PA (1 +2) G721+,

Finally (5.60) follows from (5.66), (5.72), and (5.79). We also obtain
(5.61) from (5.67), (5.73), and (5.80). This completes the proof. O
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‘6. OUTLINE OF THE PROOF OF THEOREM 1.1

We assume that 0 < € < 1 and that (5.1) holds for some R >
1. Let u;(t,z) be the approximation defined by (5.56) for (t,z) €
[0,exp(7./€)) x R3. If we set

uy(t, 7) = u(t, z) — wi (¢, z),
thent (1.1)-(1.2) is reduced to

(6.1) (02 — L)up = H(uy,up) — Efwy] in [0, exp(7./€)) % R3,
(6.2)  u2(0,z) = (Bruz)(0,2) =0 for z € R®,

where E [u] is defined by (5.28), and H(u1,up) is given by
H(ul, 'UQ) = F(V(u1 + Uz), V2(U1 + U2)) - F(Vul, V2u1).

Observe that for any nonnegative integer k, there exists a constant Cy
such that

(6.3) sup |uz(0,z)|x < Ce?,

zeR3

because for 0 < t < ¢! and z € R?, we have
(8? - L)U2 = F(V(u1 + UQ), V2(U1 + UQ)),

u(0, z) = Byuz(0, x) = 0, and uy (¢, z) = euo(t, ) by (5.56). Therefore,
by the local existence theorem (see [7]), whet we need for proving The-
orem 1.1 is to establish a suitable a-priori estimte. More explicitely,
for 0 < T < max{T,exp(ro/€)} with 75 € (0,7.), we wish to evaluate
the following quantity :

(6.4) sup {(1 + ) (W_i(t, 7)) Oua(t, )|k
(t,z)€[0,T]xR3

+ (1 + 7)1+ |et = r])|divus(t, )|k
+(1 +7)(1 + |cot — 7|)|rot ua(t, z)|k},

provided K is an integer large enough and ¢ is small enough.

In order to carry out this purpose, we employ (4.17) for estimat-
ing E[u;] and (4.18) for evaluating H(ui,uz), respectively. Note that
(5.60), (5.61) enable us to regard E[u;] as a harmless term. In addi-
tion, when T < exp(7p/€), we see that 0 < t < T implies € log(2+1) <
C(1+7). Hence, one can develop the argument as in [1], and find that
Theorem 1.1 is valid.
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APPENDIX: DERIVATION OF (1.1)

In this appendix we derive the quadratically perturbed wave equation
(1.1) as the Euler-Lagrange equation of the following lagrangian :

(A1) T(w) = / /R y {—;—|8tu|2 - W(s(u))} dd,

where u = wu(t,z) is the displacement vector, W(e(u)) is the strain
energy, and

(A2 e =5((Vou+(Veu) = (W)

with e;;(u) = (ju; + 0;ju;)/2 for i,j = 1,2,3. We underline that one
can obtain the same equation as in Agemi [1]. Sideris [14], although
our choice of the strain tensor £(u) is just the linear approximation of

elu) = {{(I + Vu)(I + Vu)}/2 -1,

used in [1]. [14].

Since we assumed that the elastic body is isotropic, the strain energy
W (e(u)) is a function of the principal invariants a(u), B(u), and y(u)
which are explictely given by

(A.3)  a(u) = e11(u) + ean(u) + e33(u) = divuy,
(A4) ,B(u) = Ell(U)EQQ(U) + EQQ(U)E33(U) + E33(U)€11(’U,)
~ ((e13(w))? + (e52())* + (e21(w))?)
= - %Irotuﬁ + Qu3(u1, u3) + Qs2(us3, u2) + Qa1 (ug, ur)
(A.5)  v(u) = dete(u)
where for scalar functions ¢ and 1, we put
(A.6) Qi; (¢, %) = (6i8)(05) — (9;)(8iy) (1,5 =1,2,3).

If we assume that W(e(u)) is of cubic order with respect to u, then it
is expressed as

(A7) W(e(u)) = Wo(e(w)) + ala(w))® + be(w)*A(u) + cv(u)

where a, b, and ¢ are constants, while Wy(e(u)) is the quadratic part
of W{(e(u)) definde by

(A8) Wole(w) = 50+ 2)(a(w)’ - 2u8(w)

with the Lamé constants A and pu.



The variational principle tells us that if u describes the phenominum
associated with the lagrangian I(u), then it must satisfy

(A.9) limn ™ {I(u+np) ~ I(w)} =0

for any ¢ = (1,2, 03) € CP(R™3). We shall show that (A.9)
implies
- Az 61 II’Ot U|2 - A3 {(le u)(@, divu — Au,)
+(62d1V u)((')gul - 81U2) - (33le u)(83u1 - 81’11,3)}
FN(w) =0 (i=1,2,3),

where N;(u) is a linear combination of null-forms Qy; defined by (A.6).
Since
(A.11) rot ((divu)(rot u)) = (divu) rot (rot w) + (grad div u) A rot u,
(A.12) rot(rotu) = graddivu — Au,
we find (1.1) from (A.10) by setting ¢ = A + 2u, & = p, A1 = 3a,
Ay, = —b/4, and Az = b/2.

For simplicity, we shall write f =< g if there exist h; (i = 1,2,3) such
that f(z) — g(z) = .o, Gihi(z). In order to prove (A.10) for i = 1,
we take ¢ = ¥(p1,0,0) in the following.

Since €;(u) is linear in u, we see from (A.3) that o(u) is also linear
functional, and hence we get

(A.13) Jimm ™ {{a(u + 79))? = (2(u)’} = 2a(w)a(p)
= 2(011)(divu) < —2¢;10;(divu).
From (A.4) we get

1
Blu+np) = — Z|rotu +nrot ® + Qua(us + N1, us)

+ Qs2(us, u2) + Qa1 (u2, ua + 19p1).
Therefore, we obtain

(A.14) ’17% 1~ {B(u+np) — B(u)}

~ 5 (@s)(@sp0) + (Bo1)(Bu)
+ (O2uz + O3us)(B11) — %(31163)(33@1) - %(31U2)(32<P1)

1
= — 54,01(61 divu — Ayy).
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Thus we find from (A.13) and (A.14) that
(A.15) lim 0™ {Wo(u + np) — Wo(u)}
< — p1(pAuy + (A + p)ordiv u).

In particular, when a = b = ¢ = 0, we obtain the homogeneous elastic

wave eqaurtion (4.1) from (A.9).
Next we consider the higher order terms in W{(e(u)). It is easy to

see that

(A.16) lim n™ {(a(u +np))® = (a(w))*} < ~3p10:(divu)®.
It follows that
lim 0™ {a(u + ne)B(u+ny) - a(u)B(u)}
=a(u) imn~{B(u+np) - B(w)} + alp) lim B(u + 7).

= — %a(u) (O1divu — Awy )iy + %(83a(u)(83u1) + Oaa(u)(Oau1)) 1

1
- 310((71) (82?12 + (93U3)Q01 + 5(830(('11) (8111,3) + 82a(u)(51u2))<p1
— 1018(u),
in view of (A.14). Rearranging the terms in the last expression, we get

(A-17)  limn™ {a(u+n¢)B(u + np) — a(u)B(u)}

- %wl{a(u)(aldivu — Au)
+ (—83(1(11,)(83’11,1 — 61U3) + 62a(u)(82u1 —_ 61U,2))}
+ 01{Q12(ug, a(u)) + Q3(us, o(u))}
+ ‘,0151(%|1‘0t Ul2 - Q13(U1, Us) - Q32(U3, Uz) - Q21(U2, U1))

A direct compuation shows that

O1p1  Oap1 O3
e12(u) e2(u) e23(u)
813(U) 823(1&) 533(“)
< — p1{01(e22(u)ess(u) — (£23(u))?)
+ O2(g23(u)ers(u) — €12(u)ess(u))
+ O3(e2s(u)era(u) — eaa(u)e1s(u))},

lim ™ {y(u +n) = v(w)} =




which implies
(A-18)  limn™ {y(u+m¢) - v(u)}

= — 01{01Q23(u2, u3) + %32(6323(“3’“1) + Qs1(u2, us))

+ %as(le(Uz’US) + Qas(u1, 2))

1
+ Z(Qm(us, Oguz — Bzuz) + Qu3(uz, O3up — Oaus)

+ Q23(u2, O1us + 83u1) + Q23(U3, Oy + al’u,z))}

Finally, one can conclude from (A.15), (A.16), (A.17), and (A.18)
that (A.9) yields (A.10), and hence (1.1).

REFERENCES

[1] R. Agemi, Global ezistence of nonlinear elastic waves, Invent. Math. 142
(2000), 225-250.
[2] S. Alinhac, The null condition for quasilinear wave equations in two space
dimensions II, Amer. J. Math. 123 (2001), 1071-1101.
[3] D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small
initial data, Comm. Pure Appl. Math. 39 (1986), 267-282.
[4] F. G. Friedlander, On the radiation field of pulse solutions of the wave equation,
Proc. Roy. Soc. A. 269 (1962), 53-65.
[5] L. Hérmander, The lifespan of classical solutions of nonlinear hyperbolic equa-
tions, Lecture Note in Math., 1256, Springer, Berlin, (1987), 241-280.
[6] L. Hormander, “Lectures on nonlinear hyperbolic differential equations”,
Mathématiques & Applications, 26, Springer-Verlag, Berlin, 1997.
[7] F. John, Finite amplitude waves in a homogeneous isotropic elastic solid,
Comm. Pure Appl. Math. 30 (1977), 421-446.
[8] F. John, Formation of singularities in elastic waves, Lecture Notes in Phys.,
195, 194-210, Springer, Berlin, 1984.
[9] F. John, Ezistence for large times of strict solutions of nonlinear wave equa-
tions in three space dimensions for small initial data, Comm. Pure Appl. Math.
40 (1987), 79-109.
[10] F. John, Almost global existence of elastic waves of finite amplitude arising
from small initial disturbances, Comm. Pure Appl. Math. 41 (1988), 615-666.
[11] S. Katayama and H. Kubo, The rate of convergence to the asymptotics for the
wave equation in an exterior domain, Funkcial. Ekvac. 53 (2010), 331-358.
[12] S. Klainerman, The null condition and global ezistence to nonlinear wave equa-
tions, Lectures in Appl. Math., 23 (1986) 293-326.
[13] S. Klainerman, T. C. Sideris, On almost global ezistence for nonrelativistic
wave equations in 3D, Comm. Pure Appl. Math. 49 (1996), 307-321.
[14] T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic
waves, Ann. of Math. 151 (2000), 849-874.

58



