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Existence of eigenvalues and eigenfunctions
for radially symmetric fully nonlinear elliptic operators

Norihisa Ikoma (457 BA) !

Department of Pure and Applied Mathematics,
School of Science and Engineering, Waseda University.

1 Introduction

This note is based on a joint work [13] with H. Ishii and we take a slightly different
approach in the radial case from the one in [13]. See also the comments after
Theorem 1.2.

In this note, we consider the eigenvalue problem for fully nonlinear elliptic op-
erator F:

) { F(D*u, Du,u,z) + pu =0 in £,

u=0 on 1.

Here 2 C RY is an open interval (a,b) with —00 < a < b < oo when N = 1,
or an open ball By = Br(0) when N > 2, u : 2 = R and g € R represent
the unknown function (eigenfunction) and constant (eigenvalue), respectively, and
F : S xRY xR x 2 — R is a given function, where SV denotes the space of real
symmetric N x N matrices.

The study of the eigenvalue problem for fully nonlinear elliptic operator goes back
to the work of P.-L. Lions [16] and for the developments we refer to [1, 4, 5, 14, 17, 20]
and to [2, 8, 9] for some earlier related works.

Recently, Busca, Esteban and Quaas [5] and Esteban, Felmer and Quaas [11]
showed the existence of higher eigenvalues and of the corresponding eigenfunctions
in the one-dimensional or the radially symmetric problem. In this note we extend
the results of [11] into the L? framework.

Before giving our assumptions (F1)-(F4) on the function F, we introduce the
Pucci operators P*. Given constants A € (0, co) and A € [}, 00|, P* denote the
Pucci operators defined as the functions on SV given, respectively, by P*(M) =
Pt(M;\ A) =sup{tr AM : A€ SN, My < A< Aly} and P~ (M) = —P*(-M),
where I denotes the N x N identity matrix and the relation, X <Y, is the standard
order relation between X,Y € SV. We remark that in the case A = co, P*(M) = o0
if M £0and PH(M) =AY [_ v if M <0.

(F1) The function F : S¥ x RY x R x 2 — R is a Carathéodory function, i.e., the
function z — F(M, p,u,z) is measurable for any (M,p,u) € SV x RV*! and
the function (M, p,u) — F(M,p,u,z) is continuous for a.a. = € {2.

1The author was supported by Grant-in-Aid for JSPS Fellows 22-1561 and “Japanese-German
Graduate Externship, International Research Training Group " associated with Waseda University
and Technische Universitdt Darmstadt.



(F2) There exist constants A € (0, 00), A € [A o0, ¢ € [1, o0] and functions
B, v € LI(£2) such that

F(Mbplaulax) - F(M2ap21u27x)
<P (My = My) + B(2)|pr = pol + (@) ur — o

for all (M, p1,u1), (Ma, p2,uz) € SV x R¥*! and a.a. z € £2.

(F3) F(tM,tp,tu,z) = tF(M,p,u,x) for all t >0, all (M,p,u) € S¥ x RN+ and
a.a. r € {2

Here we remark that if A = oo and M; £ M,, then the inequality in condition (F2)
is trivially satisfied since P*(M; — M,) = co.
The next condition concerns the radial symmetry in the multi-dimensional case.

(F4) The function F is radially symmetric in the sense that for any (m, 1, q,u) € R*
and a.a. r € (0, R), the function

w Flmw®w+ Iy —w®w), qw, u, Tw)

is constant on the unit sphere SV~ ¢ RV. Here and henceforth z ® z denotes
the matrix in S¥ with the (7, j) entry given by z;z; if z € RV.

We study the eigenvalue problem (1) in the Sobolev space W%4(£2). For any
pair (i, p) € R x (W1(£2) N Wy (2)) which satisfies (1) in the almost everywhere
sense, we call 4 and ¢ an eigenvalue and eigenfunction of (1), respectively, provided
@(z) # 0. We call such a pair an eigenpair of (1).

We state our main results in this note.

Theorem 1.1. Let N = 1 and 2 = (a,b), and assume that (F1), (F2) with A = oo,
and (F3) hold. Then

(i) For any n € N, there exist eigenpairs (uE, o) € R x W?9(a,b) of (1) and
sequences (zx ;)7 C [a, b] such that

a=zhy <Tpy < <TE, =D,
(-1 et (z) >0in (2}, at) forj=1,...,n,

(=1)¢;(z) >0 in (Tnj1:Tny) forj=1,... n

(ii) The eigenpairs {(uZ, o)}, are complete in the sense that for any eigenpair
(1, 0) € R x W4(a,b) of (1), there ezist n € N and § > 0 such that either (u, p) =

(ua,0p7) or (1, ) = (4, 05 holds.

For ¢ € [1,00], let W29(0, R) denote the space of those functions ¢ € W?¢(Bp)
which are radially symmetric. We may identify any function f in W29(0, R) with
a function g on [0, R] such that f(z) = g(|z|) for a.a. = € Bgr and we employ
the standard abuse of notation: f(z) = f(|z|) for z € Bp. We set A\, = A\/A and
g = N/(AN +1-X,) if A < oo. Note that 0 < A\, <1 and q. € [1, N).
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Theorem 1.2. Let N > 2, 12 = Bg, and assume that (F1)-(F4) with A < 0o hold.
Assume also g € (max{N/2 .}, 0] and B € LY(Bg) if g < N. Then:

(i) For each n e N, there ezist eigenpairs (uE,pE) € R x W24(0,R) of (1) and
sequences (77 ;)7 C [0, R] such that

0=r0,n <7'n,1 < - <r,f,n=R,

(=1 7Yf(r) >0 in (r};_,, ,TJ) for j =1,...,n,

(=1Yp5(r) >0 in (r;_y,7n;) for j = ,n,

@n(0) > 0> 7 (0).
(i) The eigenpairs {(uE, )}, are complete in the sense that for any eigenpair
(1, 0) € R x W29(0,R) of (1), there exist n € N and § > 0 such that either
(1, 0) = (i, 007) or (u, ) = (kn, 07 is valid.

In this note we only treat the case where N > 2, i.e., Theorem 1.2. As mentioned

before, we will give a slightly different approach from the one in [13]. In [13], we

take the following approach. For any € > 0 and n > 1, first we show the existence
of solutions of

{ F(D*E,, Duf, uf, z) + pfu;, =0 in Al R),

e € Wz"(E R), (ur.)'(€) =0, uz(R) =0, £ug(e) >0
which have n — 1 zeroes in [¢, R). Here A(e,R) := {x € RV : ¢ < |z| < R} and
W24(e, R) denotes the set consisting of all radial functions in W?9(A(e, R)). Then
let € — 0 and observe that we can extract a subsequence whose limit is an eigenpair

of (1) with the desired properties.
However, in this note, we will show the existence of eigenpairs through the unique

solvability of
F(D%u, Du,u,z) — ku+ f(z) =0 in Br(0), u € W20, R) N Wy**(Bg(0)),

for some k € R and any radial function f € LY(Bg(0)). See, for instance, sections 5
and 6 (Theorems 5.1 and 6.1).

Lastly, we give a remark about the condition on 8 in Theorem 1.2. Our require-
ment on 3 in Theorem 1.2 is only that 8 € L4(Bg) N LY (Bg). This condition seems
relatively sharp from the known results in a priori estimates of solutions to (1). We
refer to [6, 7, 10, 12, 15, 18]. See also Proposition 3.6 in this connection.

2 Preliminaries

Throughout this note, we suppose N > 2. First, we introduce the notations. For
0<a<b< RandqE€ [1,00],
A(a,b):={z e R :a<|z|<b} ifa>0 and A(0,b):= By(0),
L¥(a,b) := {u € LYA(a,b)) : u is radial},
W29(a,b) := {u € W**(A(a,b)) : u is radial},

b
lullZaap) :=/ N Yu(r)|%dr if g€ [1,00) and ||uflreo(ap) = lltllLo(as)-
a
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Note that C*(A(a,b)) := {u € C*°(A(a,b)) : u is radial} is dense in W24(a,b).
Let u be a smooth radial function and we identify u(z) with u(|z|). Then it is
easy to see

2) Du(m)zu’(lx])%, Du(z) = u"(|z|) P, + |(|T|)(IN P) forz£0

where P, denotes the matrix z®z/|z|? = (z;z;/|z|?) which represents the orthogonal
projection in R" onto the one-dimensional space spanned by the vector z.
Next, we introduce a norm in W24(a,b) which is equivalent to the usual norm

| - llw2a(aca,py-

Lemma 2.1. The following norm is equivalent to || - |lwzacag@p) @ W(a,b):

lellwpsy = lullzse + 1v'/7llze, H(ab)-

Proof. First, noting that C>°(A(a,bd)) is dense in W29(a,b), (2) holds for any u €
W24(a,b) and a.a. z € A(a,b). On the other hand, we have

1/2
Pu_, \[* ( W/ (l=)? )
D?u(z)| := z = [u"(|z])]* +
|DPu(a)| @axiax,.”) (e + (v - DI
Thus it is easy to see that || - [[y24(, 5 and || - |lw2a(a(,e)) is equivalent. a

In the rest of this note, we use ||-||;24, ;) instead of the usual norm ||-[lwzaa(a,p)-

Next, we rewrite (1) in the radial form and give some remarks. Assume that F
satisfies (F1), (F2) with A < co and (F4). We fix a point wy € SV¥~! and define the
function F : R* x (0, R) = R by

F(m,l,p,u,7) = F(mwy ® wy + (In — wp ® wo)l, pwo, u, Twp).

We write F[u](r) for F(u"(r), ' (r)/r,u/(r),u(r),r). Thanks to (F4) and (2), (1) is

equivalent to
(3) Flul+ pu=0 ae. in (0,R), u € W20, R), w(R) = 0.
We also introduce radial versions P% : R? — R of the Pucci operators by

() Pt (m,l) =P (mwo ® wo + (In — wp ® wo)l)
=A(my+(N-Dl) = A(m_+(N=-1))

and P~(m,l) = —=P*(—m, —1). Here my := max{+m,0}. By (F2), we have

(5) }-(mlyll:plaular) _-F(m2a127p2au2ar)
<PH(mi —ma,li — ) + B(rw)|p1 — p2| +Y(rw)|us — gl

for all (my,l;,pi,ws) € R4, 4 = 1,2, and a.a. (r,w) € (0,R) x SV~ In view of
Fubini’s theorem in the polar coordinates, we can choose a w € SV~1 which has the
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properties that the inequality (5) holds for all (my, L, pi, u;) € R4, i=1,2, and a.a.
r € (0, R), and the functions 7 — r¥"1(8(rw))?, r — rV~1(y(rw))? are integrable in
(0, R). We fix such an w, call it w;, and, with abuse of notation, we write 8 and v
the functions r — B(rw;) and 7 — ~y(rw,), respectively. In other words, under the
assumptions (F1), (F2) and (F4), we conclude the following:

(F5) There exist functions 3, v € LI(0, R) such that
F(ma, by, pr,u1,7) — F(ma, la, p2, ua,7)
<PH(my —me, by — o) + B(r)|pr — pa| +7(r)lu1 — vz
for all (my,l;, p;,w;) € R, i =1,2, and a.a. r € (0, R).
Since P~(m, 1) = —P*(—m, —1), it holds from (F5) that for all (m;,l;, p;, u;) € R*
and a.a. r € (0, R),
]:(mla llaplaular) - .F(mg, l2ap2a U2,T)
> P~ (my —ma,li = Ig) = B(r)|pr — p2| — ¥(r)|ua — el

(6)

For later use, we rewrite the conditions in terms of F:
(r-F1) The function F is a Carathéodory function.
(r-F2) There exist 8,y € L(0, R) such that

]:(ml,pl)ul’r) _f(m21p2vu27r)
<PH(my —mg,p1 = p2,7) + B(r)|pr — pa| + (7)[ur — e

for all (m;, pi,w;) € R®, i=1,2, and a.a. 7 € (0, R).

(r-F3) F(tm,tl, tp, tu,r) = tF(m,l,p,u,r) for every (m,l,p,u) € R? and a.a. 7 €
(0, R).

In what follows, we shall prove the existence of solutions to (3) under (r-F1)-
(r-F3). In order to show the existence of eigenpairs to (3), the solvability of the
following equations plays an important role under (r-F1), (r-F2) and F[0] € L{(0, R):
foreach0<a<b<R,

(1) Felu] =0 ae. in (a,b), u€ W2 a,b), u(b)=0, v'(a) =0if a >0
where F.(m,l,p,u,7) := F(m,l,p,u,7) — ku and £ € R. The constant « is fixed
later.

To rewrite (7) in the normal form, we use the following lemma (See Lemma 2.1
in [11)).

Lemma 2.2. Under the conditions (r-F1) and (r-F2), the following hold:
(i) There is a unique g = g=(l,p,u,d,7) € R such that F(g,l,p,u,r) = d for any
(I,p,u,d) € R* and a.a. 7 € (0, R).
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(ii) For all (m,l,p,u,d) € R® and a.a. r € (0,R), m < gr(l,p,u,d,r) (resp.
m > gr(l,p,u,d,r) ) if and only if F(m,l,p,u,r) < d (resp. F(m,l,p,u,r) >d).
(iii) The function gr satisfies the following Lipschitz condition:

,g}_(ll)pl)uladl,r) —'g}'(lg,pg,UQ,dQ,'f')l
SATUL(r) ()l = ba| + |py — po| + |ur — ua| + |di — da)

for every (Li,pi,ui,d;) € R* and a.a. 7 € (0,R) where L(r) = max{A(N —
1),8(r),v(r),1}. Furthermore, it holds that for any d € R,

lg7(0,0,0,d,7)| < A7Y|F(0,0,0,0,7) — d|

Proof. (i) Let m; < mgy. Then for each (I,p,u) € R3 and a.a. 7 € (0, R), it follows
from (4) and (r-F2) that

(8) F(mlal’pauﬁ 7') - f(mZ)lapa U,T) < 73+(m1 - m2v0) = _)‘(mQ - ml) <0.

Thus for any (I,p,u) € R® and a.a. 7 € (0, R), we see from (8) that the function
m + F(m,l,p,u,r) is strictly increasing in m and lim,,_,+. F(m,,p,u,7) = to00.
By the intermediate value theorem yields that for all d € R there exists a unique
9=9r(l,p,u,d,r) € R satisfying F(g,l,p,u,r) = d.
The assertion (ii) holds from the strict monotonicity of F(m,,p,u,r) in m.
Next we show the assertion (iii). Let (I1,p1,u1,ds), (I, p2, uz,d2) € R4, g; =
g7 (l;, pi,ui, di,v) and g1 < go. Then it follows from (r-F2) that

di —dy < P* (g1 — 92,11 = ba) + B(r)|p1 — po| + ¥(r)|u1 — ue
= Mg1 — g2) + A(N = D|ly = o] + B(r)|pr — p2| + ¥(7)|us — ua.

Therefore we obtain 0 < g, — g1 < A™L(r)(|l; — lo| + |p1 — pa| + |u1 — ua| + |d1 — da|).
This ensures the Lipschitz continuity of gr. Moreover if g = g(0,0,0,d,7) > 0,
then by (6) we have P~(g,0) < F(g,0,0,0,7) — F(0,0,0,0,7) = d — F(0,0,0,0,7).
Hence 0 < g < A7 Y|d — F(0,0,0,0,7)|. We can also prove in the case where g =
95(0,0,0,d,7) < 0. O

By Lemma 2.2, it is easy to see that F[u|(r) = 0 for a.e. r € (a,b) is equivalent
to u’(r) = gx(w/(r)/r,v'(r),u(r),0,7) for a.e. r € (a,b). Since gr satisfies the
Lipschitz continuity, by the contraction mapping argument, we can show

Proposition 2.3. Under the assumptions (r-F1), (r-F2) and F[0] € L4(0, R), for
each0 <a <b< R, ay,a0 € R, g > 1, there is a unique solution u € W29(a,b) of
Flu)(r) =0 a.e. in (a,b) with u(a) = a; and v'(a) = ay.

Remark 2.4. The similar results to Lemma 2.2 and Proposition 2.3 hold for F,.
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3 Estimates on radial functions

In this section we establish a priori type estimates on functions in W29(a,b), moti-
vated by the boundary value problem (7) under (r-F1), (r-F2) and F[0] € L{(0, R).
Throughout this note we set A, = A/A € (0,1] and g, = N(1+ M\(N - 1)) =
N/(AMN+(1-A)) <N.
The following two lemmas play important roles to derive a priori estimates of
(7). For a proof, see [13].
Lemma 3.1. Let 0 < a < b < R, q € (q.,0], B8 € LY¥(0,R) and f € L¥(a,b).
Let v be a measurable function on [a,b] such that for each ¢ € (a,b), v is absolutely
continuous on [c,b]. Assume that f > 0 a.e. in (a,b), v/r € L(a,b), v >0 in [a,b],
v(a) =0ifa >0 and

V(r) + M(N - 1)1—)¥2 < A1B(rw(r) + Xf(r)  for a.a. T € (a,b).

Then there ezists a constant C; > 0, depending only on A, q, |A"* By, and N,
such that

9) lv/7ll3@) < CLA N FllLoay-

An important point of the above estimate is that the constant C can be chosen
independently of the parameter a.

Lemma 3.2. Let g € (N/2, 00] and 0 < a < b < R. Let u be a function on [a,b]
such that for each c € (a,b], the function u is absolutely continuous on [c,b], u(b) <0
and [|(w)=/T|lLap) < 00. Then there ezists a constant Cz > 0, depending only on
q and N, such that

(b2a-M)/a=D) _ g2a=M)/(@-D)(ID/2 )

supu < Cy —/7llL2ap)-

(arb]

The next lemma concerns the embedding W29(0,b) C C*([0,b]). Note that if
a > 0, then W29(a,b) C C*([a,d]) for any ¢ > 1. For instance, see Berestycki and
Lions (3], Strauss [19].

Lemma 3.3. Let ¢ > N, 0 < a < b < R and u € W29(a,b). Assume in addition
that v'(a) =0 if a > 0. Then

- 1-1 1
Il < R*0q 80 /| g 1 | ey

In particular, W2V (0,b)  C([a,b]) and v/(0) = 0 hold for all u € W2N(0,b).

Proof. 1t is enough to show the above inequality when u is smooth by the density
of C*(A(a,b)) in W29(a,b). Thus we may assume u'(a) = 0.
For any a < r < R, we have

Wl s [ eI Old < R [t o a

< RNl /r

-1
%g(a,b) 1w L2 t)-

Thus the conclusion follows. |



The next lemma is about the estimate of ||5u'|| Lg(4,4)-

Lemma 3.4. Let 1 < q,0<a<b< R andu € W?%(a,b). Assume that u'(a) =0
ifa>0 and B € LY(0,R). Then there exists a constant C > 0, depending only on
g, N and R, such that

”:Bu,”Lg(a,b)
. 1-1 1
< Cmax{||B] rz0,m 18l 0,m} (1671 g0y 0 Ny + I /73 -

Proof. When 1 < g < N, see [13]. In the case where ¢ > N, the claim holds from
Lemma 3.3 since v’ € L*(a, b). a

The following lemma is an Alexandrov-Bakelman-Pucci type inequality.

Lemma 3.5. Let g € (max{N/2,q*},00], 0<a<b< R, B € LI0,R)N LY (0, R),
u € W29(a,b) and f € L¥(a,b). Assume that u(b) = 0, w'(a) = 0 ifa > 0 and u
satisfies

PHu)(r) + B(r)|W' (r)| + f(r) >0 ae. in (a,b).

Then there exists a constant C3 > 0, depending only on X\, A, ¢, N and || 8|y ,r),
such that

_ - _ —1) (g-1)/
r[r;%f(u <Gy (b(zq N/(g-1) _ 4(2a-N)/(a 1)) =2/ “f+“L;'(a,b)-

Proof. Fix any (m,1,d) € R3 such that P+(m,l) +d > 0 and d > 0. Assume that
[ <0. Wehave 0 < M+ AN —1)l+dif m<0and 0 < Am + A(N - 1)l +d if
m > 0. Noting | < 0, we obtain

(10) m+MA(N-=1)1+A"'d>0 forany (m,I,d) € R® with <0 and d > 0.

If we set v = (u/)-, then we have v(r) = —u/(r) and V/'(r) = —u"(r) ae. if
v(r) >0, and v(r) = 0 and v'(r) = 0 a.e. if v(r) < 0. Using (10), we get

—v' = A(N - 1)% + 2718+ A7 f(r) >0 ae. in (a,b).

By Lemma 3.1, there exists a constant C; > 0, depending only on A, ¢, N and
A~ 8|y 0,R), such that

1) =/rllzsesy < CLllAT Fillzsas-
On the other hand, by Lemma 3.2 and u € C([a, b]), there is a C> > 0 such that

rflaicu(r) < 02(b(2q—N)/(q—1) — a(2""N)/("'l))(q’1)/q||(u’)_/rlng(a )
a,b ,

Combining the above two inequalities, we can show our claim. a
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Proposition 3.6. Let 0 < a < b < R, ¢ € (max{N/2,q,},00], 8 € L{0,R) N
LN(0,R), f!, f? € L¥(a,b) and u € W2%(a,b). Assume that

PHu)(r) + Blu| + f1 >0 ae. in (a,b),
P~ [u)(r) — Blv| — f2 <0 ae. in (a,b),
W(a)=0 if a>0, and wu(b)=0.

Then there erists a constant C > 0, depending only on q, A\, A, N, R, ||BllLrvo.r)
and ||B||Ls0, ) Such that

I|u”W,2‘q(a,b) <C (”fi“L?(a,b) + ”fi”L?(a,b)) .
Proof. First note that by the assumption, we have
P [—ul(r) + B(r)|u'(r)| + f*(r) 2 0.
Thus as in the proof of Lemma 3.5, it holds that
(W) /7 20y < Clll)\—lfi“L?(a,b)

where C, depends only on \,, ¢, N and |[A"!8|1y@r). Hence, setting M =
1A fillegaey + IV f3 1l 3oy, We have

(11) /7]l L3ap) < C1M.
Secondly, for each (m,1,d) € R? with m < 0 and P*(m,[) + d > 0, we have
(12) m4+ AN (N =Dl +A1d > 0.

Using (12), P*[u](r)+B(r)|w(r)| + f1(r) 2 0 and P~ [—u](r)+B(r)[w'(r)|+ fa(r) 2 0,

we observe that

(13) lu"| < AJHN - I)IUTII + A8+ AT (fL+ fF) ae. in (a,b).

By Lemma. 3.2 and (11), we can choose a constant C; > 0, depending only on ¢, R
and N, for which we have

(14) [ullLe(@p) < C1CM.

Also, by Lemmas 3.3, 3.4, (11) and Young’s inequality, for each ¢ > 0, we find a
constant C; > 0, depending only on ¢, ¢, N, R, |[A™'8||L¥(,r) and “)\_lﬂ”Lg(o,R),
for which we have

(15) A BY || Loy < ellu’llzap) + C1CsM.
Combining this, with ¢ = 1/2, and (13), we get

1 _ , _
‘2'||U”||L?(a,b) <AHN = D)l /rliLsap + C1CaM + || e+ )l L3 (ap)
<(OJYUN -1)C + C1Cy+ 1)M.

This inequality together with (14) and (15) yields an estimate on ||ul|yzq(, s With
the desired properties. O



Next, for k € R, we recall the definition of F,: Fi(r) := F(m,l,p,u,r) — Ku.
By the definition, we remark that F[0](r) = F,[0](r) holds. Noting (r-F2), if u(r) —
v(r) > 0, then we have

(16) Fi[u](r)=Fu[ol(r) < PH{u—v](r)+B(r)|e (r)=v'(r)|+(7(r) =K)+ (u(r) —v(r)).
Next we define a constant o, by

(17) o 1= CoAT RN\ (y — k) 4[| Lso,)-

Here C3 appears in Lemma 3.5 and we remark that o, — 0 as K — 0.

Proposition 3.7. Suppose (r-F1), (r-F2) and F[0] € L0, R). Assume also that
g € (max{N/2,q.},00], 0. <1,0<a <b < R and u € W>¥a,b) is a solution of
(7). Then there exists a C depending only on q, A, A, N, R, ||B||l~0,r), 18l Ls0, )
17l L2 0,), & such that

[ullwzegap < CIIFIO0l Loy

Proof. If uy # 0, then let 7+ € [a,b) be a maximum point of u,, respectively.

Furthermore, let
b :=inf{r € (r*,b : us(r) = 0} > r*.

Noting u > 0 in [r*,b"], it follows from (16) that for a.a. 7 € (r*,b"),
0 =Fulu](r) = Filu](r) = F[0](r) + F[0)(r)
<P ul(r) + B(r)[W ()] + (v(r) = K)+ur(r) + |F[0](r)].
By Lemma 3.5, we have

+y 2— N/ _ .
u(r*) = max u(r) < RN (y = )+ IFI0] g

<o, max u + CsR*™M9| F(0]| 12 (a)-
From o, < 1, it holds that
[l @sy < CsR*M4(1 = 0) 7| F0] 2(ary-

Similarly, if u_ # 0, then we set u_(r~) = max,<,<p u—(r) > 0, u_(b~) = 0 and
—u > 0in [r~,b”]. Furthermore we can show

0 < PH—u)(r) + ()W ()] + (v — &)_u_ + | F[0](r)] a.e.in (r~,b7).

Repeating the argument in the above, one obtains

lu]lzooay < CsR*N(1 = 0,0) 7 | FI0] |23ty
Thus it holds that

(18) lull @y < CsRZM(L ~ 0) 7 IF IO 23 a)-
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Next, by (r-F2), we have
0= Fulul(r) < PHul(r) + B(r)[w'(r)] + (v(r) + |6Dlu(r)| + | F[0)(r)] a.e. in (a,b),
0> P~ [u)(r) — B(r)|w'(r)] = (v(r) + |&))u(r)] = [F[O)(7)] a.e. in (a,b).
Therefore, Proposition 3.6 and (18) ensure
lullwzas < CUY+ =Dl L@y + IFO]caan)
< Clllullzoo@m Iy + [KlllLe@ey + 1F10] L3ap)) < CIFIO]l 2o
where C depends only on g, A, A, N, R, ||8]|~0,r)> |1Bllzs0, )> 17llL20,p) @and . O

4 Comparison theorem

In this section, we prove a weak maximum principle and strong maximum principle,
respectively. A weak maximum principle for F; is stated as follows.

Proposition 4.1. Let ¢ € (max{N/2,¢*},00], 0, < 1 appearing in (17), 0 < a <
b < R, u,v € W?(a,b) and f,g € Li(a,b). Furthermore, suppose that u,v, f,g
satisfy

Felv] + g < Felu] + f ae. in (a,b)

and v'(a) < u'(a) and u(b) < v(b). Then it follows that

Iﬁez?((u —v) < C3(l—0,)7 ! (b(zq'N)/(‘l_l) - a(zq_N)/(q—l))(q’l)/q I(f—9)+

Li(ab)

Proof. Set w(r) := u(r) — v(r). We may assume maxi, 5 w(r) > 0. Let ro € [a,b) be
a maximum point of w. Furthermore, set r; = min{r € [ro,b] : w(r) = 0}. By the
assumptions, u'(r¢) = 0 holds.

On the other hand, it follows from (16) that

0 < PHw)+ Bl |+ (v —k)sw+ (f — g)+ a.e. in (o, 7).
Applying Lemma 3.5, we obtain

_ - - —1)) (g-1)/
Iﬁ%rw < Cy (b(2q N)/(g-1) _ 4(24-N)/(q 1)) a-h/e Iy — k) sw+ (f - g)+“L3(ro,r1)

- - - —1)\ (g—-1)/
<o Iﬁfﬁcw +Cs (b(zq N)/(g-1) _ 4(2a-N)/(a 1)) =4 1(f = 9)+Ilz2ap):

Since o, < 1, we have the conclusion. O

The next proposition is a version of the strong maximum principle for radial
functions.
Proposition 4.2. Let 0 < a < b < R, ¢ € (max{N/2, q.}, 0], u € W2*¥(a,b),
B € LY (a,b) and v € L¥(a,b). Assume that u > 0 in [a,b] and
P [u] - Blu| —yu <0 ae. in (a,b).

Then either u = 0 in [a,b] or u > 0 in (a,b). Furthermore, max{u(b), —u'(b)} > 0
and max{u(a), v (a)} > 0 holds if a > 0. When a =0, u(0) > 0 holds.



Proof. First we show that if u/(ro) = 0 and u(rg) = 0 for some ry € [a,b] with
ro > 0, then u = 0 in [a,b]. Set v = (v/)_ and w = (¥');. Since u satisfies
P*|—u] + B|v/| + yu > 0 a.e. in (a,b), we observe that

—yu—Pv<v and w <PBw+A4u ae. in (a,b
Y

where B(r) = A~1(8 + A(N — 1)/r) and 4(r) = A~ly(r). Thus by Gronwall’s
inequality, we have

(19) (u)-(t) < /tm F(s)u(s) exp (/ts B(T)dT) ds for all t € (a,ry],
(20) (u)4(t) < /t’y(s)u(s) exp (/stB(T)dT> ds for all t € [ro, b].

7o

We fix € € (a,79) arbitrarily. Then for each r € [e, ro], it follows from (19) that
u(r) = u(r) —u(ro) < / (w)-(8)dt < (ro —€) exp([l[fllLl(s,m))/ F(s)u(s)ds.

Using Gronwall’s inequality again, we get u = 0 in [, ro]. Since £ > 0 is arbitrary,

= 0 in [a,7o). Similarly u = 0 in [rg, b] holds from (20). Hence u = 0 in [a, b].
Moreover, by the above arguments, we see that if u # 0, then max{u(b), —u/(b)} > 0.
Furthermore, max{u(a), v (a)} > 0 holds if a > 0.

Next we treat the case where a = 0. In this case, it is enough to show that u = 0
provided u(0) = 0. We choose a > 0 so small that C;Coa?™/4||v|| 3¢90 < 1 Where
C} and C, appear in Lemmas 3.1 and 3.2.

As in the above, if we set v = (v)4, then we have
v

v 4+ AN - 1)r <A (Bv+vyu) ae. in (0,b).

By Lemma 3.1, we get

10+ /7llzs00) < Crllvullzzoa < Crllvllzsea maxy

where C; > 0 is a constant independent of a. Applying Lemma 3.2 to the function
r— u(c) — u(r), with 0 < ¢ < a, we get

max (u(c) — u(r)) < Coc® M), /r| 30,05

0<r<e ’
where Cy > 0 is a constant independent of ¢ and a. In particular, since u(0) = 0,

we have

max u(c) < Coa™ MY (W) /7|10,

Thus, we get

< C,C,aql29-MN/a )
r[%gfu— 1020 “7“1;?(0,(1)1[%%(“

Since C’lCza@q_N)/qH’yHLg(o‘a) < 1, we find maxjpqu = 0, which implies u = 0 in
[0,a]. Using the previous argument, we can conclude u = 0 in [0, b]. O
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5 Solvability of (7)
This section is devoted to proving that (7) has a unique solution in W29(a,b) under
(r-F1), (1-F2) and F[0] € L(0, R).

Theorem 5.1. Assume F satisfies (r-F1), (1-F2) and F[0] € L(0,R). Let o <1
and q € (max{2/N,q.},00]. Then for each 0 < a < b < R, the equation (7) has a
unique solution u and u satisfies

lullwze@y < ClIF<Olzs0.m

where C depends Only on g, N1 )‘: A) Ra K, “B”LF(O,R)) “ﬂ“L‘,’(o,R) and ”7”L?(O,R)‘

To prove Theorem 5.1, we prepare the next lemma concerning a supersolution
to P+.
Lemma 5.2. Let 0 < a < b < R, q € (max{2/N,q.},00] and f € Li(a,b). Then
there exists a ¢ € W29(a,b) such that ¢ > 0 in [a,b] and
P[]+ Bl¢| + 10+ |f1 <O ae. in(a,b), ¢(b)=0, ¢(r) <O0.

Proof. Let n > 0 and define

b r
(r) = / AOdt where A(t) i= / n(B(s) + +(s) + |f(5)])ds.

a

Then it is easy to see
o(b) =0, ¢'(r)=—e <0, ¢(r) < (b—a)e®,
¢'(r) = —n(B(r) +~(r) + | f(r)])e T

Thus ¢ € W%(a,b) and it holds that

PHg)(r) + B(r)|¢'(r)] +y(r)d(r) + | f(r)]
< (1= nN)B(r)et® + (b — a)e®® — nA)y(r) + (1 — n)| f(7)].

Hence, taking 7 > 0 sufficiently large, we obtain P*[¢] + B|¢'| +v¢ + |f| < 0 ae.
in (a,b), which completes the proof. a

Proof of Theorem 5.1. The uniqueness follows from Proposition 4.1. Furthermore,
the estimates for u also hold from Proposition 3.7. So it is sufficient to show the
existence.

First we assume a > 0. Let ¢ be the function appearing in Lemma 5.2 with
f(r) = |F[0](r)| and set v*(r) := +¢(r). Then we see that F[v*] < 0 < Fi[v7]
a.e. in (a,b), v™(a) < 0 < v*(a) and (v*)'(a) <0 < (v7)'(a).

For any d € R, we denote by u(r : d) the unique solution of F.[u] = 0 a.e. in
(a,b) with u(a : d) = d and v'(a : d) = 0 where v’ stands for du/0r. Such a solution
exists from Remark 2.4. Next we shall prove the following claim:

v (r) < u(r:d) (resp. u(r : d) < v (r)) in [a,b] if d > v*(a) (resp. d < v7(a)).



First we suppose d > v*(a). Then we can take a neighborhood U of a such that
u(r : d) > v*(r) for all r € U. Next set ro := inf{r € (a,b] : u(r : d) = v(r)}.
We argue by contradiction and assume rq € (a,b]. Since Filu] = 0 > Fi[vt] a.e.
in (a,70) and v'(a) < 0 = v/(a), v(re) = u(ry), it follows from Proposition 4.1 that
v —v < 0in [a,79], which is a contradiction. Thus v*(r) < u(r : d) in [a,b] if
d > v*(a). For the other claim, one can prove similarly.

Noting that the function d — wu(b : d) is continuous, we can choose a dy €
[v™(a),v*(a)] such that u(a : dy) = 0. Thus the existence result holds in the case

where a > 0.
Next we consider the case where a = 0. Let (ux) C W29(1/k,b) be a solution of
(7) in (1/k,b). Furthermore, we extend u; by

_Jouk(r) i 1/k<r<b,
ue(r) = u(1/k) f 0<r<1/k.

Then v, € W2%(0,b) since vj(1/k) = 0. Moreover, by Proposition 3.7 and Lemma
3.2, (ux) is bounded in W29(0,b).

Now suppose q # oo. Taking a subsequence if necessary, we may assume vy, — v
weakly in W29(0,b). Note also that v, — vg strongly in C*([e, b]) for each ¢ € (0,b).
Let 0 < s <tand 1/k; < s. Then the from the property of gz, we have

) = () = [ 95, (04, 7)/7, 1, (1), 00 (7, 0, )

Let k; — oo, then we observe from Lemma 2.2 that

¢
156 = 0(5) = | 97 (s4(r)/r,vh(r), wa(r), 0, )i
for every 0 < s < t < b. This means
(1) = gr.(vp(r) /7, v5(r), vo(r),0,7) a.a. 7 € (0,b).

Therefore, vy is a solution of (7).

In the case where ¢ = oo, then for any p < oo, (v4) is bounded in W2?(0,b).
Thus we may assume v, — vo weakly in W2P(0,b). Then as in the above, we can
show v is a solution of (7). Moreover, since [|vo|lyy2r(gp < CbSuPks1 l|vkllwze(y
holds for all p € (N, 00), we have vy € W2>(0,b). Thus we complete the proof. [

6 Existence of Principal Eigenpairs
In this section, we prove the existence of principal eigenpairs for (3).

Theorem 6.1. Let F satisfy (r-F1)-(r-F3), ¢ € (max{N/2,¢,},00] and 0 < a <
b < R. Then there exist pairs (u5, 05) € Rx W29(a, b) satisfying Flog]+udes =0
a.e. in (a,b), oy >0 in [a,b), pE(b) = 0 and (p%)'(a) =0 ifa > 0.
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First we fix a k € R so that
0x = CaA' RNl (y — k)4l s,y < 1.
Next, for every f € L%(a,b), we consider
(21) Felul+f=0 ae. in (a,b), u(b) =0, u€ W>¥a,b), v'(a) =0if a > 0.

Put F(m,l,p,u,r) := Fe(m,l,p,u,r) + f(r). Then it is easy to see that F satisfies
(r-F1), (r-F2) and F[0] € L%(a,b). Hence according to Theorem 5.1, there is a
unique solution © € W?29(a,b) to (21). We introduce the solution mapping 7n:
L3(a,b) = W29(a,b) by T f(r) := u(r). Noting F[0] = f, T satisfies

(22) 1T fllw2agapy < Cllf Lsap

for every f € Li(a,b).

Lemma 6.2. The following hold:

() If f > 0 a.e. (a,b), then (Tnf) > 0 in [a,b]. Furthermore, if f 0, thenTnf >0
in [a,b), (Tnf)'(b) < 0. .

(i) Let fi — fo strongly in L3(a,b). Then Ty fi — Tnfo strongly in W29(a,b).

Proof. (i) Set u(r) = Tnf. Since f is nonnegative, Fi[u] + f = 0 < F,[0] + f in
(a,b). Thus by Proposition 4.1, we have 0 < u in [a,b]. Furthermore, if f # 0, then
u satisfies P~ [u] — B]u'| — (v + |k|)u < 0 a.e. in (a,b). Thus Proposition 4.2 shows
u > 0in [a,b) and v/(b) < 0.

(ii) Next let f, — fo strongly in Li(a,b) and set uk(r) := (Tnfi)(r). For each
k,? € N, we obtain, u}(a) = yj(a) = 0if a > 0, ug(b) = w(b) = 0 and

0= fn[uk] + fr — fx[ul] - N
< PHluk — w] + Blug — wl + (v + K)|ue — wl| + |fe — fil,
0> P lup — w) — Blu — | — (Y+ K)ux —w| —|fx — fil ae. in (a,b).

We apply Proposition 3.6 to get

(23) ”u’k - ul‘ Lg(a,b))-

w2aap < CUIY + &)l La@plluk — wll =@y + L fe — fil

It follows from (22) that (ux) is bounded in W29(a,b). Taking a subsequence, we
may assume ux; — u weakly in W24(a,b) and strongly in L>(a,b). Hence, by (23),
ug, — u strongly in W24(a,b).

Next we show u solves Fy[u] + fo = 0 in (a,b). If we showed this claim, then
by the uniqueness, v = ug holds. Thus the uniqueness of the weak limit implies
ur — ug weakly in W24(a, b). Therefore uy — uo strongly in W29(a,b) from (23).

Since Fi[uk] + fi = 0 in (a, b), we have

() = 07 (e, ()7, (), (), iy (7)),



Thus for every a < s < t < b, it holds

e (€)= iy (5) = [, uy (77, 7)., 0), o (), Tl

Noting that ux, — u strongly in C{ (a,b), from Lemma 2.2 and Lebesgue’s domi-
nated convergence theorem, we obtain

W) =) = [ 95.(ur)/7,(7),u(r), o(r), i

for each @ < s < t < b. This means u”(r) = gz (u'(r)/r, v (1), u(r), fo(r),r), so does
Define Xy C W29(a,b) by
Xn :={f € W%(a,b): f>0inla,b), f(b)=0, f(b) <0}

We equip W2%(a,b) norm into Xy. Then, in view of Lemma 6.2, we see that
Inf € Xy if f € Xy and Ty : Xy — Xy is continuous.
Next for each f € Xy, we define Ry by
TNf(T)/f(r) lf re [CL, b)a
(Tnf)(®)/f(b) ifr=b,
It follows from (r-F3) that for any ¢t > 0 and f € Xy,
(24) Rn(tf)(r) = Rnf(r).

Lemma 6.3. The following hold:
(i) If f € Xn, then Rxf € C([a,b]) and 0 < miny) Ry f < maxpp Rnf < oo.
(ii) The map Ry : Xn — C([a,b]) is continuous.

Rnf(r) = {

Proof. Noting L’Hépital’s rule, it is easy to see that the assertion (i) holds. We
turn to the assertion (ii). Let f,, fo € Xy satisfy f, — fo strongly in W29(a,b). By
Lemma 6.2, Tx f, = Tn fo strongly in W24(a,b). In particular, we have f, — fo and
Tnfn = T fo strongly in Cp.((a,d]) and C([a,d]). Since fo(0) > 0, Rxf, — Bnfo
uniformly in [a, a + 4] for some § > 0.

On the other hand, we see that

Aufolr) = ([ @ty @as+Tunia+a)) /([ s+ fa+a).

+6

Ry fo(r) = (/G;(Tfo)’(s)ds + Tnfola + 6)) / ( a:-é' fo(s)ds + fo(a+ 6)) .

From these expressions, Ry f, — R fo uniformly in [a+ §,b]. Thus we complete the
proof. O
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Lemma 6.4. Let f € Xy and u=Tnf. Then

min Rn f < min Ryu < max Ryu < max Ry f.
nin R/ < poin A < max fvu < 108 NS

Moreover, if minp, 5 Rnf = ming 5 Ryu, then
TNU = (I[Illbl]l RNf) u in [a,b].

Proof. Set v := Tyu and 8 = minj, s Rnf. Since §f < u in [a,b], it follows from
(r-F3) that F,[v] + 0f < 0 = Fi[0u] + 6f in (a,b). Thus Proposition 4.1 yields
Bu(r) < v(r) for all r € [a,b], which implies ming 5 Rnu = 6 < minj s Ryu. In a
similar way, one can show maxi, 3 Rnu < max, s By f.

Next we suppose 6 = minjp Bnf = minp Ryu. Setting v := Tnu, then we
have Gu < v.

On the other hand, by (r-F2) and 8f < u in [a, b], we can prove

0 = Fi[v] + u = Fulfu] - 0f 2 P~ [w] = Blw'| - (v + |shw in (a,b)

where w(r) := v(r) — fu(r) > 0. Thus by Proposition 4.2, it holds either w =0 in
[a,b] or w(r) > 0 for any r € [a,b) and w'(b) < 0. If the latter case happens, then
we obtain 6 < minj, Ryu. This is a contradiction, hence v = fu holds. O

Proof of Theorem 6.1. First we remark that it is sufficient to prove for (L, e1)-
Indeed, set G(m, [, p, u,r) := —F(—m, =1, —p, —u,r). Then G satisfies (r-F1)~(r-F3)
if and only if F satisfies (r-F1)—(r-F3). Furthermore, let (v*,%*) € R x W2%(a,b)
satisfy G[¢*] + vyt =0 in (a,b) with ¥(b) = 0 and 9’(a) = 0 if a > 0. Then it is
easily seen that (v, —4™") is a negative eigenpair of F. Therefore, it is enough to
show for (uf, o7)-

Now we prove the existence of (ug, vy5;). Let fo € Xn satisfy || f|lLe(ap) =1 and
define u,, and f, as follows:

Un(r) == Tnfn-1(r) and fo(r) := una(r)/||tn Lo (@p)-

Set also 6, := mingy Ryu, and ©, = maxpy Rnu,. First, note that (up) is
bounded in W24(a,b) from (22). Second, by Lemma 6.4, we have 0 < 0, < fp41 <
Ons1 < O©,.. So we assume 8, — 6 > 0. Furthermore, noting Ryu. = Rx f, by (24),
it holds that

On fr(7) < Uny1(r) < Onfolr) for all r € [a,b)],

which implies 6, < ||tun||z0(ap) < On.

Now we assume g < oco. Taking a subsequence if necessary, we may suppose that
there exists a u € W294(a,b) such that u,, — u weakly in W29(a,b). Furthermore,
9 < ||lullp(ap) holds, which implies fn, = tn,/||tn,|lL>(ap) = ©/||tllLo(a,p) Strongly
in L®(a,b). Thus w41 = Tnfan, = Tnu/||ul|zoo@ep) =: v strongly in W29(a, b) from
Lemma 6.2. By Lemma 6.3, we obtain

min Ryv = lim min Ryup, 41 = lim 6,41 = 6.
{a,b} k—oo {a,b] ng—00
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Since RN(TnUn,+1) = Rn(Txfoi+1) = RNtn, +2 holds, we also have

i Tyv) = i in RNUp, +2 = 6.
T Rn(Tv) = L, i R

Hence, by Lemma 6.4, one can show Tyv = v in [a, b], which implies that (u*, ¢*) =
(67! + £, v) is a positive eigenpair of (3).

When ¢ = oo, from the boundedness of (u,) in W**(a,b), there exist a sub-
sequence (u,,) and u such that u, — u weakly in W>™(a,b) for each m €
N with m > N. We remark that Ty and Ry depend on ¢ and to stress it,
here we write Ry and T, If f € W29 (a,b) N W2%2(a,b) with ¢, < ¢o, then
we can prove Tng f = Tngf. Thus repeating the above argument, the pair
(071 + &, Tnu/||ullL=(ap) is a positive eigenpair in R x W2™(a, b) for every m > N.
Moreover, since |[ullyamgy < Csup,s; [[tnlpyzoe(qpy for all m > N, we have
u € W2*(a,b), which completes the proof. O

Next, we prove the simplicity of the principal eigenpairs.

Proposition 6.5. Let 0 < b < R, (u,p) € W29(0,b) satisfy Flp] + pp = 0
a.e. in (0,b), ¢ >0, ¢ # 0 and p(b) = 0. Then there exists a § > 0 such that
(1, 0) = (13, 0p%;) holds. Similarly, the simplicity of (kN o) also holds.

Proof. First we remark that for any « € R, (, ) satisfies F[¢] + (k + p)p = 0 a.e.
in (0,b). Furthermore, taking x > 0 sufficiently large, we may assume k + u > 0,
k+uy > 0 and 0, < 1 defined in (17). Since ¢ # 0, it follows from Lemma 6.2 that
® > 0in [0,b) and ¢'(b) < 0.

Now we assume p; < u and set 6 := infjg ) ¢/p+. Noting fp* < ¢ in [0,b) and
(r-F3), we obtain

Felol = —(k + p)p < —(k + pf)bpn = Folfpf] a.e. in (0,d).

Thus
P~ w] = Blw'| — (y+K)w <0 ae. in (0,b)

where w 1= ¢ — 0. By Proposition 4.2, we see either w = 0 in [0,5] or w > 0 in
[0,b) and w'(b) < O holds. If the latter case happens, then 8 < infio) ¢/ f; holds,
which is a contradiction. Thus ¢ = 0¢f; and u = g hold.

In the case where p < ug, exchanging the role of ¢ and oy in the above, we get
the same conclusion. For the negative eigenpair, it is reduced to the positive case
by using the function G(m,,p,u,r) = —F(—m, —1, —p, —u,r). O

By Proposition 6.5, the positive and negative eigenvalue of F in [0, b] are unique
for each b € (0, R]. Thus we denote them by 1;(0,b) and uy(0,b), respectively.

Proposition 6.6. Let 0 < b; < by < R. Then ,uﬁ(O,bg) < uiE(0,b,) holds. Fur-
thermore, the functions b u(0,b) are continuous in (0, R] and pE(0,b) = oo as
b—0.
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Proof. We only show for u(0,b). Now we argue by contradiction. Suppose pg =
15(0,b) < p%(0,b1) == py and denote the corresponding eigenfunctions by ¢; and
9, respectively. Put 6 := infjgy,) p2/@1. Then Op; < 3 in [0,b1). Thus as in the
above,

P-[w] - Blw'| — (k +7)w <0 ae. in (0,b)
and w(b) > 0 where w := 3 — O¢p;. So Proposition 4.2 tells us that w >0 in [0, b1],
which contradicts to the definition of 8. Thus we get u; > po.

Next, we show the continuity of pf. Let by = by > 0, py = p17(0,b,) and @r,
be a corresponding positive eigenfunction with ||¢n||ze(s,) = 1. Furthermore, by
extending ¢, into [b,, R] appropriately, we suppose @, € W24(0, R). We may also
assume by/2 < b, < R without loss of generality. '

By the monotonicity of uf;, we have u(0, R) < b, < ug(0,b0/2). So it follows
from (22) that (o) is bounded in W29(0, R). Thus in the case where ¢ < oo,
taking a subsequence if necessary, we may suppose ¢n, — ©o weakly in W29(0, R)
and pn, — po. As in the proof of Proposition 6.1, one can show that (o, o) is
an eigenpair with ||@ol|z(p) = 1 and @o > 0 in [0,b). Thus it holds from the
simplicity of the positive eigenvalue, o = (0, bo) holds. Therefore the uniqueness
of the limit implies p, — (0, bo). The case ¢ = oo can also be treated similarly.

Lastly, we show p3(0,b) — 0o as b — 0. Let (i, 5) be a positive eigenpair with
b/l L0y = 1. Then we have P*[ps] + Blis| + (7 + |ps])ep > 0 ace. in (0,b). Using
Lemma 3.5, we obtain

L=maxe < Csb® M8 (y + ) psll ooy < Csb®T™™ |y + |sll ao)-
The above inequality shows |us| — 00 as b — 0. Furthermore, it follows the mono-
tonicity of pup that up — oo as b — 0. O

7 Existence of general Eigenpairs

In this section, we shall prove Theorem 1.2. First we prove the existence and sim-
plicity of general eigenpairs.

Theorem 7.1. Assume N > 2, q € (max{N/2,q.},0|, (-F1)—(r-F3) with A < o0
and B € LV(0,R) if ¢ < N.

(i) For each n € N, there exist eigenpairs (uE,of) € R x W20, R) of (3) and
sequences (r5;)7—o C [0, R] such that

O=rfg<ri; < <mp,=R, 0=rpg<ry, <--<rp, =R,
(=17t (r) > 0in (rf,_y,7n;) for j=1,...,n,
(=1Y¢(r) >0 in (r;_1,7ny) for j=1,...,n,
¢n (0) > 0> 0 (0).
(ii) Let (1, ) € R x W29(0, R) be an eigenpair of (3) and have n —1 zeroes (t;)7=1

in (0, R). Then there exists a 6 > 0 such that either (p,p) = (ut,0¢) or (u,¢) =
(i ,0p) holds.
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To prove Theorem 7.1, we introduce the following eigenvalue problems: for each
0<a<b<R,

(25) Flul+pu=0 ae. in(a,b), u€ W2%(a,b), u> 0in (a,b), u(a) = u(b) = 0.
Now we define H by
H(m,p,u,z) := F(m,p/z,p,u,z) : R®x (a,b) = R.

Note that H satisfies (F1)-(F3) in (a,b) and for w(z) = u(|z|), Flu] + pu = 0 in
(a,b) if and only if H(u"(x), v/ (z),u(z), ) + pu(x) = 0 in (a,b). Thus we can apply
Theorem 1.1 and obtain the following result.

Proposition 7.2. For any 0 < a < b < R, (25) has positive and negative eigenpairs
(,u%, ©p) which are simple. If we denote the unique positve and negative etgenvalues
on [a,b] by pi(a,b) and ug(a,b), then

(i) up(a1,b1) < p5(az,b2) if [ag, by C [a1,b1) and [ag, bo] # [as, bi].

(il) The maps (a,b) = pZ(a,b) : {(a,b) €ER?: 0 < a <b< R} = R are continuous.
(iii) Ase = 0, inf{u5(a,b):0<a<b< R, b—a<e} — oo

The following two lemmas can be shown as in [13], so we omit a proof.

Lemma 7.3. Let h: (0,R) — (0, R) be a nondecreasing continuous function such
that f(s) < s in (0, R). Then there exists unique functions T+ : (0, R] — (0, R) such
that 7(t) < t and pF (0, (7 (t))) = pE(77(t),t) for eacht € (0, R]. Furtheremore,
the functions 7+ are continuous and strictly increasing in (0, R).

Lemma 7.4. Let n € N and (r;)}_0, (s;)7—o C [0, R] be increasing sequences such
that ro = so = 0 and r, = s, = R. Then there exist j,k € {1,...,n} such that
[T‘j_l,'f’j] C [Sj_l,Sj] and [sk_l.sk] C [Tk—ly"'k].

Now we give a proof of Theorem 7.1.

Proof of Theorem 7.1. As in Proposition 6.1, it is enough to show only for (u;, 7).
First we treat the existence.

We show that for any n € N, there is a sequence (r,, ;(t))7; of functions on (0, R]
such that

(26) a < 7Tn1(t) <Tna(t) <...<rpa(t) =t for every t € (0, R],
(27) Tn,j(t) is continuous and strictly increasing on (0, R],
(28) 4 (Trj—1(t), T j () = 15 (0,71 (2)) for all t € (0, R] and j > 2.

Here s; stands for the symbol + if j is odd and — if j is even.

For n = 1, the function r;(t) = t clearly satisfies (26)—(28). We show by
induction, so suppose that there is a sequence (r,;)7.; satisfying (26)—(28). We
apply Lemma 7.3 to obtain an increasing continuous function 7 on (0, R] such that
7(t) < tand pf(0,7n,1(7(8))) = gt (7(t), t) for all ¢ € (0, R]. Now define 7,41 ;(t) =
Tn,;0T(t) for every 1 < j < n and rnt1,041(t) = t. Then it is easily seen that (26) and
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(27) hold. Furthermore, since rn.(t) = t and pf(0,mn1(t)) = g (Tag-1(t), Ta(t)
for each 2 < j < n and t € (0, R|, we have

ppt (ram © 7(1),8) = 4 (0,70 0 7(8)) = 4 (T -1 © 7(t), Tnj © 7(1))

for any ¢t € (0, R] and 2 < j < n. Hence (Tn41,;(t) ;‘:11 satisfies (26)—(28).

Now we prove the existence for n > 2. Set rfy = 0, i, = n3(R) for each
j=1,...,nand pf = pf(0,r},). Then by (28), ui = pg (ry ;1,7 ;) holds for
all 2 < j <n. Let po1 € W2I(riy, ;) be a positive eigenfunction correspond-
ing to g (rio,r,) and @n; € W2I(ry 1,75 ;) an eigenfunction corresponding to

145 (Tnj—1,™n;). Then we obtain (—=1)7~ pn; > 0in (75, 4,7, ;) and
(29) (—l)jSO:;,j(T:,j -0)>0 and (“l)k—I‘P;,k(r:,k +0)>0

for every 1 < j < n and 2 < k < n. Thus we can find a sequence (Gj);?=1 of positive
numbers such that

(30) 6i=1, 810 4(rf; 1 —0)=0;p;(ri;_, +0) foranyj=2,...,n.

Define ¢} by

0i(r) = 0ipn;(r) ifrelrt;_;,riJand1<r <n.
From (30), ¢ € W24(0, R) and (u;', o) is an eigenpair of (3) with (—1)""'¢f (r) > 0
in (ry,_y,7r;) and o7 (0) > 0.

Next we deal with the assertion (ii). When n = 1, the claim holds from Propo-
sition 6.5, hence let n > 2 and (u, ) € R x W29(0, R) be an eigenpair of (3) with
n—1zeroes 0 < t; <...<tn1 < R. Set to =0 and ¢, = R. It is enough to show
the claim in the case where ¢ > 0 in [to, t1).

By Lemma 7.4, there exist j,k € {1,...,n} satisfying [rn;-1,7n;] C [tj-1,%5]
and [te_1,t] C [Fnk-1,7ns). Note that (=1)™'¢f > 0in (rnm-1,7nm) and
(=1)™ 1o > 0 in (tm-1,tm) for all 1 < m < n. We also remark that u = p%(0,t1) =
15 (tm—1,tm) and ¢ is an eigenfunction on (0,¢;) and (tj-1,t;) corresponding to
175(0,t1) and p& (tm-1,tm) for 2 < m < n. Hence by Propositions 6.6 and 7.2,
we obtain gt < p and p < pf, which implies p = . Furthermore, again by
Propositions 6.6 and 7.2, we see that r;: j=tiforalll<j<n and there exists a
sequence (;)7_; of positive numbers satisfying ¢ = 6;¢n ; on [ j_l,r,’f ;] for each
j=1,...,n. Noting that ¢ is of class C! and (29), 6, =6 > 0 holds for 1 < j <n.
This completes the proof. 0

Proof of Theorem 1.2. By Proposition 7.1, it is sufficient to prove the completeness
of {(uZ, vF)}2,. Let (u,¢) € R x W29(0, R) be an eigenpair of (3). Then in view
of Proposition 7.1, we only show that ¢(0) # 0 and ¢ has finitely many zeroes in
(0, R).

First we show that there is no accumulation point in (0, R) of zeroes of . We
argue by contradiction and suppose that (r,)32; is a sequence of zeroes of ¢ satisfying
Tn # Tm if n # m and 7, = 19 € (0,R). Then by Rolle’s theorem, we see that
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©(ro) = ¢'(r9) = 0. Then ¢ = 0 holds from Proposition 2.3, which is a contradiction.
Hence there is no accumulation point of zeroes of ¢ in (0, R).

Next we consider the case where 0 is an accumulation point of zeroes of . Let
(Tn)p, be a sequence of zeroes of ¢. From the above argument, we may assume
r1 > 13 > ... > 0. Now choose n so large that

Car 8-/ + |ul)

Lior) <1

where C3 appears in Lemma 3.5. We may also suppose that ¢ > 0 in (rn+1,77) and
o(tn) = maxy, ., )¢ = 1 for some t, € (ry41,7n). Then ¢'(¢,) = 0, p(r,) = 0 and
Ptlel + Bl¢'| + (v + )¢ > 0 ae. in (tn,7,). It follows from Lemma 3.5 and the
choice of r,, that

L= max ¢ < Cari2™ ™Dy + 1)l )

< Cor8™M4 (y + D) g0,y < 1,

which is a contradiction. Thus ¢ has finitely many zeroes in [0, R].

Lastly we show ¢(0) > 0. If p(0) = 0, then P[] — Bl¢'| — (v + |ul)ye < 0
a.e. in (0,s) for sufficiently small s > 0 since ¢ has finitely many zeroes. Then
Proposition 4.2 yields ¢ = 0 on [0, s], which is a contradiction. Hence (0) > 0
holds and we complete the proof. O
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