Existence of eigenvalues and eigenfunctions for radially symmetric fully nonlinear elliptic operators

Norihisa Ikoma (生駒 典久) 1

Department of Pure and Applied Mathematics, School of Science and Engineering, Waseda University.

1 Introduction

This note is based on a joint work [13] with H. Ishii and we take a slightly different approach in the radial case from the one in [13]. See also the comments after Theorem 1.2.

In this note, we consider the eigenvalue problem for fully nonlinear elliptic operator F:

(1)
$$\begin{cases} F(D^2u, Du, u, x) + \mu u = 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

Here $\Omega \subset \mathbb{R}^N$ is an open interval (a,b) with $-\infty < a < b < \infty$ when N=1, or an open ball $B_R = B_R(0)$ when $N \geq 2$, $u: \bar{\Omega} \to \mathbb{R}$ and $\mu \in \mathbb{R}$ represent the unknown function (eigenfunction) and constant (eigenvalue), respectively, and $F: \mathbb{S}^N \times \mathbb{R}^N \times \mathbb{R} \times \Omega \to \mathbb{R}$ is a given function, where \mathbb{S}^N denotes the space of real symmetric $N \times N$ matrices.

The study of the eigenvalue problem for fully nonlinear elliptic operator goes back to the work of P.-L. Lions [16] and for the developments we refer to [1, 4, 5, 14, 17, 20] and to [2, 8, 9] for some earlier related works.

Recently, Busca, Esteban and Quaas [5] and Esteban, Felmer and Quaas [11] showed the existence of higher eigenvalues and of the corresponding eigenfunctions in the one-dimensional or the radially symmetric problem. In this note we extend the results of [11] into the L^q framework.

Before giving our assumptions (F1)-(F4) on the function F, we introduce the Pucci operators P^{\pm} . Given constants $\lambda \in (0, \infty)$ and $\Lambda \in [\lambda, \infty]$, P^{\pm} denote the Pucci operators defined as the functions on \mathbb{S}^N given, respectively, by $P^+(M) \equiv P^+(M;\lambda,\Lambda) = \sup\{\operatorname{tr} AM : A \in \mathbb{S}^N, \lambda I_N \leq A \leq \Lambda I_N\}$ and $P^-(M) = -P^+(-M)$, where I_N denotes the $N \times N$ identity matrix and the relation, $X \leq Y$, is the standard order relation between $X,Y \in \mathbb{S}^N$. We remark that in the case $\Lambda = \infty$, $P^+(M) = \infty$ if $M \not\leq 0$ and $P^+(M) = \lambda \sum_{j=1}^N \nu_j$ if $M \leq 0$.

(F1) The function $F: \mathbb{S}^N \times \mathbb{R}^N \times \mathbb{R} \times \Omega \to \mathbb{R}$ is a Carathéodory function, i.e., the function $x \mapsto F(M, p, u, x)$ is measurable for any $(M, p, u) \in \mathbb{S}^N \times \mathbb{R}^{N+1}$ and the function $(M, p, u) \mapsto F(M, p, u, x)$ is continuous for a.a. $x \in \Omega$.

¹The author was supported by Grant-in-Aid for JSPS Fellows 22-1561 and "Japanese-German Graduate Externship, International Research Training Group" associated with Waseda University and Technische Universität Darmstadt.

(F2) There exist constants $\lambda \in (0, \infty)$, $\Lambda \in [\lambda, \infty]$, $q \in [1, \infty]$ and functions $\beta, \gamma \in L^q(\Omega)$ such that

$$F(M_1, p_1, u_1, x) - F(M_2, p_2, u_2, x)$$

$$\leq P^+(M_1 - M_2) + \beta(x)|p_1 - p_2| + \gamma(x)|u_1 - u_2|$$

for all $(M_1, p_1, u_1), (M_2, p_2, u_2) \in \mathbb{S}^N \times \mathbb{R}^{N+1}$ and a.a. $x \in \Omega$.

(F3) F(tM, tp, tu, x) = tF(M, p, u, x) for all $t \ge 0$, all $(M, p, u) \in \mathbb{S}^N \times \mathbb{R}^{N+1}$ and a.a. $x \in \Omega$.

Here we remark that if $\Lambda = \infty$ and $M_1 \leq M_2$, then the inequality in condition (F2) is trivially satisfied since $P^+(M_1 - M_2) = \infty$.

The next condition concerns the radial symmetry in the multi-dimensional case.

(F4) The function F is radially symmetric in the sense that for any $(m, l, q, u) \in \mathbb{R}^4$ and a.a. $r \in (0, R)$, the function

$$\omega \mapsto F(m\omega \otimes \omega + l(I_N - \omega \otimes \omega), q\omega, u, r\omega)$$

is constant on the unit sphere $S^{N-1} \subset \mathbb{R}^N$. Here and henceforth $x \otimes x$ denotes the matrix in \mathbb{S}^N with the (i,j) entry given by $x_i x_j$ if $x \in \mathbb{R}^N$.

We study the eigenvalue problem (1) in the Sobolev space $W^{2,q}(\Omega)$. For any pair $(\mu, \varphi) \in \mathbb{R} \times (W^{2,1}(\Omega) \cap W_0^{1,1}(\Omega))$ which satisfies (1) in the almost everywhere sense, we call μ and ϕ an eigenvalue and eigenfunction of (1), respectively, provided $\varphi(x) \not\equiv 0$. We call such a pair an eigenpair of (1).

We state our main results in this note.

Theorem 1.1. Let N=1 and $\Omega=(a,b)$, and assume that (F1), (F2) with $\Lambda=\infty$, and (F3) hold. Then

(i) For any $n \in \mathbb{N}$, there exist eigenpairs $(\mu_n^{\pm}, \varphi_n^{\pm}) \in \mathbb{R} \times W^{2,q}(a,b)$ of (1) and sequences $(x_{n,i}^{\pm})_{i=0}^n \subset [a, b]$ such that

$$\begin{cases} a = x_{n,0}^{\pm} < x_{n,1}^{\pm} < \dots < x_{n,n}^{\pm} = b, \\ (-1)^{j-1} \varphi_n^{+}(x) > 0 \text{ in } (x_{n,j-1}^{+}, x_{n,j}^{+}) \text{ for } j = 1, \dots, n, \\ (-1)^{j} \varphi_n^{-}(x) > 0 \text{ in } (x_{n,j-1}^{-}, x_{n,j}^{-}) \text{ for } j = 1, \dots, n. \end{cases}$$

(ii) The eigenpairs $\{(\mu_n^{\pm}, \varphi_n^{\pm})\}_{n=1}^{\infty}$ are complete in the sense that for any eigenpair $(\mu, \varphi) \in \mathbb{R} \times W^{2,q}(a,b)$ of (1), there exist $n \in \mathbb{N}$ and $\theta > 0$ such that either $(\mu, \varphi) = (\mu_n^+, \theta \varphi_n^+)$ or $(\mu, \varphi) = (\mu_n^-, \theta \varphi_n^-)$ holds.

For $q \in [1, \infty]$, let $W_{\mathbf{r}}^{2,q}(0, R)$ denote the space of those functions $\varphi \in W^{2,q}(B_R)$ which are radially symmetric. We may identify any function f in $W_{\mathbf{r}}^{2,q}(0, R)$ with a function g on [0, R] such that f(x) = g(|x|) for a.a. $x \in B_R$ and we employ the standard abuse of notation: f(x) = f(|x|) for $x \in B_R$. We set $\lambda_* = \lambda/\Lambda$ and $q_* = N/(\lambda_* N + 1 - \lambda_*)$ if $\Lambda < \infty$. Note that $0 < \lambda_* \le 1$ and $q_* \in [1, N)$.

Theorem 1.2. Let $N \geq 2$, $\Omega = B_R$, and assume that (F1)-(F4) with $\Lambda < \infty$ hold. Assume also $q \in (\max\{N/2, q_*\}, \infty]$ and $\beta \in L^N(B_R)$ if q < N. Then:

(i) For each $n \in \mathbb{N}$, there exist eigenpairs $(\mu_n^{\pm}, \varphi_n^{\pm}) \in \mathbb{R} \times W^{2,q}_{\mathbf{r}}(0,R)$ of (1) and sequences $(r_{n,j}^{\pm})_{j=0}^n \subset [0,R]$ such that

$$\begin{cases} 0 = r_{0,n}^{\pm} < r_{n,1}^{\pm} < \dots < r_{n,n}^{\pm} = R, \\ (-1)^{j-1} \varphi_n^{+}(r) > 0 & \text{in } (r_{n,j-1}^{+}, r_{n,j}^{+}) \text{ for } j = 1, \dots, n, \\ (-1)^{j} \varphi_n^{-}(r) > 0 & \text{in } (r_{n,j-1}^{-}, r_{n,j}^{-}) \text{ for } j = 1, \dots, n, \\ \varphi_n^{+}(0) > 0 > \varphi_n^{-}(0). \end{cases}$$

(ii) The eigenpairs $\{(\mu_n^{\pm}, \varphi_n^{\pm})\}_{n=1}^{\infty}$ are complete in the sense that for any eigenpair $(\mu, \varphi) \in \mathbb{R} \times W_{\mathbf{r}}^{2,q}(0,R)$ of (1), there exist $n \in \mathbb{N}$ and $\theta > 0$ such that either $(\mu, \varphi) = (\mu_n^+, \theta \varphi_n^+)$ or $(\mu, \varphi) = (\mu_n^-, \theta \varphi_n^-)$ is valid.

In this note we only treat the case where $N \geq 2$, i.e., Theorem 1.2. As mentioned before, we will give a slightly different approach from the one in [13]. In [13], we take the following approach. For any $\varepsilon > 0$ and $n \geq 1$, first we show the existence of solutions of

$$\begin{cases} F(D^2 u_{n,\varepsilon}^{\pm}, D u_{n,\varepsilon}^{\pm}, u_{n,\varepsilon}^{\pm}, x) + \mu_{\varepsilon}^{\pm} u_{n,\varepsilon}^{\pm} = 0 & \text{in } A(\varepsilon, R), \\ u_{n,\varepsilon}^{\pm} \in W_{\mathbf{r}}^{2,q}(\varepsilon, R), \ (u_{n,\varepsilon}^{\pm})'(\varepsilon) = 0, \ u_{n,\varepsilon}^{\pm}(R) = 0, \ \pm u_{n,\varepsilon}^{\pm}(\varepsilon) > 0 \end{cases}$$

which have n-1 zeroes in $[\varepsilon, R)$. Here $A(\varepsilon, R) := \{x \in \mathbb{R}^N : \varepsilon < |x| < R\}$ and $W_r^{2,q}(\varepsilon,R)$ denotes the set consisting of all radial functions in $W^{2,q}(A(\varepsilon,R))$. Then let $\varepsilon \to 0$ and observe that we can extract a subsequence whose limit is an eigenpair of (1) with the desired properties.

However, in this note, we will show the existence of eigenpairs through the unique solvability of

$$F(D^2u, Du, u, x) - \kappa u + f(x) = 0$$
 in $B_R(0), u \in W_r^{2,q}(0, R) \cap W_0^{1,q}(B_R(0)),$

for some $\kappa \in \mathbb{R}$ and any radial function $f \in L^q(B_R(0))$. See, for instance, sections 5 and 6 (Theorems 5.1 and 6.1).

Lastly, we give a remark about the condition on β in Theorem 1.2. Our requirement on β in Theorem 1.2 is only that $\beta \in L^q(B_R) \cap L^N(B_R)$. This condition seems relatively sharp from the known results in a priori estimates of solutions to (1). We refer to [6, 7, 10, 12, 15, 18]. See also Proposition 3.6 in this connection.

2 Preliminaries

Throughout this note, we suppose $N \geq 2$. First, we introduce the notations. For $0 \leq a < b \leq R$ and $q \in [1, \infty]$,

$$A(a,b) := \{x \in \mathbb{R}^N : a < |x| < b\} \text{ if } a > 0 \text{ and } A(0,b) := B_b(0),$$

$$L^q_{\mathbf{r}}(a,b) := \{ u \in L^q(A(a,b)) : u \text{ is radial} \},$$

$$W^{2,q}_{\mathbf{r}}(a,b):=\{u\in W^{2,q}(A(a,b)): u \text{ is radial}\},$$

$$||u||_{L^q_{\mathbf{r}}(a,b)}^q := \int_a^b r^{N-1} |u(r)|^q dr \quad \text{if } q \in [1,\infty) \quad \text{and} \quad ||u||_{L^\infty_{\mathbf{r}}(a,b)} := ||u||_{L^\infty(a,b)}.$$

Note that $C_{\mathbf{r}}^{\infty}(\overline{A(a,b)}) := \{u \in C^{\infty}(\overline{A(a,b)}) : u \text{ is radial}\}\$ is dense in $W_{\mathbf{r}}^{2,q}(a,b)$. Let u be a smooth radial function and we identify u(x) with u(|x|). Then it is easy to see

(2)
$$Du(x) = u'(|x|)\frac{x}{|x|}$$
, $D^2u(x) = u''(|x|)P_x + \frac{u'(|x|)}{|x|}(I_N - P_x)$ for $x \neq 0$

where P_x denotes the matrix $x \otimes x/|x|^2 = (x_i x_j/|x|^2)$ which represents the orthogonal projection in \mathbb{R}^N onto the one-dimensional space spanned by the vector x.

Next, we introduce a norm in $W_{\mathbf{r}}^{2,q}(a,b)$ which is equivalent to the usual norm $\|\cdot\|_{W^{2,q}(A(a,b))}$.

Lemma 2.1. The following norm is equivalent to $\|\cdot\|_{W^{2,q}(A(a,b))}$ in $W^{2,q}_{r}(a,b)$:

$$||u||_{W_r^{2,q}(a,b)} := ||u||_{L_r^q(a,b)} + ||u'/r||_{L_r^q(a,b)} + ||u''||_{L_r^q(a,b)}.$$

Proof. First, noting that $C_r^{\infty}(\overline{A(a,b)})$ is dense in $W_r^{2,q}(a,b)$, (2) holds for any $u \in W_r^{2,q}(a,b)$ and a.a. $x \in A(a,b)$. On the other hand, we have

$$|D^2u(x)| := \left(\sum_{i,j} \left| \frac{\partial^2 u}{\partial x_i \partial x_j}(x) \right|^2 \right)^{1/2} = \left(|u''(|x|)|^2 + (N-1) \frac{|u'(|x|)|^2}{|x|^2} \right)^{1/2}.$$

Thus it is easy to see that $\|\cdot\|_{W^{2,q}_{\mathbf{r}}(a,b)}$ and $\|\cdot\|_{W^{2,q}(A(a,b))}$ is equivalent. \square

In the rest of this note, we use $\|\cdot\|_{W^{2,q}_{\mathbf{r}}(a,b)}$ instead of the usual norm $\|\cdot\|_{W^{2,q}(A(a,b))}$. Next, we rewrite (1) in the radial form and give some remarks. Assume that F satisfies (F1), (F2) with $\Lambda < \infty$ and (F4). We fix a point $\omega_0 \in S^{N-1}$ and define the function $\mathcal{F}: \mathbb{R}^4 \times (0,R) \to \mathbb{R}$ by

$$\mathcal{F}(m, l, p, u, r) := F(m\omega_0 \otimes \omega_0 + (I_N - \omega_0 \otimes \omega_0)l, p\omega_0, u, r\omega_0).$$

We write $\mathcal{F}[u](r)$ for $\mathcal{F}(u''(r), u'(r)/r, u'(r), u(r), r)$. Thanks to (F4) and (2), (1) is equivalent to

(3)
$$\mathcal{F}[u] + \mu u = 0 \quad \text{a.e. in } (0, R), \ u \in W_r^{2,q}(0, R), \ u(R) = 0.$$

We also introduce radial versions $\mathcal{P}^{\pm}: \mathbb{R}^2 \to \mathbb{R}$ of the Pucci operators by

(4)
$$\mathcal{P}^{+}(m,l) := P^{+}(m\omega_{0} \otimes \omega_{0} + (I_{N} - \omega_{0} \otimes \omega_{0})l) \\ = \Lambda (m_{+} + (N-1)l_{+}) - \lambda (m_{-} + (N-1)l_{-})$$

and $\mathcal{P}^{-}(m,l) = -\mathcal{P}^{+}(-m,-l)$. Here $m_{\pm} := \max\{\pm m,0\}$. By (F2), we have

(5)
$$\mathcal{F}(m_1, l_1, p_1, u_1, r) - \mathcal{F}(m_2, l_2, p_2, u_2, r) \\ \leq \mathcal{P}^+(m_1 - m_2, l_1 - l_2) + \beta(r\omega)|p_1 - p_2| + \gamma(r\omega)|u_1 - u_2|$$

for all $(m_i, l_i, p_i, u_i) \in \mathbb{R}^4$, i = 1, 2, and a.a. $(r, \omega) \in (0, R) \times S^{N-1}$. In view of Fubini's theorem in the polar coordinates, we can choose a $\omega \in S^{N-1}$ which has the

properties that the inequality (5) holds for all $(m_i, l_i, p_i, u_i) \in \mathbb{R}^4$, i = 1, 2, and a.a. $r \in (0, R)$, and the functions $r \mapsto r^{N-1}(\beta(r\omega))^q$, $r \mapsto r^{N-1}(\gamma(r\omega))^q$ are integrable in (0, R). We fix such an ω , call it ω_1 , and, with abuse of notation, we write β and γ the functions $r \mapsto \beta(r\omega_1)$ and $r \mapsto \gamma(r\omega_1)$, respectively. In other words, under the assumptions (F1), (F2) and (F4), we conclude the following:

(F5) There exist functions β , $\gamma \in L^q_r(0,R)$ such that

$$\mathcal{F}(m_1, l_1, p_1, u_1, r) - \mathcal{F}(m_2, l_2, p_2, u_2, r)$$

$$\leq \mathcal{P}^+(m_1 - m_2, l_1 - l_2) + \beta(r)|p_1 - p_2| + \gamma(r)|u_1 - u_2|$$

for all $(m_i, l_i, p_i, u_i) \in \mathbb{R}^4$, i = 1, 2, and a.a. $r \in (0, R)$.

Since $\mathcal{P}^-(m,l) = -\mathcal{P}^+(-m,-l)$, it holds from (F5) that for all $(m_i, l_i, p_i, u_i) \in \mathbb{R}^4$ and a.a. $r \in (0,R)$,

(6)
$$\mathcal{F}(m_1, l_1, p_1, u_1, r) - \mathcal{F}(m_2, l_2, p_2, u_2, r)$$

$$\geq \mathcal{P}^{-}(m_1 - m_2, l_1 - l_2) - \beta(r)|p_1 - p_2| - \gamma(r)|u_1 - u_2|.$$

For later use, we rewrite the conditions in terms of \mathcal{F} :

- (r-F1) The function \mathcal{F} is a Carathéodory function.
- (r-F2) There exist $\beta, \gamma \in L^q_r(0, R)$ such that

$$\mathcal{F}(m_1, p_1, u_1, r) - \mathcal{F}(m_2, p_2, u_2, r)$$

$$\leq \mathcal{P}^+(m_1 - m_2, p_1 - p_2, r) + \beta(r)|p_1 - p_2| + \gamma(r)|u_1 - u_2|$$

for all $(m_i, p_i, u_i) \in \mathbb{R}^3$, i = 1, 2, and a.a. $r \in (0, R)$.

(r-F3) $\mathcal{F}(tm,tl,tp,tu,r)=t\mathcal{F}(m,l,p,u,r)$ for every $(m,l,p,u)\in\mathbb{R}^4$ and a.a. $r\in(0,R)$.

In what follows, we shall prove the existence of solutions to (3) under (r-F1)–(r-F3). In order to show the existence of eigenpairs to (3), the solvability of the following equations plays an important role under (r-F1), (r-F2) and $\mathcal{F}[0] \in L^q_r(0,R)$: for each $0 \le a < b \le R$,

(7)
$$\mathcal{F}_{\kappa}[u] = 0$$
 a.e. in $(a, b), u \in W_{r}^{2,q}(a, b), u(b) = 0, u'(a) = 0$ if $a > 0$

where $\mathcal{F}_{\kappa}(m,l,p,u,r) := \mathcal{F}(m,l,p,u,r) - \kappa u$ and $\kappa \in \mathbb{R}$. The constant κ is fixed later.

To rewrite (7) in the normal form, we use the following lemma (See Lemma 2.1 in [11]).

Lemma 2.2. Under the conditions (r-F1) and (r-F2), the following hold: (i) There is a unique $g = g_{\mathcal{F}}(l, p, u, d, r) \in \mathbb{R}$ such that $\mathcal{F}(g, l, p, u, r) = d$ for any $(l, p, u, d) \in \mathbb{R}^4$ and a.a. $r \in (0, R)$. (ii) For all $(m, l, p, u, d) \in \mathbb{R}^5$ and a.a. $r \in (0, R)$, $m < g_{\mathcal{F}}(l, p, u, d, r)$ (resp. $m > g_{\mathcal{F}}(l, p, u, d, r)$) if and only if $\mathcal{F}(m, l, p, u, r) < d$ (resp. $\mathcal{F}(m, l, p, u, r) > d$).

(iii) The function $g_{\mathcal{F}}$ satisfies the following Lipschitz condition:

$$|g_{\mathcal{F}}(l_1, p_1, u_1, d_1, r) - g_{\mathcal{F}}(l_2, p_2, u_2, d_2, r)|$$

$$\leq \lambda^{-1} L(r)(|l_1 - l_2| + |p_1 - p_2| + |u_1 - u_2| + |d_1 - d_2|)$$

for every $(l_i, p_i, u_i, d_i) \in \mathbb{R}^4$ and a.a. $r \in (0, R)$ where $L(r) := \max\{\Lambda(N - 1), \beta(r), \gamma(r), 1\}$. Furthermore, it holds that for any $d \in \mathbb{R}$,

$$|g_{\mathcal{F}}(0,0,0,d,r)| \le \lambda^{-1} |\mathcal{F}(0,0,0,0,r) - d|$$

Proof. (i) Let $m_1 < m_2$. Then for each $(l, p, u) \in \mathbb{R}^3$ and a.a. $r \in (0, R)$, it follows from (4) and (r-F2) that

(8)
$$\mathcal{F}(m_1, l, p, u, r) - \mathcal{F}(m_2, l, p, u, r) \le \mathcal{P}^+(m_1 - m_2, 0) = -\lambda(m_2 - m_1) < 0.$$

Thus for any $(l, p, u) \in \mathbb{R}^3$ and a.a. $r \in (0, R)$, we see from (8) that the function $m \mapsto \mathcal{F}(m, l, p, u, r)$ is strictly increasing in m and $\lim_{m \to \pm \infty} \mathcal{F}(m, l, p, u, r) = \pm \infty$. By the intermediate value theorem yields that for all $d \in \mathbb{R}$ there exists a unique $g = g_{\mathcal{F}}(l, p, u, d, r) \in \mathbb{R}$ satisfying $\mathcal{F}(g, l, p, u, r) = d$.

The assertion (ii) holds from the strict monotonicity of $\mathcal{F}(m, l, p, u, r)$ in m. Next we show the assertion (iii). Let $(l_1, p_1, u_1, d_1), (l_2, p_2, u_2, d_2) \in \mathbb{R}^4$, $g_i = g_{\mathcal{F}}(l_i, p_i, u_i, d_i, r)$ and $g_1 < g_2$. Then it follows from (r-F2) that

$$d_1 - d_2 \le \mathcal{P}^+(g_1 - g_2, l_1 - l_2) + \beta(r)|p_1 - p_2| + \gamma(r)|u_1 - u_2|$$

= $\lambda(g_1 - g_2) + \Lambda(N - 1)|l_1 - l_2| + \beta(r)|p_1 - p_2| + \gamma(r)|u_1 - u_2|$.

Therefore we obtain $0 < g_2 - g_1 \le \lambda^{-1} L(r)(|l_1 - l_2| + |p_1 - p_2| + |u_1 - u_2| + |d_1 - d_2|)$. This ensures the Lipschitz continuity of $g_{\mathcal{F}}$. Moreover if $g = g_{\mathcal{F}}(0,0,0,d,r) > 0$, then by (6) we have $\mathcal{P}^-(g,0) \le \mathcal{F}(g,0,0,0,r) - \mathcal{F}(0,0,0,0,r) = d - F(0,0,0,0,r)$. Hence $0 < g \le \lambda^{-1}|d - \mathcal{F}(0,0,0,0,r)|$. We can also prove in the case where $g = g_{\mathcal{F}}(0,0,0,d,r) < 0$.

By Lemma 2.2, it is easy to see that $\mathcal{F}[u](r) = 0$ for a.e. $r \in (a,b)$ is equivalent to $u''(r) = g_{\mathcal{F}}(u'(r)/r, u'(r), u(r), 0, r)$ for a.e. $r \in (a,b)$. Since $g_{\mathcal{F}}$ satisfies the Lipschitz continuity, by the contraction mapping argument, we can show

Proposition 2.3. Under the assumptions (r-F1), (r-F2) and $\mathcal{F}[0] \in L^q_r(0,R)$, for each $0 < a < b \le R$, $\alpha_1, \alpha_2 \in \mathbb{R}$, $q \ge 1$, there is a unique solution $u \in W^{2,q}_r(a,b)$ of $\mathcal{F}[u](r) = 0$ a.e. in (a,b) with $u(a) = \alpha_1$ and $u'(a) = \alpha_2$.

Remark 2.4. The similar results to Lemma 2.2 and Proposition 2.3 hold for \mathcal{F}_{κ} .

3 Estimates on radial functions

In this section we establish a priori type estimates on functions in $W^{2,q}_r(a,b)$, motivated by the boundary value problem (7) under (r-F1), (r-F2) and $\mathcal{F}[0] \in L^q_r(0,R)$.

Throughout this note we set $\lambda_* = \lambda/\Lambda \in (0,1]$ and $q_* = N(1 + \lambda_*(N-1)) = N/(\lambda_*N + (1-\lambda_*)) < N$.

The following two lemmas play important roles to derive a priori estimates of (7). For a proof, see [13].

Lemma 3.1. Let $0 \le a < b \le R$, $q \in (q_*, \infty]$, $\beta \in L_r^N(0, R)$ and $f \in L_r^q(a, b)$. Let v be a measurable function on [a, b] such that for each $c \in (a, b)$, v is absolutely continuous on [c, b]. Assume that $f \ge 0$ a.e. in (a, b), $v/r \in L_r^q(a, b)$, $v \ge 0$ in [a, b], v(a) = 0 if a > 0 and

$$v'(r) + \lambda_*(N-1)\frac{v(r)}{r} \le \lambda^{-1}\beta(r)v(r) + \lambda^{-1}f(r)$$
 for a.a. $r \in (a,b)$.

Then there exists a constant $C_1 > 0$, depending only on λ_* , q, $\|\lambda^{-1}\beta\|_{L_r^N(0,R)}$ and N, such that

(9)
$$||v/r||_{L_{\mathbf{r}}^{q}(a,b)} \leq C_{1}\lambda^{-1}||f||_{L_{\mathbf{r}}^{q}(a,b)}.$$

An important point of the above estimate is that the constant C can be chosen independently of the parameter a.

Lemma 3.2. Let $q \in (N/2, \infty]$ and $0 \le a < b \le R$. Let u be a function on [a, b] such that for each $c \in (a, b]$, the function u is absolutely continuous on [c, b], $u(b) \le 0$ and $\|(u')_-/r\|_{L^q_r(a,b)} < \infty$. Then there exists a constant $C_2 > 0$, depending only on q and N, such that

$$\sup_{(a,b]} u \le C_2 \left(b^{(2q-N)/(q-1)} - a^{(2q-N)/(q-1)} \right)^{(q-1)/q} \| (u')_-/r \|_{L^q_{\mathfrak{r}}(a,b)}.$$

The next lemma concerns the embedding $W^{2,q}_{\mathbf{r}}(0,b) \subset C^1([0,b])$. Note that if a>0, then $W^{2,q}_{\mathbf{r}}(a,b) \subset C^1([a,b])$ for any $q\geq 1$. For instance, see Berestycki and Lions [3], Strauss [19].

Lemma 3.3. Let $q \ge N$, $0 \le a < b \le R$ and $u \in W_r^{2,q}(a,b)$. Assume in addition that u'(a) = 0 if a > 0. Then

$$||u'||_{L^{\infty}(a,b)} \le R^{1-N/q} q^{1/q} ||u'/r||_{L^{q}_{q}(a,b)}^{1-1/q} ||u''||_{L^{q}_{q}(a,b)}^{1/q}.$$

In particular, $W_{\mathbf{r}}^{2,N}(0,b) \subset C^1([a,b])$ and u'(0) = 0 hold for all $u \in W_{\mathbf{r}}^{2,N}(0,b)$.

Proof. It is enough to show the above inequality when u is smooth by the density of $C_{\mathbf{r}}^{\infty}(\overline{A(a,b)})$ in $W_{\mathbf{r}}^{2,q}(a,b)$. Thus we may assume u'(a)=0.

For any $a \leq r \leq R$, we have

$$\begin{aligned} |u'(r)|^q &\leq \int_a^r q|u'(t)|^{q-1}|u''(t)| \,\mathrm{d}t \leq R^{q-N}q \int_a^r |u'(t)/t|^{q-1}|u''(t)|t^{N-1} \,\mathrm{d}t \\ &\leq R^{q-N}q\|u'/r\|_{L^q(a,b)}^{q-1}\|u''\|_{L^q_t(a,b)}. \end{aligned}$$

Thus the conclusion follows.

The next lemma is about the estimate of $\|\beta u'\|_{L_r^q(a,b)}$.

Lemma 3.4. Let 1 < q, $0 \le a < b \le R$ and $u \in W_{\mathbf{r}}^{2,q}(a,b)$. Assume that u'(a) = 0 if a > 0 and $\beta \in L_{\mathbf{r}}^{N}(0,R)$. Then there exists a constant C > 0, depending only on q, N and R, such that

$$\|\beta u'\|_{L_{\mathbf{r}}^{q}(a,b)} \le C \max\{\|\beta\|_{L_{\mathbf{r}}^{q}(0,R)}, \|\beta\|_{L_{\mathbf{r}}^{N}(0,R)}\} \left(\|u'/r\|_{L_{\mathbf{r}}^{q}(a,b)}^{1-1/q} \|u''\|_{L_{\mathbf{r}}^{q}(a,b)}^{1/q} + \|u'/r\|_{L_{\mathbf{r}}^{q}(a,b)}\right).$$

Proof. When 1 < q < N, see [13]. In the case where $q \ge N$, the claim holds from Lemma 3.3 since $u' \in L^{\infty}(a,b)$.

The following lemma is an Alexandrov-Bakelman-Pucci type inequality.

Lemma 3.5. Let $q \in (\max\{N/2, q^*\}, \infty]$, $0 \le a < b \le R$, $\beta \in L^q_r(0, R) \cap L^N_r(0, R)$, $u \in W^{2,q}_r(a,b)$ and $f \in L^q_r(a,b)$. Assume that u(b) = 0, u'(a) = 0 if a > 0 and u satisfies

$$\mathcal{P}^{+}[u](r) + \beta(r)|u'(r)| + f(r) \ge 0$$
 a.e. in (a, b) .

Then there exists a constant $C_3 > 0$, depending only on λ , Λ , q, N and $\|\beta\|_{L^N_t(0,R)}$, such that

$$\max_{[a,b]} u \le C_3 \left(b^{(2q-N)/(q-1)} - a^{(2q-N)/(q-1)} \right)^{(q-1)/q} \|f_+\|_{L_r^q(a,b)}.$$

Proof. Fix any $(m, l, d) \in \mathbb{R}^3$ such that $\mathcal{P}^+(m, l) + d \geq 0$ and $d \geq 0$. Assume that $l \leq 0$. We have $0 \leq \lambda m + \lambda (N-1)l + d$ if $m \leq 0$ and $0 \leq \Lambda m + \lambda (N-1)l + d$ if m > 0. Noting $l \leq 0$, we obtain

(10)
$$m + \lambda_*(N-1)l + \lambda^{-1}d \ge 0$$
 for any $(m, l, d) \in \mathbb{R}^3$ with $l \le 0$ and $d \ge 0$.

If we set $v=(u')_-$, then we have v(r)=-u'(r) and v'(r)=-u''(r) a.e. if v(r)>0, and v(r)=0 and v'(r)=0 a.e. if $v(r)\leq 0$. Using (10), we get

$$-v' - \lambda_*(N-1)\frac{v}{r} + \lambda^{-1}\beta v + \lambda^{-1}f_+(r) \ge 0$$
 a.e. in (a,b) .

By Lemma 3.1, there exists a constant $C_1 > 0$, depending only on λ_* , q, N and $\|\lambda^{-1}\beta\|_{L^N(0,R)}$, such that

$$\|(u')_-/r\|_{L^q_{\mathbf{r}}(a,b)} \le C_1 \|\lambda^{-1}f_+\|_{L^q_{\mathbf{r}}(a,b)}.$$

On the other hand, by Lemma 3.2 and $u \in C([a,b])$, there is a $C_2 > 0$ such that

$$\max_{[a,b]} u(r) \le C_2 (b^{(2q-N)/(q-1)} - a^{(2q-N)/(q-1)})^{(q-1)/q} ||(u')_-/r||_{L^q_r(a,b)}$$

Combining the above two inequalities, we can show our claim.

Proposition 3.6. Let $0 \le a < b \le R$, $q \in (\max\{N/2, q_*\}, \infty]$, $\beta \in L^q_r(0, R) \cap L^N_r(0, R)$, $f^1, f^2 \in L^q_r(a, b)$ and $u \in W^{2,q}_r(a, b)$. Assume that

$$\begin{cases} \mathcal{P}^{+}[u](r) + \beta |u'| + f^{1} \geq 0 & \text{a.e. in } (a, b), \\ \mathcal{P}^{-}[u](r) - \beta |u'| - f^{2} \leq 0 & \text{a.e. in } (a, b), \\ u'(a) = 0 & \text{if } a > 0, & \text{and } u(b) = 0. \end{cases}$$

Then there exists a constant C > 0, depending only on q, λ , Λ , N, R, $\|\beta\|_{L_r^N(0,R)}$ and $\|\beta\|_{L_r^q(0,R)}$ such that

$$||u||_{W_r^{2,q}(a,b)} \le C \left(||f_+^1||_{L_r^q(a,b)} + ||f_+^2||_{L_r^q(a,b)}\right).$$

Proof. First note that by the assumption, we have

$$\mathcal{P}^{-}[-u](r) + \beta(r)|u'(r)| + f^{2}(r) \ge 0.$$

Thus as in the proof of Lemma 3.5, it holds that

$$\|(u')_+/r\|_{L^q_{\mathbf{r}}(a,b)} \le C_1 \|\lambda^{-1}f_+^2\|_{L^q_{\mathbf{r}}(a,b)}$$

where C_1 depends only on λ_* , q, N and $\|\lambda^{-1}\beta\|_{L_r^N(0,R)}$. Hence, setting $M = \|\lambda^{-1}f_+^1\|_{L_r^q(a,b)} + \|\lambda^{-1}f_+^2\|_{L_r^q(a,b)}$, we have

$$||u'/r||_{L_r^q(a,b)} \le C_1 M.$$

Secondly, for each $(m, l, d) \in \mathbb{R}^3$ with $m \leq 0$ and $\mathcal{P}^+(m, l) + d \geq 0$, we have

(12)
$$m + \lambda_*^{-1}(N-1)|l| + \lambda^{-1}d \ge 0.$$

Using (12), $\mathcal{P}^{+}[u](r) + \beta(r)|u'(r)| + f_1(r) \ge 0$ and $\mathcal{P}^{-}[-u](r) + \beta(r)|u'(r)| + f_2(r) \ge 0$, we observe that

(13)
$$|u''| \le \lambda_*^{-1} (N-1) \frac{|u'|}{r} + \lambda^{-1} \beta |u'| + \lambda^{-1} (f_+^1 + f_+^2) \quad \text{a.e. in } (a, b).$$

By Lemma 3.2 and (11), we can choose a constant $C_2 > 0$, depending only on q, R and N, for which we have

$$||u||_{L^{\infty}(a,b)} \le C_1 C_2 M.$$

Also, by Lemmas 3.3, 3.4, (11) and Young's inequality, for each $\varepsilon > 0$, we find a constant $C_4 > 0$, depending only on ε , q, N, R, $\|\lambda^{-1}\beta\|_{L^N_r(0,R)}$ and $\|\lambda^{-1}\beta\|_{L^q_r(0,R)}$, for which we have

(15)
$$\|\lambda^{-1}\beta u'\|_{L_{\mathbf{r}}^{q}(a,b)} \le \varepsilon \|u''\|_{L_{\mathbf{r}}^{q}(a,b)} + C_{1}C_{4}M.$$

Combining this, with $\varepsilon = 1/2$, and (13), we get

$$\frac{1}{2} \|u''\|_{L_{\mathbf{r}}^{q}(a,b)} \leq \lambda_{*}^{-1}(N-1) \|u'/r\|_{L_{\mathbf{r}}^{q}(a,b)} + C_{1}C_{4}M + \|\lambda^{-1}(f_{+}+g_{+})\|_{L_{\mathbf{r}}^{q}(a,b)} \\
\leq (\lambda_{*}^{-1}(N-1)C_{1} + C_{1}C_{4} + 1)M.$$

This inequality together with (14) and (15) yields an estimate on $||u||_{W^{2,q}_r(a,b)}$ with the desired properties.

Next, for $\kappa \in \mathbb{R}$, we recall the definition of \mathcal{F}_{κ} : $\mathcal{F}_{\kappa}(r) := \mathcal{F}(m, l, p, u, r) - \kappa u$. By the definition, we remark that $\mathcal{F}[0](r) = \mathcal{F}_{\kappa}[0](r)$ holds. Noting (r-F2), if $u(r) - v(r) \geq 0$, then we have

(16)
$$\mathcal{F}_{\kappa}[u](r) - \mathcal{F}_{\kappa}[v](r) \le \mathcal{P}^{+}[u-v](r) + \beta(r)|u'(r) - v'(r)| + (\gamma(r) - \kappa)_{+}(u(r) - v(r)).$$

Next we define a constant σ_{κ} by

(17)
$$\sigma_{\kappa} := C_3 \lambda^{-1} R^{2-N/q} \| (\gamma - \kappa)_+ \|_{L^q(0,R)}.$$

Here C_3 appears in Lemma 3.5 and we remark that $\sigma_{\kappa} \to 0$ as $\kappa \to \infty$.

Proposition 3.7. Suppose (r-F1), (r-F2) and $\mathcal{F}[0] \in L^q_r(0,R)$. Assume also that $q \in (\max\{N/2, q_*\}, \infty], \ \sigma_{\kappa} < 1, \ 0 \le a < b \le R \ and \ u \in W^{2,q}_r(a,b)$ is a solution of (7). Then there exists a C depending only on q, λ , Λ , N, R, $\|\beta\|_{L^p_r(0,R)}$, $\|\beta\|_{L^q_r(0,R)}$, $\|\beta\|_{L^q_r(0,R)}$, κ such that

$$||u||_{W_r^{2,q}(a,b)} \le C||\mathcal{F}[0]||_{L_r^q(a,b)}.$$

Proof. If $u_+ \not\equiv 0$, then let $r^+ \in [a,b)$ be a maximum point of u_+ , respectively. Furthermore, let

$$b^+ := \inf\{r \in (r^+, b] : u_+(r) = 0\} > r^+.$$

Noting $u \ge 0$ in $[r^+, b^+]$, it follows from (16) that for a.a. $r \in (r^+, b^+)$,

$$0 = \mathcal{F}_{\kappa}[u](r) = \mathcal{F}_{\kappa}[u](r) - \mathcal{F}_{\kappa}[0](r) + \mathcal{F}[0](r)$$

$$\leq \mathcal{P}^{+}[u](r) + \beta(r)|u'(r)| + (\gamma(r) - \kappa)_{+}u_{+}(r) + |\mathcal{F}[0](r)|.$$

By Lemma 3.5, we have

$$u(r^{+}) = \max_{r^{+} \leq r \leq b^{+}} u(r) \leq C_{3} R^{2-N/q} \| (\gamma - \kappa)_{+} u_{+} + |\mathcal{F}[0]| \|_{L_{r}^{q}(r^{+}, b^{+})}$$
$$\leq \sigma_{\kappa} \max_{[r^{+}, b^{+}]} u + C_{3} R^{2-N/q} \| \mathcal{F}[0] \|_{L_{r}^{q}(a, b)}.$$

From $\sigma_{\kappa} < 1$, it holds that

$$||u_+||_{L^{\infty}(a,b)} \le C_3 R^{2-N/q} (1-\sigma_{\kappa})^{-1} ||\mathcal{F}[0]||_{L^q_{\tau}(a,b)}$$

Similarly, if $u_- \not\equiv 0$, then we set $u_-(r^-) = \max_{a \le r \le b} u_-(r) > 0$, $u_-(b^-) = 0$ and $-u \ge 0$ in $[r^-, b^-]$. Furthermore we can show

$$0 \le \mathcal{P}^+[-u](r) + \beta(r)|u'(r)| + (\gamma - \kappa)_- u_- + |\mathcal{F}[0](r)|$$
 a.e. in (r^-, b^-) .

Repeating the argument in the above, one obtains

$$||u_-||_{L^{\infty}(a,b)} \le C_3 R^{2-N/q} (1-\sigma_{\kappa})^{-1} ||\mathcal{F}[0]||_{L^q_{\mathbf{r}}(a,b)}.$$

Thus it holds that

(18)
$$||u||_{L^{\infty}(a,b)} \leq C_3 R^{2-N/q} (1-\sigma_{\kappa})^{-1} ||\mathcal{F}[0]||_{L^q_{\Gamma}(a,b)}.$$

Next, by (r-F2), we have

$$0 = \mathcal{F}_{\kappa}[u](r) \le \mathcal{P}^{+}[u](r) + \beta(r)|u'(r)| + (\gamma(r) + |\kappa|)|u(r)| + |\mathcal{F}[0](r)| \quad \text{a.e. in } (a, b),$$

$$0 \ge \mathcal{P}^{-}[u](r) - \beta(r)|u'(r)| - (\gamma(r) + |\kappa|)|u(r)| - |\mathcal{F}[0](r)| \quad \text{a.e. in } (a, b).$$

Therefore, Proposition 3.6 and (18) ensure

$$||u||_{W_{\mathbf{r}}^{2,q}(a,b)} \leq \tilde{C}(||(\gamma+|\kappa|)u||_{L_{\mathbf{r}}^{q}(a,b)} + ||\mathcal{F}[0]||_{L_{\mathbf{r}}^{q}(a,b)})$$

$$\leq \tilde{C}(||u||_{L^{\infty}(a,b)}||\gamma+|\kappa|||_{L_{\mathbf{r}}^{q}(a,b)} + ||\mathcal{F}[0]||_{L_{\mathbf{r}}^{q}(a,b)}) \leq C||\mathcal{F}[0]||_{L_{\mathbf{r}}^{q}(a,b)}$$

where C depends only on q, λ , Λ , N, R, $\|\beta\|_{L_r^N(0,R)}$, $\|\beta\|_{L_r^q(0,R)}$, $\|\gamma\|_{L_r^q(0,R)}$ and κ . \square

4 Comparison theorem

In this section, we prove a weak maximum principle and strong maximum principle, respectively. A weak maximum principle for \mathcal{F}_{κ} is stated as follows.

Proposition 4.1. Let $q \in (\max\{N/2, q^*\}, \infty]$, $\sigma_{\kappa} < 1$ appearing in (17), $0 \le a < b \le R$, $u, v \in W_{\rm r}^{2,q}(a,b)$ and $f, g \in L_{\rm r}^q(a,b)$. Furthermore, suppose that u, v, f, g satisfy

$$\mathcal{F}_{\kappa}[v] + g \leq \mathcal{F}_{\kappa}[u] + f$$
 a.e. in (a, b)

and $v'(a) \leq u'(a)$ and $u(b) \leq v(b)$. Then it follows that

$$\max_{[a,b]} (u-v) \le C_3 (1-\sigma_{\kappa})^{-1} \left(b^{(2q-N)/(q-1)} - a^{(2q-N)/(q-1)} \right)^{(q-1)/q} \| (f-g)_+ \|_{L_{r}^{q}(a,b)}.$$

Proof. Set w(r) := u(r) - v(r). We may assume $\max_{[a,b]} w(r) > 0$. Let $r_0 \in [a,b)$ be a maximum point of w. Furthermore, set $r_1 = \min\{r \in [r_0,b]: w(r) = 0\}$. By the assumptions, $u'(r_0) = 0$ holds.

On the other hand, it follows from (16) that

$$0 \le \mathcal{P}^+[w] + \beta |w'| + (\gamma - \kappa)_+ w + (f - g)_+$$
 a.e. in (r_0, r_1) .

Applying Lemma 3.5, we obtain

$$\max_{[a,b]} w \leq C_3 \left(b^{(2q-N)/(q-1)} - a^{(2q-N)/(q-1)} \right)^{(q-1)/q} \| (\gamma - \kappa)_+ w + (f-g)_+ \|_{L^q_{\mathfrak{r}}(r_0,r_1)}$$

$$\leq \sigma_{\kappa} \max_{[a,b]} w + C_3 \left(b^{(2q-N)/(q-1)} - a^{(2q-N)/(q-1)} \right)^{(q-1)/q} \| (f-g)_+ \|_{L^q_{\mathfrak{r}}(a,b)}.$$

Since $\sigma_{\kappa} < 1$, we have the conclusion.

The next proposition is a version of the strong maximum principle for radial functions.

Proposition 4.2. Let $0 \le a < b \le R$, $q \in (\max\{N/2, q_*\}, \infty]$, $u \in W_{\mathbf{r}}^{2,q}(a,b)$, $\beta \in L_{\mathbf{r}}^{N}(a,b)$ and $\gamma \in L_{\mathbf{r}}^{q}(a,b)$. Assume that $u \ge 0$ in [a,b] and

$$\mathcal{P}^{-}[u] - \beta |u'| - \gamma u \leq 0$$
 a.e. in (a, b) .

Then either $u \equiv 0$ in [a,b] or u > 0 in (a,b). Furthermore, $\max\{u(b), -u'(b)\} > 0$ and $\max\{u(a), u'(a)\} > 0$ holds if a > 0. When a = 0, u(0) > 0 holds.

Proof. First we show that if $u'(r_0) = 0$ and $u(r_0) = 0$ for some $r_0 \in [a, b]$ with $r_0 > 0$, then $u \equiv 0$ in [a, b]. Set $v = (u')_-$ and $w = (u')_+$. Since u satisfies $\mathcal{P}^+[-u] + \beta |u'| + \gamma u \geq 0$ a.e. in (a, b), we observe that

$$-\hat{\gamma}u - \hat{\beta}v \le v'$$
 and $w' \le \hat{\beta}w + \hat{\gamma}u$ a.e. in (a, b)

where $\hat{\beta}(r) = \lambda^{-1}(\beta + \Lambda(N-1)/r)$ and $\hat{\gamma}(r) = \lambda^{-1}\gamma(r)$. Thus by Gronwall's inequality, we have

(19)
$$(u')_{-}(t) \leq \int_{t}^{r_0} \hat{\gamma}(s)u(s) \exp\left(\int_{t}^{s} \hat{\beta}(\tau)d\tau\right) ds \quad \text{for all } t \in (a, r_0],$$

(20)
$$(u')_{+}(t) \leq \int_{r_0}^{t} \hat{\gamma}(s)u(s) \exp\left(\int_{s}^{t} \hat{\beta}(\tau)d\tau\right) ds \quad \text{for all } t \in [r_0, b].$$

We fix $\varepsilon \in (a, r_0)$ arbitrarily. Then for each $r \in [\varepsilon, r_0]$, it follows from (19) that

$$u(r) = u(r) - u(r_0) \le \int_r^{r_0} (u')_-(t) dt \le (r_0 - \varepsilon) \exp(\|\hat{\beta}\|_{L^1(\varepsilon, r_0)}) \int_r^{r_0} \hat{\gamma}(s) u(s) ds.$$

Using Gronwall's inequality again, we get $u \equiv 0$ in $[\varepsilon, r_0]$. Since $\varepsilon > 0$ is arbitrary, $u \equiv 0$ in $[a, r_0]$. Similarly $u \equiv 0$ in $[r_0, b]$ holds from (20). Hence $u \equiv 0$ in [a, b]. Moreover, by the above arguments, we see that if $u \not\equiv 0$, then $\max\{u(b), -u'(b)\} > 0$. Furthermore, $\max\{u(a), u'(a)\} > 0$ holds if a > 0.

Next we treat the case where a=0. In this case, it is enough to show that $u\equiv 0$ provided u(0)=0. We choose a>0 so small that $C_1C_2a^{2-N/q}\|\gamma\|_{L^q_{\bf r}(0,a)}<1$ where C_1 and C_2 appear in Lemmas 3.1 and 3.2.

As in the above, if we set $v = (u')_+$, then we have

$$v' + \lambda_*(N-1)\frac{v}{r} \le \lambda^{-1}(\beta v + \gamma u)$$
 a.e. in $(0,b)$.

By Lemma 3.1, we get

$$\|(u')_+/r\|_{L^q_{\mathbf{r}}(0,a)} \le C_1 \|\gamma u\|_{L^q_{\mathbf{r}}(0,a)} \le C_1 \|\gamma\|_{L^q_{\mathbf{r}}(0,a)} \max_{[0,a]} u$$

where $C_1 > 0$ is a constant independent of a. Applying Lemma 3.2 to the function $r \mapsto u(c) - u(r)$, with $0 < c \le a$, we get

$$\max_{0 \le r \le c} (u(c) - u(r)) \le C_2 c^{(2q-N)/q} ||(u')_+/r||_{L^q_{\mathbf{r}}(0,c)},$$

where $C_2 > 0$ is a constant independent of c and a. In particular, since u(0) = 0, we have

$$\max_{0 \le c \le a} u(c) \le C_2 a^{(2q-N)/q} \|(u')_+/r\|_{L^q_{\mathbf{r}}(0,a)}.$$

Thus, we get

$$\max_{[0,a]} u \le C_1 C_2 a^{(2q-N)/q} \|\gamma\|_{L^q_{\mathbf{r}}(0,a)} \max_{[0,a]} u.$$

Since $C_1C_2a^{(2q-N)/q}\|\gamma\|_{L^q_r(0,a)}<1$, we find $\max_{[0,a]}u=0$, which implies $u\equiv 0$ in [0,a]. Using the previous argument, we can conclude $u\equiv 0$ in [0,b].

5 Solvability of (7)

This section is devoted to proving that (7) has a unique solution in $W_{\mathbf{r}}^{2,q}(a,b)$ under (r-F1), (r-F2) and $\mathcal{F}[0] \in L_{\mathbf{r}}^{q}(0,R)$.

Theorem 5.1. Assume \mathcal{F} satisfies (r-F1), (r-F2) and $\mathcal{F}[0] \in L^q_r(0,R)$. Let $\sigma_{\kappa} < 1$ and $q \in (\max\{2/N, q_*\}, \infty]$. Then for each $0 \le a < b \le R$, the equation (7) has a unique solution u and u satisfies

$$||u||_{W_{\mathbf{r}}^{2,q}(a,b)} \le C||\mathcal{F}_{\kappa}[0]||_{L_{\mathbf{r}}^{q}(0,R)}$$

where C depends only on $q, N, \lambda, \Lambda, R, \kappa, \|\beta\|_{L^{N}_{r}(0,R)}, \|\beta\|_{L^{q}_{r}(0,R)}$ and $\|\gamma\|_{L^{q}_{r}(0,R)}$.

To prove Theorem 5.1, we prepare the next lemma concerning a supersolution to \mathcal{P}^+ .

Lemma 5.2. Let $0 < a < b \le R$, $q \in (\max\{2/N, q_*\}, \infty]$ and $f \in L^q_r(a, b)$. Then there exists $a \phi \in W^{2,q}_r(a, b)$ such that $\phi \ge 0$ in [a, b] and

$$\mathcal{P}^{+}[\psi] + \beta |\phi'| + \gamma \phi + |f| \le 0$$
 a.e. in (a,b) , $\phi(b) = 0$, $\phi'(r) < 0$.

Proof. Let $\eta > 0$ and define

$$\phi(r) := \int_r^b e^{A(t)} dt \quad ext{where} \quad A(t) := \int_a^r \eta(\beta(s) + \gamma(s) + |f(s)|) ds.$$

Then it is easy to see

$$\phi(b) = 0, \quad \phi'(r) = -e^{A(r)} < 0, \quad \phi(r) \le (b - a)e^{A(b)},$$

$$\phi''(r) = -\eta(\beta(r) + \gamma(r) + |f(r)|)e^{A(r)}.$$

Thus $\phi \in W^{2,q}_r(a,b)$ and it holds that

$$\mathcal{P}^{+}[\phi](r) + \beta(r)|\phi'(r)| + \gamma(r)\phi(r) + |f(r)|$$

$$\leq (1 - \eta\lambda)\beta(r)e^{A(r)} + ((b - a)e^{A(b)} - \eta\lambda)\gamma(r) + (1 - \eta\lambda)|f(r)|.$$

Hence, taking $\eta > 0$ sufficiently large, we obtain $\mathcal{P}^+[\phi] + \beta |\phi'| + \gamma \phi + |f| \leq 0$ a.e. in (a, b), which completes the proof.

Proof of Theorem 5.1. The uniqueness follows from Proposition 4.1. Furthermore, the estimates for u also hold from Proposition 3.7. So it is sufficient to show the existence.

First we assume a>0. Let ϕ be the function appearing in Lemma 5.2 with $f(r)=|\mathcal{F}[0](r)|$ and set $v^{\pm}(r):=\pm\phi(r)$. Then we see that $\mathcal{F}_{\kappa}[v^{+}]\leq 0\leq \mathcal{F}_{\kappa}[v^{-}]$ a.e. in $(a,b),\ v^{-}(a)<0< v^{+}(a)$ and $(v^{+})'(a)<0< (v^{-})'(a)$.

For any $d \in \mathbb{R}$, we denote by u(r:d) the unique solution of $\mathcal{F}_{\kappa}[u] = 0$ a.e. in (a,b) with u(a:d) = d and u'(a:d) = 0 where u' stands for $\partial u/\partial r$. Such a solution exists from Remark 2.4. Next we shall prove the following claim:

$$v^+(r) < u(r:d) \text{ (resp. } u(r:d) < v^-(r)) \text{ in } [a,b] \text{ if } d > v^+(a) \text{ (resp. } d < v^-(a)).$$

First we suppose $d > v^+(a)$. Then we can take a neighborhood U of a such that $u(r:d) > v^+(r)$ for all $r \in U$. Next set $r_0 := \inf\{r \in (a,b] : u(r:d) = v(r)\}$. We argue by contradiction and assume $r_0 \in (a,b]$. Since $\mathcal{F}_{\kappa}[u] = 0 \geq \mathcal{F}_{\kappa}[v^+]$ a.e. in (a,r_0) and v'(a) < 0 = u'(a), $v(r_0) = u(r_0)$, it follows from Proposition 4.1 that $u-v \leq 0$ in $[a,r_0]$, which is a contradiction. Thus $v^+(r) < u(r:d)$ in [a,b] if $d > v^+(a)$. For the other claim, one can prove similarly.

Noting that the function $d \mapsto u(b:d)$ is continuous, we can choose a $d_0 \in [v^-(a), v^+(a)]$ such that $u(a:d_0) = 0$. Thus the existence result holds in the case where a > 0.

Next we consider the case where a=0. Let $(u_k) \subset W^{2,q}_{\mathbf{r}}(1/k,b)$ be a solution of (7) in (1/k,b). Furthermore, we extend u_k by

$$v_k(r) := \begin{cases} u_k(r) & \text{if } 1/k \le r \le b, \\ u_k(1/k) & \text{if } 0 \le r < 1/k. \end{cases}$$

Then $v_k \in W_{\mathbf{r}}^{2,q}(0,b)$ since $v'_k(1/k) = 0$. Moreover, by Proposition 3.7 and Lemma 3.2, (v_k) is bounded in $W_{\mathbf{r}}^{2,q}(0,b)$.

Now suppose $q \neq \infty$. Taking a subsequence if necessary, we may assume $v_{k_{\ell}} \to v_0$ weakly in $W_{\mathbf{r}}^{2,q}(0,b)$. Note also that $v_{k_{\ell}} \to v_0$ strongly in $C^1([\varepsilon,b])$ for each $\varepsilon \in (0,b)$. Let $0 < s \le t$ and $1/k_{\ell} \le s$. Then the from the property of $g_{\mathcal{F}_{\kappa}}$, we have

$$v'_{k_{\ell}}(t) - v'_{k_{\ell}}(s) = \int_{s}^{t} g_{\mathcal{F}_{\kappa}}(v'_{k_{\ell}}(\tau)/\tau, v'_{k_{\ell}}(\tau), v_{k_{\ell}}(\tau), 0, \tau) d\tau.$$

Let $k_{\ell} \to \infty$, then we observe from Lemma 2.2 that

$$v_0'(t) - v_0'(s) = \int_s^t g_{\mathcal{F}_{\kappa}}(v_0'(\tau)/\tau, v_0'(\tau), v_0(\tau), 0, \tau) d\tau$$

for every $0 < s < t \le b$. This means

$$v_0''(r) = g_{\mathcal{F}_{\kappa}}(v_0'(r)/r, v_0'(r), v_0(r), 0, r)$$
 a.a. $r \in (0, b)$.

Therefore, v_0 is a solution of (7).

In the case where $q = \infty$, then for any $p < \infty$, (v_k) is bounded in $W_{\mathbf{r}}^{2,p}(0,b)$. Thus we may assume $v_{k_\ell} \rightharpoonup v_0$ weakly in $W_{\mathbf{r}}^{2,p}(0,b)$. Then as in the above, we can show v_0 is a solution of (7). Moreover, since $\|v_0\|_{W_{\mathbf{r}}^{2,p}(0,b)} \leq C_b \sup_{k\geq 1} \|v_k\|_{W_{\mathbf{r}}^{2,p}(0,b)}$ holds for all $p \in (N,\infty)$, we have $v_0 \in W_{\mathbf{r}}^{2,\infty}(0,b)$. Thus we complete the proof. \square

6 Existence of Principal Eigenpairs

In this section, we prove the existence of principal eigenpairs for (3).

Theorem 6.1. Let \mathcal{F} satisfy (r-F1)-(r-F3), $q \in (\max\{N/2, q_*\}, \infty]$ and $0 \le a < b \le R$. Then there exist pairs $(\mu_N^{\pm}, \varphi_N^{\pm}) \in \mathbb{R} \times W_r^{2,q}(a,b)$ satisfying $\mathcal{F}[\varphi_N^{\pm}] + \mu_N^{\pm} \varphi_N^{\pm} = 0$ a.e. in (a,b), $\pm \varphi_N^{\pm} > 0$ in [a,b), $\varphi_N^{\pm}(b) = 0$ and $(\varphi_N^{\pm})'(a) = 0$ if a > 0.

First we fix a $\kappa \in \mathbb{R}$ so that

$$\sigma_{\kappa} = C_3 \lambda^{-1} R^{2-N/q} \| (\gamma - \kappa)_+ \|_{L^q(0,R)} < 1.$$

Next, for every $f \in L^q_r(a,b)$, we consider

(21)
$$\mathcal{F}_{\kappa}[u] + f = 0$$
 a.e. in (a, b) , $u(b) = 0$, $u \in W_{r}^{2,q}(a, b)$, $u'(a) = 0$ if $a > 0$.

Put $\hat{\mathcal{F}}(m,l,p,u,r) := \mathcal{F}_{\kappa}(m,l,p,u,r) + f(r)$. Then it is easy to see that $\tilde{\mathcal{F}}$ satisfies (r-F1), (r-F2) and $\hat{\mathcal{F}}[0] \in L^q_{\mathbf{r}}(a,b)$. Hence according to Theorem 5.1, there is a unique solution $u \in W^{2,q}_{\mathbf{r}}(a,b)$ to (21). We introduce the solution mapping T_N : $L^q_{\mathbf{r}}(a,b) \to W^{2,q}_{\mathbf{r}}(a,b)$ by $T_N f(r) := u(r)$. Noting $\hat{\mathcal{F}}[0] = f$, T_N satisfies

(22)
$$||T_{N}f||_{W_{\mathbf{r}}^{2,q}(a,b)} \le C||f||_{L_{\mathbf{r}}^{q}(a,b)}$$

for every $f \in L^q_{\mathbf{r}}(a,b)$.

Lemma 6.2. The following hold:

(i) If $f \ge 0$ a.e. (a,b), then $(T_N f) \ge 0$ in [a,b]. Furthermore, if $f \not\equiv 0$, then $T_N f > 0$ in [a,b), $(T_N f)'(b) < 0$.

(ii) Let $f_k \to f_0$ strongly in $L^q_r(a,b)$. Then $T_N f_k \to T_N f_0$ strongly in $W^{2,q}_r(a,b)$.

Proof. (i) Set $u(r) = T_N f$. Since f is nonnegative, $\mathcal{F}_{\kappa}[u] + f = 0 \leq \mathcal{F}_{\kappa}[0] + f$ in (a,b). Thus by Proposition 4.1, we have $0 \leq u$ in [a,b]. Furthermore, if $f \not\equiv 0$, then u satisfies $\mathcal{P}^-[u] - \beta |u'| - (\gamma + |\kappa|)u \leq 0$ a.e. in (a,b). Thus Proposition 4.2 shows u > 0 in [a,b) and u'(b) < 0.

(ii) Next let $f_k \to f_0$ strongly in $L^q_r(a,b)$ and set $u_k(r) := (T_N f_k)(r)$. For each $k, \ell \in \mathbb{N}$, we obtain, $u'_k(a) = u'_l(a) = 0$ if a > 0, $u_k(b) = u_l(b) = 0$ and

$$0 = \mathcal{F}_{\kappa}[u_{k}] + f_{k} - \mathcal{F}_{\kappa}[u_{l}] - f_{l}$$

$$\leq \mathcal{P}^{+}[u_{k} - u_{l}] + \beta |u'_{k} - u'_{l}| + (\gamma + \kappa)|u_{k} - u_{l}| + |f_{k} - f_{l}|,$$

$$0 \geq \mathcal{P}^{-}[u_{k} - u_{l}] - \beta |u'_{k} - u'_{l}| - (\gamma + \kappa)|u_{k} - u_{l}| - |f_{k} - f_{l}| \quad \text{a.e. in } (a, b).$$

We apply Proposition 3.6 to get

$$(23) ||u_k - u_l||_{W_r^{2,q}(a,b)} \le C(||(\gamma + \kappa)||_{L_r^q(a,b)}||u_k - u_l||_{L^{\infty}(a,b)} + ||f_k - f_l||_{L_r^q(a,b)}).$$

It follows from (22) that (u_k) is bounded in $W_{\mathbf{r}}^{2,q}(a,b)$. Taking a subsequence, we may assume $u_{k_j} \to u$ weakly in $W_{\mathbf{r}}^{2,q}(a,b)$ and strongly in $L^{\infty}(a,b)$. Hence, by (23), $u_{k_j} \to u$ strongly in $W_{\mathbf{r}}^{2,q}(a,b)$.

Next we show u solves $\mathcal{F}_{\kappa}[u] + f_0 = 0$ in (a, b). If we showed this claim, then by the uniqueness, $u = u_0$ holds. Thus the uniqueness of the weak limit implies $u_k \to u_0$ weakly in $W_{\mathbf{r}}^{2,q}(a,b)$. Therefore $u_k \to u_0$ strongly in $W_{\mathbf{r}}^{2,q}(a,b)$ from (23).

Since $\mathcal{F}_{\kappa}[u_k] + f_k = 0$ in (a, b), we have

$$u_{k_j}''(r) = g_{\mathcal{F}_{\kappa}}(u_{k_j}'(r)/r, u_{k_j}'(r), u_{k_j}(r), f_{k_j}(r), r).$$

Thus for every a < s < t < b, it holds

$$u'_{k_j}(t) - u'_{k_j}(s) = \int_s^t g_{\mathcal{F}_{\kappa}}(u'_{k_j}(\tau)/\tau, u'_{k_j}(\tau), u_{k_j}(\tau), f_{k_j}(\tau), \tau) d\tau.$$

Noting that $u_{k_j} \to u$ strongly in $C^1_{loc}(a, b)$, from Lemma 2.2 and Lebesgue's dominated convergence theorem, we obtain

$$u'(t) - u'(s) = \int_s^t g_{\mathcal{F}_{\kappa}}(u(\tau)/\tau, u'(\tau), u(\tau), f_0(\tau), \tau) d\tau$$

for each a < s < t < b. This means $u''(r) = g_{\mathcal{F}_{\kappa}}(u'(r)/r, u'(r), u(r), f_0(r), r)$, so does $\mathcal{F}_{\kappa}[u] + f_0 = 0$.

Define $X_{\rm N} \subset W^{2,q}_{\rm r}(a,b)$ by

$$X_{\rm N} := \{ f \in W_{\rm r}^{2,q}(a,b) : f > 0 \text{ in } [a,b), f(b) = 0, f'(b) < 0 \}.$$

We equip $W_{\mathbf{r}}^{2,q}(a,b)$ norm into $X_{\mathbf{N}}$. Then, in view of Lemma 6.2, we see that $T_{\mathbf{N}}f \in X_{\mathbf{N}}$ if $f \in X_{\mathbf{N}}$ and $T_{\mathbf{N}}: X_{\mathbf{N}} \to X_{\mathbf{N}}$ is continuous.

Next for each $f \in X_N$, we define R_N by

$$R_{N}f(r) := \begin{cases} T_{N}f(r)/f(r) & \text{if } r \in [a,b), \\ (T_{N}f)'(b)/f'(b) & \text{if } r = b, \end{cases}$$

It follows from (r-F3) that for any $t \ge 0$ and $f \in X_N$,

(24)
$$R_{\rm N}(tf)(r) = R_{\rm N}f(r).$$

Lemma 6.3. The following hold:

- (i) If $f \in X_N$, then $R_N f \in C([a, b])$ and $0 < \min_{[a, b]} R_N f \le \max_{[a, b]} R_N f < \infty$.
- (ii) The map $R_N: X_N \to C([a,b])$ is continuous.

Proof. Noting L'Hôpital's rule, it is easy to see that the assertion (i) holds. We turn to the assertion (ii). Let $f_n, f_0 \in X_N$ satisfy $f_n \to f_0$ strongly in $W^{2,q}_{\mathbf{r}}(a,b)$. By Lemma 6.2, $T_N f_n \to T_N f_0$ strongly in $W^{2,q}_{\mathbf{r}}(a,b)$. In particular, we have $f_n \to f_0$ and $T_N f_n \to T_N f_0$ strongly in $C^1_{loc}((a,b])$ and C([a,b]). Since $f_0(0) > 0$, $R_N f_n \to R_N f_0$ uniformly in $[a,a+\delta]$ for some $\delta > 0$.

On the other hand, we see that

$$R_{\rm N}f_n(r) = \left(\int_{a+\delta}^r (T_{\rm N}f_n)'(s)ds + T_{\rm N}f_n(a+\delta)\right) / \left(\int_{a+\delta}^r f_n'(s)ds + f_n(a+\delta)\right),$$

$$R_{\rm N}f_0(r) = \left(\int_{a+\delta}^r (Tf_0)'(s)ds + T_{\rm N}f_0(a+\delta)\right) / \left(\int_{a+\delta}^r f_0'(s)ds + f_0(a+\delta)\right).$$

From these expressions, $R_N f_n \to R_N f_0$ uniformly in $[a+\delta,b]$. Thus we complete the proof.

Lemma 6.4. Let $f \in X_N$ and $u = T_N f$. Then

$$\min_{[a,b]} R_{\mathbf{N}} f \leq \min_{[a,b]} R_{\mathbf{N}} u \leq \max_{[a,b]} R_{\mathbf{N}} u \leq \max_{[a,b]} R_{\mathbf{N}} f.$$

Moreover, if $\min_{[a,b]} R_N f = \min_{[a,b]} R_N u$, then

$$T_{\mathrm{N}}u = \left(\min_{[a,b]} R_{\mathrm{N}}f\right)u$$
 in $[a,b]$.

Proof. Set $v := T_N u$ and $\theta = \min_{[a,b]} R_N f$. Since $\theta f \leq u$ in [a,b], it follows from (r-F3) that $\mathcal{F}_{\kappa}[v] + \theta f \leq 0 = \mathcal{F}_{\kappa}[\theta u] + \theta f$ in (a,b). Thus Proposition 4.1 yields $\theta u(r) \leq v(r)$ for all $r \in [a,b]$, which implies $\min_{[a,b]} R_N u = \theta \leq \min_{[a,b]} R_N u$. In a similar way, one can show $\max_{[a,b]} R_N u \leq \max_{[a,b]} R_N f$.

Next we suppose $\theta = \min_{[a,b]} R_N f = \min_{[a,b]} R_N u$. Setting $v := T_N u$, then we have $\theta u \leq v$.

On the other hand, by (r-F2) and $\theta f \leq u$ in [a, b], we can prove

$$0 = \mathcal{F}_{\kappa}[v] + u - \mathcal{F}_{\kappa}[\theta u] - \theta f \ge \mathcal{P}^{-}[w] - \beta |w'| - (\gamma + |\kappa|)w \quad \text{in } (a, b)$$

where $w(r) := v(r) - \theta u(r) \ge 0$. Thus by Proposition 4.2, it holds either $w \equiv 0$ in [a,b] or w(r) > 0 for any $r \in [a,b)$ and w'(b) < 0. If the latter case happens, then we obtain $\theta < \min_{[a,b]} R_{\rm N} u$. This is a contradiction, hence $v \equiv \theta u$ holds.

Proof of Theorem 6.1. First we remark that it is sufficient to prove for (μ_N^+, φ_N^+) . Indeed, set $\mathcal{G}(m, l, p, u, r) := -\mathcal{F}(-m, -l, -p, -u, r)$. Then \mathcal{G} satisfies (r-F1)-(r-F3) if and only if \mathcal{F} satisfies (r-F1)-(r-F3). Furthermore, let $(\nu^+, \psi^+) \in \mathbb{R} \times W_r^{2,q}(a,b)$ satisfy $\mathcal{G}[\psi^+] + \nu^+ \psi^+ = 0$ in (a,b) with $\psi(b) = 0$ and $\psi'(a) = 0$ if a > 0. Then it is easily seen that $(\nu^+, -\psi^+)$ is a negative eigenpair of \mathcal{F} . Therefore, it is enough to show for (μ_N^+, φ_N^+) .

Now we prove the existence of (μ_N^+, φ_N^+) . Let $f_0 \in X_N$ satisfy $||f||_{L^{\infty}(a,b)} = 1$ and define u_n and f_n as follows:

$$u_n(r) := T_N f_{n-1}(r)$$
 and $f_n(r) := u_n(r) / ||u_n||_{L^{\infty}(a,b)}$

Set also $\theta_n := \min_{[a,b]} R_N u_n$ and $\Theta_n := \max_{[a,b]} R_N u_n$. First, note that (u_n) is bounded in $W^{2,q}_{\mathbf{r}}(a,b)$ from (22). Second, by Lemma 6.4, we have $0 < \theta_n \le \theta_{n+1} \le \Theta_{n+1} \le \Theta_n$. So we assume $\theta_n \to \theta > 0$. Furthermore, noting $R_N u_n = R_N f_n$ by (24), it holds that

$$\theta_n f_n(r) \le u_{n+1}(r) \le \Theta_n f_n(r)$$
 for all $r \in [a, b]$,

which implies $\theta_n \leq ||u_n||_{L^{\infty}(a,b)} \leq \Theta_n$.

Now we assume $q < \infty$. Taking a subsequence if necessary, we may suppose that there exists a $u \in W^{2,q}_{\mathbf{r}}(a,b)$ such that $u_{n_k} \rightharpoonup u$ weakly in $W^{2,q}_{\mathbf{r}}(a,b)$. Furthermore, $\theta \leq \|u\|_{L^{\infty}(a,b)}$ holds, which implies $f_{n_k} = u_{n_k}/\|u_{n_k}\|_{L^{\infty}(a,b)} \rightarrow u/\|u\|_{L^{\infty}(a,b)}$ strongly in $L^{\infty}(a,b)$. Thus $u_{n_k+1} = T_{\mathbf{N}}f_{n_k} \rightarrow T_{\mathbf{N}}u/\|u\|_{L^{\infty}(a,b)} =: v$ strongly in $W^{2,q}_{\mathbf{r}}(a,b)$ from Lemma 6.2. By Lemma 6.3, we obtain

$$\min_{[a,b]} R_{\mathbf{N}} v = \lim_{k \to \infty} \min_{[a,b]} R_{\mathbf{N}} u_{n_k+1} = \lim_{n_k \to \infty} \theta_{n_k+1} = \theta.$$

Since $R_N(T_Nu_{n_k+1}) = R_N(T_Nf_{n_k+1}) = R_Nu_{n_k+2}$ holds, we also have

$$\min_{[a,b]} R_{\mathcal{N}}(T_{\mathcal{N}}v) = \lim_{n_k \to \infty} \min_{[a,b]} R_{\mathcal{N}}u_{n_k+2} = \theta.$$

Hence, by Lemma 6.4, one can show $T_N v \equiv \theta v$ in [a, b], which implies that $(\mu^+, \varphi^+) = (\theta^{-1} + \kappa, v)$ is a positive eigenpair of (3).

When $q = \infty$, from the boundedness of (u_n) in $W_r^{2,\infty}(a,b)$, there exist a subsequence (u_{n_k}) and u such that $u_{n_k} \to u$ weakly in $W_r^{2,m}(a,b)$ for each $m \in \mathbb{N}$ with $m \geq N$. We remark that T_N and R_N depend on q and to stress it, here we write $R_{N,q}$ and $T_{N,q}$. If $f \in W_r^{2,q_1}(a,b) \cap W_r^{2,q_2}(a,b)$ with $q_1 < q_2$, then we can prove $T_{N,q_1}f = T_{N,q_2}f$. Thus repeating the above argument, the pair $(\theta^{-1} + \kappa, T_N u/\|u\|_{L^{\infty}(a,b)})$ is a positive eigenpair in $\mathbb{R} \times W_r^{2,m}(a,b)$ for every $m \geq N$. Moreover, since $\|u\|_{W_r^{2,m}(a,b)} \leq C \sup_{n\geq 1} \|u_n\|_{W_r^{2,\infty}(a,b)}$ for all $m\geq N$, we have $u \in W_r^{2,\infty}(a,b)$, which completes the proof.

Next, we prove the simplicity of the principal eigenpairs.

Proposition 6.5. Let $0 < b \le R$, $(\mu, \varphi) \in W_r^{2,q}(0,b)$ satisfy $\mathcal{F}[\varphi] + \mu \varphi = 0$ a.e. in (0,b), $\varphi \ge 0$, $\varphi \not\equiv 0$ and $\varphi(b) = 0$. Then there exists a $\theta > 0$ such that $(\mu, \varphi) = (\mu_N^+, \theta \varphi_N^+)$ holds. Similarly, the simplicity of (μ_N^-, φ_N^-) also holds.

Proof. First we remark that for any $\kappa \in \mathbb{R}$, (μ, φ) satisfies $\mathcal{F}_{\kappa}[\varphi] + (\kappa + \mu)\varphi = 0$ a.e. in (0,b). Furthermore, taking $\kappa > 0$ sufficiently large, we may assume $\kappa + \mu > 0$, $\kappa + \mu_{\rm N}^+ > 0$ and $\sigma_{\kappa} < 1$ defined in (17). Since $\varphi \not\equiv 0$, it follows from Lemma 6.2 that $\varphi > 0$ in [0,b) and $\varphi'(b) < 0$.

Now we assume $\mu_{N}^{+} \leq \mu$ and set $\theta := \inf_{[0,b)} \varphi/\varphi^{+}$. Noting $\theta \varphi^{+} \leq \varphi$ in [0,b) and (r-F3), we obtain

$$\mathcal{F}_{\kappa}[\varphi] = -(\kappa + \mu)\varphi \leq -(\kappa + \mu_{\mathrm{N}}^{+})\theta\varphi_{\mathrm{N}} = \mathcal{F}_{\kappa}[\theta\varphi_{\mathrm{N}}^{+}] \quad \text{a.e. in } (0,b).$$

Thus

$$\mathcal{P}^-[w] - \beta |w'| - (\gamma + \kappa)w \le 0$$
 a.e. in $(0, b)$

where $w := \varphi - \theta \varphi_{\rm N}^+$. By Proposition 4.2, we see either $w \equiv 0$ in [0,b] or w > 0 in [0,b) and w'(b) < 0 holds. If the latter case happens, then $\theta < \inf_{[0,b)} \varphi/\varphi_{\rm N}^+$ holds, which is a contradiction. Thus $\varphi \equiv \theta \varphi_{\rm N}^+$ and $\mu = \mu_{\rm N}^+$ hold.

In the case where $\mu < \mu_N^+$, exchanging the role of φ and φ_N^+ in the above, we get the same conclusion. For the negative eigenpair, it is reduced to the positive case by using the function $\mathcal{G}(m,l,p,u,r) = -\mathcal{F}(-m,-l,-p,-u,r)$.

By Proposition 6.5, the positive and negative eigenvalue of \mathcal{F} in [0, b] are unique for each $b \in (0, R]$. Thus we denote them by $\mu_{\mathbf{N}}^+(0, b)$ and $\mu_{\mathbf{N}}^-(0, b)$, respectively.

Proposition 6.6. Let $0 < b_1 < b_2 \le R$. Then $\mu_N^{\pm}(0,b_2) < \mu_N^{\pm}(0,b_1)$ holds. Furthermore, the functions $b \mapsto \mu_N^{\pm}(0,b)$ are continuous in (0,R] and $\mu_N^{\pm}(0,b) \to \infty$ as $b \to 0$.

Proof. We only show for $\mu_N^+(0,b)$. Now we argue by contradiction. Suppose $\mu_2 := \mu_N^+(0,b_2) \le \mu_N^+(0,b_1) := \mu_1$ and denote the corresponding eigenfunctions by φ_1 and φ_2 , respectively. Put $\theta := \inf_{[0,b_1]} \varphi_2/\varphi_1$. Then $\theta \varphi_1 \le \varphi_2$ in $[0,b_1)$. Thus as in the above,

$$\mathcal{P}^{-}[w] - \beta |w'| - (\kappa + \gamma)w \leq 0$$
 a.e. in $(0, b_1)$

and w(b) > 0 where $w := \varphi_2 - \theta \varphi_1$. So Proposition 4.2 tells us that w > 0 in $[0, b_1]$, which contradicts to the definition of θ . Thus we get $\mu_1 > \mu_2$.

Next, we show the continuity of $\mu_{\rm N}^+$. Let $b_n \to b_0 > 0$, $\mu_n := \mu_{\rm N}^+(0, b_n)$ and φ_n be a corresponding positive eigenfunction with $\|\varphi_n\|_{L^\infty(0,b_n)} = 1$. Furthermore, by extending φ_n into $[b_n, R]$ appropriately, we suppose $\varphi_n \in W^{2,q}_{\rm r}(0,R)$. We may also assume $b_0/2 \le b_n \le R$ without loss of generality.

By the monotonicity of $\mu_{\rm N}^+$, we have $\mu_{\rm N}^+(0,R) \leq b_n \leq \mu_{\rm N}^+(0,b_0/2)$. So it follows from (22) that (φ_n) is bounded in $W_{\rm r}^{2,q}(0,R)$. Thus in the case where $q < \infty$, taking a subsequence if necessary, we may suppose $\varphi_{n_k} \rightharpoonup \varphi_0$ weakly in $W_{\rm r}^{2,q}(0,R)$ and $\mu_{n_k} \to \mu_0$. As in the proof of Proposition 6.1, one can show that (μ_0,φ_0) is an eigenpair with $\|\varphi_0\|_{L^\infty(0,b_0)} = 1$ and $\varphi_0 > 0$ in $[0,b_0)$. Thus it holds from the simplicity of the positive eigenvalue, $\mu_0 = \mu_{\rm N}^+(0,b_0)$ holds. Therefore the uniqueness of the limit implies $\mu_n \to \mu_{\rm N}^+(0,b_0)$. The case $q = \infty$ can also be treated similarly.

Lastly, we show $\mu_{N}^{+}(0,b) \to \infty$ as $b \to 0$. Let (μ_{b}, φ_{b}) be a positive eigenpair with $\|\varphi_{b}\|_{L^{\infty}(0,b)} = 1$. Then we have $\mathcal{P}^{+}[\varphi_{b}] + \beta|\varphi'_{b}| + (\gamma + |\mu_{b}|)\varphi_{b} \geq 0$ a.e. in (0,b). Using Lemma 3.5, we obtain

$$1 = \max_{[0,b]} \varphi_b \le C_3 b^{(2q-N)/q} \|(\gamma + |\mu_b|) \varphi_b\|_{L^q_r(0,b)} \le C_3 b^{(2q-N)/q} \|\gamma + |\mu_b|\|_{L^q_r(0,b)}.$$

The above inequality shows $|\mu_b| \to \infty$ as $b \to 0$. Furthermore, it follows the monotonicity of μ_b that $\mu_b \to \infty$ as $b \to 0$.

7 Existence of general Eigenpairs

In this section, we shall prove Theorem 1.2. First we prove the existence and simplicity of general eigenpairs.

Theorem 7.1. Assume $N \geq 2$, $q \in (\max\{N/2, q_*\}, \infty]$, (r-F1)-(r-F3) with $\Lambda < \infty$ and $\beta \in L_r^N(0, R)$ if q < N.

(i) For each $n \in \mathbb{N}$, there exist eigenpairs $(\mu_n^{\pm}, \varphi_n^{\pm}) \in \mathbb{R} \times W_{\mathbf{r}}^{2,q}(0, R)$ of (3) and sequences $(r_{n,i}^{\pm})_{i=0}^n \subset [0, R]$ such that

$$\begin{cases} 0 = r_{n,0}^+ < r_{n,1}^+ < \dots < r_{n,n}^+ = R, \ 0 = r_{n,0}^- < r_{n,1}^- < \dots < r_{n,n}^- = R, \\ (-1)^{j-1} \varphi_n^+(r) > 0 \text{ in } (r_{n,j-1}^+, r_{n,j}^+) \text{ for } j = 1, \dots, n, \\ (-1)^j \varphi_n^-(r) > 0 \text{ in } (r_{n,j-1}^-, r_{n,j}^-) \text{ for } j = 1, \dots, n, \\ \varphi_n^+(0) > 0 > \varphi_n^-(0). \end{cases}$$

(ii) Let $(\mu, \varphi) \in \mathbb{R} \times W_r^{2,q}(0, R)$ be an eigenpair of (3) and have n-1 zeroes $(t_j)_{j=1}^{n-1}$ in (0, R). Then there exists a $\theta > 0$ such that either $(\mu, \varphi) = (\mu_n^+, \theta \varphi)$ or $(\mu, \varphi) = (\mu_n^-, \theta \varphi)$ holds.

To prove Theorem 7.1, we introduce the following eigenvalue problems: for each $0 < a < b \le R$,

(25)
$$\mathcal{F}[u] + \mu u = 0$$
 a.e. in (a, b) , $u \in W_{\mathbf{r}}^{2,q}(a, b)$, $u > 0$ in (a, b) , $u(a) = u(b) = 0$.

Now we define \mathcal{H} by

$$\mathcal{H}(m, p, u, x) := \mathcal{F}(m, p/x, p, u, x) : \mathbb{R}^3 \times (a, b) \to \mathbb{R}.$$

Note that \mathcal{H} satisfies (F1)-(F3) in (a,b) and for u(x)=u(|x|), $\mathcal{F}[u]+\mu u=0$ in (a,b) if and only if $\mathcal{H}(u''(x),u'(x),u(x),x)+\mu u(x)=0$ in (a,b). Thus we can apply Theorem 1.1 and obtain the following result.

Proposition 7.2. For any $0 < a < b \le R$, (25) has positive and negative eigenpairs $(\mu_D^{\pm}, \varphi_D^{\pm})$ which are simple. If we denote the unique positive and negative eigenvalues on [a, b] by $\mu_D^{\pm}(a, b)$ and $\mu_D^{\pm}(a, b)$, then

- (i) $\mu_{\mathrm{D}}^{\pm}(a_1, b_1) < \mu_{\mathrm{D}}^{\pm}(a_2, b_2)$ if $[a_2, b_2] \subset [a_1, b_1]$ and $[a_2, b_2] \neq [a_1, b_1]$.
- (ii) The maps $(a, b) \mapsto \mu_{\mathbb{D}}^{\pm}(a, b) : \{(a, b) \in \mathbb{R}^2 : 0 < a < b < R\} \to \mathbb{R}$ are continuous.
- (iii) As $\varepsilon \to 0$, $\inf\{\mu_{\mathcal{D}}^{\pm}(a,b): 0 < a < b \le R, b-a < \varepsilon\} \to \infty$.

The following two lemmas can be shown as in [13], so we omit a proof.

Lemma 7.3. Let $h:(0,R) \to (0,R)$ be a nondecreasing continuous function such that $f(s) \leq s$ in (0,R). Then there exists unique functions $\tau^{\pm}:(0,R] \to (0,R)$ such that $\tau^{\pm}(t) < t$ and $\mu_{\rm N}^{+}(0,h(\tau^{\mp}(t))) = \mu_{\rm D}^{\mp}(\tau^{\mp}(t),t)$ for each $t \in (0,R]$. Furtheremore, the functions τ^{\pm} are continuous and strictly increasing in (0,R].

Lemma 7.4. Let $n \in \mathbb{N}$ and $(r_j)_{j=0}^n, (s_j)_{j=0}^n \subset [0, R]$ be increasing sequences such that $r_0 = s_0 = 0$ and $r_n = s_n = R$. Then there exist $j, k \in \{1, \ldots, n\}$ such that $[r_{j-1}, r_j] \subset [s_{j-1}, s_j]$ and $[s_{k-1}.s_k] \subset [r_{k-1}, r_k]$.

Now we give a proof of Theorem 7.1.

Proof of Theorem 7.1. As in Proposition 6.1, it is enough to show only for (μ_n^+, φ_n^+) . First we treat the existence.

We show that for any $n \in \mathbb{N}$, there is a sequence $(r_{n,j}(t))_{j=1}^n$ of functions on (0, R] such that

- (26) $a < r_{n,1}(t) < r_{n,2}(t) < \ldots < r_{n,n}(t) = t \text{ for every } t \in (0, R],$
- (27) $r_{n,j}(t)$ is continuous and strictly increasing on (0, R],
- (28) $\mu_{\mathcal{D}}^{s_j}(r_{n,j-1}(t), r_{n,j}(t)) = \mu_{\mathcal{D}}^+(0, r_{n,1}(t)) \text{ for all } t \in (0, R] \text{ and } j \ge 2.$

Here s_j stands for the symbol + if j is odd and - if j is even.

For n=1, the function $r_{1,1}(t)=t$ clearly satisfies (26)-(28). We show by induction, so suppose that there is a sequence $(r_{n,j})_{j=1}^n$ satisfying (26)-(28). We apply Lemma 7.3 to obtain an increasing continuous function τ on (0,R] such that $\tau(t) < t$ and $\mu_N^+(0,r_{n,1}(\tau(t))) = \mu_D^{s_{n+1}}(\tau(t),t)$ for all $t \in (0,R]$. Now define $r_{n+1,j}(t) = r_{n,j} \circ \tau(t)$ for every $1 \le j \le n$ and $r_{n+1,n+1}(t) = t$. Then it is easily seen that (26) and

(27) hold. Furthermore, since $r_{n,n}(t) = t$ and $\mu_{N}^{+}(0, r_{n,1}(t)) = \mu_{D}^{s_{j}}(r_{n,j-1}(t), r_{n,j}(t))$ for each $2 \le j \le n$ and $t \in (0, R]$, we have

$$\mu_{\mathrm{D}}^{s_{n+1}}(r_{n,n}\circ\tau(t),t)=\mu_{\mathrm{N}}^{+}(0,r_{n,1}\circ\tau(t))=\mu_{\mathrm{D}}^{s_{j}}(r_{n,j-1}\circ\tau(t),r_{n,j}\circ\tau(t))$$

for any $t \in (0,R]$ and $2 \leq j \leq n$. Hence $(r_{n+1,j}(t))_{j=1}^{n+1}$ satisfies (26)–(28). Now we prove the existence for $n \geq 2$. Set $r_{n,0}^+ = 0$, $r_{n,j}^+ = r_{n,j}(R)$ for each $j=1,\ldots,n$ and $\mu_n^+ = \mu_N^+(0,r_{n,1}^+)$. Then by (28), $\mu_n^+ = \mu_D^{sj}(r_{n,j-1}^+,r_{n,j}^+)$ holds for all $2 \leq j \leq n$. Let $\varphi_{n,1} \in W_r^{2,q}(r_{n,0}^+,r_{n,1}^+)$ be a positive eigenfunction corresponding to $\mu_N^+(r_{n,0}^+,r_{n,1}^+)$ and $\varphi_{n,j} \in W_r^{2,q}(r_{n,j-1}^+,r_{n,j}^+)$ an eigenfunction corresponding to $\mu_D^{sj}(r_{n,j-1},r_{n,j})$. Then we obtain $(-1)^{j-1}\varphi_{n,j} > 0$ in $(r_{n,j-1}^+,r_{n,j}^+)$ and

(29)
$$(-1)^{j} \varphi'_{n,i}(r_{n,i}^{+} - 0) > 0 \quad \text{and} \quad (-1)^{k-1} \varphi'_{n,k}(r_{n,k}^{+} + 0) > 0$$

for every $1 \le j \le n$ and $2 \le k \le n$. Thus we can find a sequence $(\theta_j)_{j=1}^n$ of positive numbers such that

(30)
$$\theta_1 = 1$$
, $\theta_{i-1}\varphi'_{i-1}(r^+_{n,i-1} - 0) = \theta_j\varphi'_i(r^+_{n,i-1} + 0)$ for any $j = 2, \ldots, n$.

Define φ_n^+ by

$$\varphi_n^+(r) := \theta_j \varphi_{n,j}(r) \quad \text{if } r \in [r_{n,j-1}^+, r_{n,j}^+] \text{ and } 1 \le r \le n.$$

From (30), $\varphi \in W_{\mathbf{r}}^{2,q}(0,R)$ and (μ_n^+, φ_n^+) is an eigenpair of (3) with $(-1)^{j-1}\varphi_n^+(r) > 0$ in $(r_{n,j-1}^+, r_{n,j}^+)$ and $\varphi_n^+(0) > 0$.

Next we deal with the assertion (ii). When n = 1, the claim holds from Proposition 6.5, hence let $n \geq 2$ and $(\mu, \varphi) \in \mathbb{R} \times W^{2,q}_{\mathbf{r}}(0,R)$ be an eigenpair of (3) with n-1 zeroes $0 < t_1 < \ldots < t_{n-1} < R$. Set $t_0 = 0$ and $t_n = R$. It is enough to show the claim in the case where $\varphi > 0$ in $[t_0, t_1)$.

By Lemma 7.4, there exist $j, k \in \{1, ..., n\}$ satisfying $[r_{n,j-1}, r_{n,j}] \subset [t_{j-1}, t_j]$ and $[t_{k-1}, t_k] \subset [r_{n,k-1}, r_{n,k}]$. Note that $(-1)^{m-1}\varphi_{n,m}^+ > 0$ in $(r_{n,m-1}, r_{n,m})$ and $(-1)^{m-1}\varphi>0$ in (t_{m-1},t_m) for all $1\leq m\leq n$. We also remark that $\mu=\mu_N^+(0,t_1)=$ $\mu_{\mathcal{D}}^{s_m}(t_{m-1},t_m)$ and φ is an eigenfunction on $(0,t_1)$ and (t_{j-1},t_j) corresponding to $\mu_{\rm N}^{\mp}(0,t_1)$ and $\mu_{\rm D}^{s_m}(t_{m-1},t_m)$ for $2 \leq m \leq n$. Hence by Propositions 6.6 and 7.2, we obtain $\mu_n^+ \leq \mu$ and $\mu \leq \mu_n^+$, which implies $\mu = \mu_n^+$. Furthermore, again by Propositions 6.6 and 7.2, we see that $r_{n,j}^+ = t_j$ for all $1 \leq j \leq n$ and there exists a sequence $(\theta_j)_{j=1}^n$ of positive numbers satisfying $\varphi = \theta_j \varphi_{n,j}$ on $[r_{n,j-1}^+, r_{n,j}^+]$ for each $j=1,\ldots,n$. Noting that φ is of class C^1 and (29), $\theta_j\equiv\theta>0$ holds for $1\leq j\leq n$. This completes the proof.

Proof of Theorem 1.2. By Proposition 7.1, it is sufficient to prove the completeness of $\{(\mu_n^{\pm}, \varphi_n^{\pm})\}_{n=1}^{\infty}$. Let $(\mu, \varphi) \in \mathbb{R} \times W_r^{2,q}(0, R)$ be an eigenpair of (3). Then in view of Proposition 7.1, we only show that $\varphi(0) \neq 0$ and φ has finitely many zeroes in (0, R).

First we show that there is no accumulation point in (0, R) of zeroes of φ . We argue by contradiction and suppose that $(r_n)_{n=1}^{\infty}$ is a sequence of zeroes of φ satisfying $r_n \neq r_m$ if $n \neq m$ and $r_n \rightarrow r_0 \in (0, R)$. Then by Rolle's theorem, we see that $\varphi(r_0) = \varphi'(r_0) = 0$. Then $\varphi \equiv 0$ holds from Proposition 2.3, which is a contradiction. Hence there is no accumulation point of zeroes of φ in (0, R).

Next we consider the case where 0 is an accumulation point of zeroes of φ . Let $(r_n)_{n=1}^{\infty}$ be a sequence of zeroes of φ . From the above argument, we may assume $r_1 > r_2 > \ldots > 0$. Now choose n so large that

$$C_3 r_n^{(2q-N)/(q-1)} \|(\gamma + |\mu|)\|_{L_{\mathbf{r}}^q(0,R)} < 1$$

where C_3 appears in Lemma 3.5. We may also suppose that $\varphi > 0$ in (r_{n+1}, r_n) and $\varphi(t_n) = \max_{[r_{n+1}, r_n]} \varphi = 1$ for some $t_n \in (r_{n+1}, r_n)$. Then $\varphi'(t_n) = 0$, $\varphi(r_n) = 0$ and $\mathcal{P}^+[\varphi] + \beta|\varphi'| + (\gamma + |\mu|)\varphi \ge 0$ a.e. in (t_n, r_n) . It follows from Lemma 3.5 and the choice of r_n that

$$1 = \max_{[t_n, r_n]} \varphi \le C_3 r_n^{(2q-N)/(q-1)} \| (\gamma + |\mu|) \varphi \|_{L_r^q(t_n, r_n)}$$

$$\le C_3 r_n^{(2q-N)/q} \| (\gamma + |\mu|) \|_{L_r^q(0, R)} < 1,$$

which is a contradiction. Thus φ has finitely many zeroes in [0, R].

Lastly we show $\varphi(0) > 0$. If $\varphi(0) = 0$, then $\mathcal{P}^-[\varphi] - \beta|\varphi'| - (\gamma + |\mu|)\gamma\varphi \le 0$ a.e. in (0,s) for sufficiently small s > 0 since φ has finitely many zeroes. Then Proposition 4.2 yields $\varphi \equiv 0$ on [0,s], which is a contradiction. Hence $\varphi(0) > 0$ holds and we complete the proof.

References

- [1] S. N. Armstrong, Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations, J. Differential Equations, 246 (2009), no. 7, 2958–2987.
- [2] H. Berestycki, On some nonlinear Sturm-Liouville problems, J. Differential Equations, **26** (1977), no. 3, 375–390.
- [3] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), no. 4, 313–345.
- [4] I. Birindelli and F. Demengel, First eigenvalue and maximum principle for fully nonlinear singular operators, Adv. Differential Equations 11 (2006), no. 1, 91–119.
- [5] J. Busca, M. J. Esteban and A. Quaas, Nonlinear eigenvalues and bifurcation problems for Pucci's operators, Ann. Inst. H. Poincaré Anal. Non Linéairé, 22 (2005), no. 2, 187–206.
- [6] L. A. Caffarelli, Interior W^{2,p} estimates for solutions of the Monge-Ampere equation, Ann. of Math. (2) **131** (1990), no. 1, 135–150.
- [7] L. A. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations, American Mathematical Society, Providence, 1995.

- [8] E. N. Dancer, On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 76 (1976/77), no. 4, 283-300.
- [9] S. Fučik, Boundary value problems with jumping nonlinearities, Časopis Pest. Mat. 101 (1976), no. 1, 69–87.
- [10] L. Escauriaza, $W^{2,n}$ a priori estimates for solutions to fully non-linear equations, Indiana Univ. Math. J., 42 (1993), 413-423.
- [11] M. J. Esteban, P. Felmer and A. Quaas, Eigenvalues for radially symmetric fully nonlinear operators. Comm. Partial Differential Equations, 35 (2010), no. 9, 1716–1737.
- [12] P. Fok, Some maximum principles and continuity estimates for fully nonlinear elliptic equations of second order, Thesis (Ph.D.) UCSB, 1996, 82 pp.
- [13] N. Ikoma and H. Ishii, Eigenvalue problem for fully nonlinear second-order elliptic PDE on balls, submitted.
- [14] H. Ishii and Y. Yoshimura, Demi-eigenvalues for uniformly elliptic Isaacs operators, preprint.
- [15] S. Koike and A. Święch, Weak Harnack inequality for fully nonlinear uniformly elliptic PDE with unbounded ingredients, J. Math. Soc. Japan 61 (2009), no. 3, 723–755.
- [16] P.-L. Lions, Bifurcation and optimal stochastic control, Nonlinear Anal., 7 (1983), no. 2, 177-207.
- [17] A. Quaas and B. Sirakov, Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators, Adv. Math., 218 (2008), no. 1, 105-135.
- [18] B. B. Sirakov, Solvability of uniformly elliptic fully nonlinear PDE, Arch. Ration. Mech. Anal., 195 (2010), no. 2, 579–607.
- [19] W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), no. 2, 149–162.
- [20] S. Patrizi, Principal eigenvalues for Isaacs operators with Neumann boundary conditions NoDEA Nonlinear Differential Equations Appl. 16 (2009), no. 1, 79– 107.