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Homomorphism is a fundamental concept in the algebra system with the operation.
In case of the algebra system with two or more operations, the concept of individ-
ual homomorphism can be considered respectively for each operation. For instance,
there are two operations, meet $\wedge$ and join V, on the lattice. Hence, there are two ho-
momorphism, $\wedge$-homomorphism, and $\vee$-homomorphism. These two homomorphism
is independent for a general lattice. That is, there are mappings that is not $\wedge-$

homomorphism but $\vee$-homomorphism, and vice versa. In case of the totally ordered
set, $\wedge$-homomorphism and $\vee$-homomorphism are corresponding. In another algebra
system with two operations or more, there are some cases where the second operation
is sure to become homomorphism if the first operation is homomorphism. Moreover,
another operation might become homomorphism from the homomorphism of two
operations or more.

We would like to introduce the order on sets of the operations of the algebra
system by using this. In this paper, it study the order on the mathematics object
known well “set operations” and “addition and multiplication on the set real number
or rational number field”. And it reports on the condition that the homomorphism
of one operation of the remainder is approved by homomorphism in two operations
on triple-semilattice with three operations.

1 Homomorphic order
We adopt the notation in [1] for universal algebra. Suppose $A$ and $B$ are two algebras
of the same type $F.$ $A$ mapping $\alpha$ : $Aarrow B$ is called a homomorphism from $A$ to $B$

if

$\alpha f^{A}(a_{1}\ldots, a_{n})=f^{B}(\alpha a_{1}\ldots, \alpha a_{n})$ (1)

for each $n$-ary operation $f$ in $F$ and each sequence $a_{1}\ldots,$ $a_{n}$ from $A.$

For individual operation $f$ in $F$ , amapping $\alpha$ : $Aarrow B$ is called a $f$-homomorphism
from $A$ to $B$ if

$\alpha f^{A}(a_{1}\ldots, a_{n})=f^{B}(\alpha a_{1}\ldots, \alpha a_{n})$ . (2)
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Definition 1 Let $f_{1}$ and $f_{2}$ be operations in $F$ . We say that $f_{1}$ is homomorphic
stronger than $f_{2}$ , and we write $f_{1}\gg f_{2}$ , if every $f_{1}$-homomorphism mapping is
$f_{2}$-homomorphism, i.e., for every two algebras $A$ and $B$ of type $F$ and for every
$\alpha$ : $Aarrow B$ if $\alpha$ is $f_{1}$-homomorphism then $\alpha$ is $f_{2}$-homomorphism. And we write $f_{1}$

$\equiv f_{2}$ , if $f_{1}\gg f_{2}$ and $f_{2}\gg f_{1}$ . This order is called homomorphic order.

In the definition, the set of mappinngs that operation $f_{2}$ becomes homomorphism
contain the set of mappinngs that operation $f_{1}$ becomes homomorphism. The weakest
operations are homomorphism on all mappings. Actually, projection $(f(a_{1}, a_{2})=a_{1})$

is one of the weakest operations.

Example 1 On the algebra of group, there are oprations an$d^{-1}$ . Then, $\gg-1.$

That is, for group $<A,$ $\cdot,$ $-1,1>and<B,$ $\cdot,$ $-1,1>$ , if $\alpha$ : $Aarrow B$ is $\cdot$ -homomorphism
then $\alpha$ i$s^{}$ -homomorphism.

Example 2 On the algebra of totally ordered set, we consider opemtions $\wedge and$

$\vee of$ lattice. Then, $\wedge\equiv\vee$ . That is, for totally ordered $set<A,$ $\wedge,$ $\vee>and$

$<B,$ $\wedge,$ $\vee>$ , if $\alpha$ : $Aarrow Bis\wedge-homomo7$phism then $\alpha is\vee$ -homomorphism and if
$\alpha is\vee$-homomorp hism then $\alpha is\wedge$ -homomorphism.

In case of a general lattice, it is natural that $\wedge$-homomorphism and $\vee$-homomorphism
are independence. This order is more interesting when thinking adding the operation
made by the combination.

Example 3 On the Boolean algebm, there are opemtions $\wedge,$ $\vee and’$ . In addition to,
we consider Sheffer operation $|,$ $a|b=(a\wedge b)’$ . Then, $\wedge,$ $\vee and’$ can be represented
by $|$ . That is, $a\wedge b=(a|b)|(a|b),$ $a\vee b=(a|a)|(b|b)$ and $a’=a|a$ . Hence, $|\gg\vee,$

$\gg\wedge$ and $|\gg\prime.$

Definition 2 Let $f_{0},$ $f_{1},$
$\ldots,$

$f_{n}$ be operations in $F$ . We write $\{f_{1}, f_{2}, \ldots, f_{n}\}\gg$

$f_{0}$ if for every two algebras $A$ and $B$ of type $F$ and for every $\alpha$ : $Aarrow B$ if $\alpha$ is
$f_{k}$-homomorphism for $k\in\{1, \ldots n\}$ then $\alpha$ is $f_{0}$-homomorphism.

In Example 3, it is clear that $\{\vee, \prime\}\gg|.$

2 Observation of set operations
In this section, we study the order on set operation. This is a typical model of Boolean
algebra. Let $X$ and $Y$ be sets. The collection of all subsets of a set $X$ denoted by
$\mathcal{P}(X)$ . The set operation usually used is enumerated as follows.

nullary operation $\phi$ (emptyset) $X$ (whole set)
unary operation $-($complement)
binary operation $\cup$ (umion) $\cap($intersection) $\backslash ($difference)

$arrow($implication) $|$ (Sheffer operation)
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$\overline{A}=\{x\not\in A\},$ $A\cup B=\{x\in A or x\in B\},$ $A\cap B=\{x\in A$ and $x\in B\},$

$A\backslash B=\{x\in A$ and $x\not\in B\},$ $Aarrow B=\{x\not\in A or x\in B\},$

$A|B=\{x\not\in A or x\not\in B\}.$

It is possible to compose the other binary operations. However, it is enough in what
enumerated in the above. (Is it possible to create essential and substantial ternary
operation on $\mathcal{P}(X)?)$

It thinks about the condition whose mapping $\alpha$ : $\mathcal{P}(X)arrow \mathcal{P}(Y)$ is homomorphism
for these operations. And, the homomorphic order by the combination of these
operations is shown in Figure 1.

Figure 1: The homomorphic order $\gg$

$1=\{\cup, \cap, \phi, X, \backslash )arrow, -\}\equiv\{\cup, \cap, \phi, X\}\equiv\{\cap, -\}\equiv\{X, \backslash \}\equiv|$ etc.
$2=\{\cup, \cap, \phi\}\equiv\{\cup, \backslash \}$

$3=\{\cup, \phi, X\}$

$4=\{\cup, \cap, X\}\equiv\{\cap, arrow\}$

$5=\{\cap, \phi, X\}$

$6=\{\phi, X, -\}\equiv\{\phi, -\}\equiv\{X, -\}$

$7=\{\cup, \cap\}$ $8=\{\cup, \phi\}$ $9=\{\cap, \phi\}$

$10=\{\cup, X\}$ $11=\{\cap, X\}$ $12=\{\phi, X\}$

In this figure, we will pay attention to $\{\cup, \cap, \phi\}\gg\backslash$ . It is because that $\backslash$ can not
represented by $U,$ $\cap$ and $\phi$ . To similar, $-$ can not represented by $U,$ $\cap,$ $\phi$ and $X$ . It
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is understood that representable and the homomorphic order are different concepts
even if in Boolean algebra. In Example 1 of the previous section, the $-1$ can not
represented by $\cdot.$

3 Observation of operations on $R$

Let $R$ be the set of real numbers and $Q$ be the set of rational numbers. In this section
we discuss the condition that a mapping $\alpha$ from $R$ to $R$ becomes homomorphism for
individual operation $f$ in $R.$

First, $R$ is a totally ordered set, we have the operations $\vee$ and $\wedge$ . If $\alpha$ : $Rarrow R$ is
$\vee$-homomorphism $(that is, \alpha(x\vee y)=\alpha(x)\vee\alpha(y))$ , then $\alpha$ is a monotone increase
$(x\leq y$ imply $\alpha(x)\leq\alpha(y))$ .
The constant function on $R$ will be written as $c_{r}(x)=r(r\in R)$ . Although these
$c_{7}(x)$ are unary operations in $R$ seemingly, it is actually these are nullary operations.
If $\alpha$ is $c_{r}$-homomorphism $(that is, \alpha(c_{v}(x))=c_{\tau}(\alpha(x)))$ , then $\alpha(r)=r.$

We define $f_{r}(r\in R)$ by $f_{r}(x)=rx$ . When $r=0,$ $f_{0}=c_{0}$ . For any mapping $\alpha,$ $f_{1}$ is
homomorphism. If $\alpha$ : $Rarrow R$ is $f_{r}$-homomorphism $(that is, \alpha(f_{r}(x))=f_{r}(\alpha(x)))$ ,
then $\alpha(r^{m}k)=r^{m}\alpha(k)$ for ever $m\in Z$ (the set of all integers) for every $k\in$ R. The
following consists of this.

Proposition 1 Let $s,$ $r\in R$ such that $s=r^{n}(n\in Z)$ . If $\alpha$ : $Rarrow R$ is $f_{r^{-}}$

homomorphism then $\alpha$ is$f_{\epsilon}$-homomorphism. That is, $f_{r}\gg f_{\theta}.$

For example, $f_{\sqrt{2}}\gg f_{2}\gg f_{4}\gg f_{8}\gg\ldots\gg f_{0}\gg f_{1},$ $f_{-2}\gg f_{4},$ $f_{2}\equiv f_{2}-1$ . However $f_{4}\gg f_{2}$ . In
addition, if $\alpha$ : $Rarrow R$ satisfies both $f_{-2}$-homomorphism and $f_{3}$-homomorphism,
then $\alpha((-2)^{m}*3^{n}k)=(-2)^{m}*3^{n}\alpha(k)$ for ever $m,$ $n\in Z$ for every $k\in$ R. Hence,
$\{f_{-2}, f_{3}\}\gg f_{(-2)^{n}*3^{n}}(m, n\in Z)$ . It is noted that the $\{(-2)^{m}*3^{n}|m, n\in Z\}$ is dense
in $R.$

Next, we consider binary operation $+$ in R. The equation $\alpha(x+y)=\alpha(x)+\alpha(y)$

is certainly Cauchy equation! This imply $\alpha(qx)=q\alpha(x)(q\in Q)$ , hence $+\gg$

$\{f_{q}|q\in Q\}$ . But $\{f_{f}|r\in Q\}\#+$ . It is easy that $\{f_{f}|r\in R\}\gg+$ . However, from
the existence of Hamel base that relates to the axiom of choice, $+*\{f_{r}|r\in R\}.$

Proposition 2 For a mapping $\alpha$ : $Rarrow R,$

$\{f_{r}|r\in R\}\gg+\gg\{f_{q}|q\in Q\}$ (3)

If it thinks $+$ to be an operation in $Q$ and $\alpha$ to be a mapping from $Q$ to $Q$ , then $+$

$\equiv\{f_{q}|q\in Q\}.$

The situation changes completely if the condition of $\vee$-homomorpism is added to
$\alpha:Rarrow R.$

Proposition 3 For a mapping $\alpha$ : $Rarrow R,$

$\{f_{-2}, f_{3}, \vee\}\equiv+$ (4)
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Moreover, we consider binary operation $*$ . If it thinks $*$ to be an operation in $Q$

and $\alpha$ to be a mapping from $Q$ to $Q,$ $c_{1}$-homomorpism and $+$-homomorpism imply
$c_{q}(x)=q$ for all $q\in$ Q. That is, $\{c_{1}, +\}\gg*.$ $If*$ is an operation in $R$ and $\alpha$ is
a mapping $Rarrow R$, then $\{c_{1}, +\}\ovalbox{\tt\small REJECT}*$ . However, the following are derived from the
proposition above.

Proposition 4 For a mapping $\alpha$ : $Rarrow R,$

$\{c_{1}, +, \vee\}\equiv\{c_{1}, f_{-2}, f_{3}, \vee\}\gg*$ (5)

Let $n\in N$ and $n\neq 1$ . We define $t_{n}$ $n$-ary operation on $R$ by $t_{n}(x_{1}, x_{2}, \ldots,x_{n})=$

$x_{1}+x_{2}+\ldots+x_{n}$ . Then,

Proposition 5 For a mapping $\alpha$ : $Rarrow R,$ $n\in N$ and $n\neq 1,$

$+\equiv t_{n}$ (6)

It thinks about the operation of another type (average). Let $n\in N$ and $n\neq 1.$

We define $h_{n}$ $n$-ary operation on $R$ by $h_{n}(x_{1}, x_{2}, \ldots,x_{n})=(x_{1}+x_{2}+\ldots+x_{n})/n$. Let $\alpha$ :
$Rarrow R$ be $h_{n}$-homomorphism, i.e., $\alpha(h_{n}(x_{1}, x_{2}, \ldots,x_{n}))=h_{n}(\alpha(x_{1}), \alpha(x_{2}), \ldots, \alpha(x_{n}))$ .
We define $\beta(x)=\alpha(x)-\alpha(O)$ , then $\beta(x_{1}+x_{2}+\ldots+x_{n})=\beta(x_{1})+\beta(x_{2})+\ldots+\beta(x_{n})$ .
As $\alpha$ is $t_{n}$-homomorphism for $\alpha(0)=0,$ $+\equiv t_{n}\gg h_{n}$ . This fact is clear also in the
another way. From $h_{n}(x_{1}, x_{2}, \ldots, x_{n})=f_{1/n}(t_{n}(x_{1}, x_{2}, \ldots, x_{n})),$ $\{f_{1/n}, t_{n}\}\gg h_{n}$ . Since
the Proposition 1 and 5, $t_{n}\equiv+\gg f_{n}\equiv f_{1/n}$ . Hence $t_{n}\equiv\{f_{1/n}, t_{n}\}\gg h_{n}$. But,
when $\alpha(x)=1,$ $\alpha$ is not $+$-homomorpism but $h_{n}$-homomorpism.

Proposition 6 For a mapping $\alpha$ : $Rarrow R,$ $n\in N$ and $n\neq 1,$

$+\gg h_{n}$ (7)

We remark that the construction of the $h_{n}$ operation cannot be done from $+$ operation
alone.
The following proposition can be easily shown.

Proposition 7 For a mapping $\alpha$ : $Rarrow R,$ $n,$ $n’\in N$ and $n\neq 1\neq n’,$

$h_{n}\equiv h_{n’}$ (8)

It is clear that $\{f_{n}, h_{n}\}\gg t_{n}$ . Hence,

Proposition 8 For a mapping $\alpha$ : $Rarrow R$, if there exists $n_{1}\in N(n_{1}\neq 1)$

such that $\alpha$ is $f_{n1}$ -homomorpism and there exists $n_{2}\in N(n_{2}\neq 1)$ such that $\alpha$ is
$h_{n_{2}}$-homomorpism, then $\alpha$ is $+$-homomorpism.
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4 Observation of triple-semilattice
We proposed the algebra system with three operations in [4], [5]. It is a kind of
dimensional expansion of the lattice theory. The definition is written again here.

A semilattice $(S, *)$ is a set $S$ with a single binary, idempotent, commutative and
associative operation $*.$

$a*a=a$ (idempotent) (9)
$a*b=b*a$ (cammutative) (10)
$a*(b*c)=(a*b)*c$ (associative) (11)

Definition 3 Let $T$ be a set. Let $*1,$ $*2$ and $*3$ be three binaarry operations
on $T$ . If $(T, *1),$ $(T, *2)$ and $(T, *3)$ are semilattices respectively, the quartet
$(T, *1, *2, *3)$ is called a triple-semilattice.

The role that looks like the lattice in putting the following relational expression
is done though three operations are various the way things are going.

Definition 4 Let $T$ be a triple-semilattice. We call next six equality roundabout-
absorption laws.

$((a*1b)*2b)*3b=b$ (12)
$((a*1b)*3b)*2b=b$ (13)
$((a*2b)*1b)*3b=b$ (14)
$((a*2b)*3b)*1b=b$ (15)
$((a*3b)*1b)*2b=b$ (16)
$((a*3b)*2b)*1b=b$ (17)

for every $a,$ $b\in T$ . We say that $T$ have the roundabout-absorption laws if and only
if these six identity holds in it. $A$ triple-semilattice is called a trice if it satisfies the
roundabout-absorption laws.

Let $(T, *1, *2, *3)$ be a triplesemilattice and $a,$ $b,$ $c\in T(a\neq b\neq c\neq a)$ .

Definition 5 We say that an ordered triplex $(a, b, c)$ is in a triangular situa-
tion if $(a, b, c)$ have the following properties:

$b*1c=a$ (18)
$c*2a=b$ (19)
$a*3b=c$ (20)
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Strictly speaking, $a$ correspond $to*1,$ $b$ correspond $to*2$ and $c$ correspond to
$*3$ . Therefore, if necessary, we must say that $(a, b, c)$ is in a $*1*2*3$-triangular
situation.

Definition 6 Let $T$ be a triple-semilattice. We say that $T$ has the triangle
constructive laws if $T$ has the following properties:

$(d*1e)*3(d*2e)=d*3e$ (21)
$(d*1e)*2(d*3e)=d*2e$ (22)
$(d*3e)*1(d*2e)=d*1e$ (23)

for all $d,$ $e\in T.$

Suppose that a triple-semilattice $T$ satisfies the identities $((21)\sim(23))$ for $d,$ $e\in$

$T$ . Let $a=d*1e,$ $b=d*2e,$ $c=d*3e$. If $a\neq b\neq c\neq a$, then $(a, b, c)$ is in a
triangular situation. That is why we named the identities “the triangle constructive
laws”.

Definition 7 Let $T$ be a triple-semilattice. We say that $T$ has the triangle
natural laws if $T$ has the following properties:

if $x*1y=z$ and $x*2Z=y$, then $y*3z=x$ (24)
if $x*3y=z$ and $x*2Z=y$, then $y*1z=x$ (25)
if $x*1y=z$ and $x*3Z=y$, then $y*2z=x$ (26)

for all $x,$ $y,$ $z\in T.$

Theorem 1 Suppose $(T, *1, *2, *3)$ and $(T’, *1, *2, *3)$ are triple-semilattices with
triangle constructive and triangle natural laws. For a mapping $\alpha$ : $Tarrow T’,$

$\{*2, *\}\gg*$ (27)
$\{*3, *\}\gg*$ (28)
$\{*1, *\}\gg*$ (29)

That is, if $\alpha is*1$-homomorphism $and*2$-homomorphism, then $\alpha is*3$-homomorphism.
Let $T$ be a trice (triple-semilattice with roundabout-absorption laws). If $T$ has the

triangle constructive laws, then $T$ has the triangle natural laws. Hence, in a certain
sense, trice with triangle constructive laws corresponds to chain (totally ordered set)
of lattice theory.

I am grateful to Professor Shigeki Matsumoto at Konan University for useful
discussions.
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