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A Consideration on Functions Preserving Set Inclusion Relation
BILRIIKRY: - T2 &AH (Noboru Takagi)
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Abstract— This paper discusses functions over the set of non-empty subsets of {0,1,... ,r—1}
that are monotonic in the set inclusion relation. Min, Maz and Literal operations play an
important role in multiple-valued logic design/circuits because they can realize any function
over {0,1,...,7 — 1}. Operations over the set of non-empty subsets of {0,1,... ,r — 1} that
preserve the set inclusion relation are introduced from Min, Maz and Literal operations over
{0,1,...,7—1}. Then, this paper proves some of mathematical properties of functions over the
set of non-empty subsets of {0,1,... ,r — 1} that are composed of the operations introduced.
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1 Introduction

S. C. Kleene [1] first introduced regularity into ternary operations over the set of truth values
{0,1,u} in the following way.

A truth table for a ternary operation is regular if it satisfies the condition that
“A given column (Tow) contains 1 in the u row (column), only if the column (row)
consists entirely of 1’s; and likewise for 0”.

Kleene’s regularity is one of the ways how binary operations can be expanded into ternary
operations. Table 1 is the truth tables of regular ternary operations, which are given from the
traditional binary operations AND, OR and NOT.

It is worth to notice that M. Goto [2] independently introduced ternary operations that
are identical with the Kleene’s ternary operations in Table 1. He showed that the ternary
operations can be a model for analyzing undetermined behavior existing in binary systems,
such as hazards in binary logic circuits. After Goto’s work, M. Mukaidono studied mathe-
matical properties of functions over {0, 1, u} that can be expressed by a formula composed of
the three ternary operations (He called the ternary functions regular ternary logic functions).
One of Mukaidono’s main results[3] is that a function f over {0, 1, u} is a regular ternary logic
function if and only if the function f is monotonic in the partial ordered relation, defined by
Figure 1. I. G. Rosenberg [8] indicated that the set of regular ternary logic functions is this
clone generated by the Kleene’s ternary logic, i.e., the clone is identical with the clone over
the 3-element universe {{0}, {1}, {0, 1}} that preserves the set inclusion relation C.

This paper discusses functions over the set of non-empty subsets of {0,1,... ,7 — 1} when
r is more than 2. In the following, E, and P, denote the r-valued set {0,1,... ,7 — 1} and the
set. of non-empty subsets of E,., respectively.

Table 1: Truth Tables of Regular Ternary Operations NOT, AND and OR
NOT AND OR

| |0 1 ulO 1 u
0 1 0 0 0|0 1 u
1 0 1 ujl 1 1
u u 0 u uju 1 u



0 1

Figure 1: Partial Ordered Relation on {0, 1,u}

First, this paper shows a definition for expanding operations over E. into operations over
F,. This definition is identical with the Kleene’s regularity when r is equal to 2, and it has
already been shown by M. Mukaidono [4] and I. G. Rosenberg [8]. Min, Max, and Literal
operations play an important role in multiple-valued logic design/circuits, because they can
realize any multiple-valued logic function over E,.. Therefore, Min, Max, and Literal operations
are focused on in this paper. This paper then clarifies mathematical properties of functions
over P, which are expressed by formulas composed of the operations given from Min, Max,
and Literal operations over E,.

This paper is organized below. Section 2 is for preliminaries. This section shows the
definition for expanding operations over E, into operations over P, and then gives some of
their mathematical properties. Section 3 focuses on Min, Max, and Delta Literal operations
over E,. They are expanded into operations over P,, and then this section proves a necessary
and sufficient condition for a function over P, to be expressed by a formula composed of
these operations. Section 4 shows examples for the results obtained in Section 3. Section
5 discusses mathematical properties of functions over P, when we selected Min, Max, and
Universal Literal operations over E,. Then, Section 6 gives examples for the results appeared
in Section 5 Section 7 concludes the paper.

2 Preliminaries

Let E. be the r-valued set {0,...,7 — 1}, and let P, be the set of all non-empty subsets of
E,, ie., P, = 2P — {(}, where 2F" is the power set of E,. If a subset of E, consists of only
one element, then it is called a singleton. The set of all singletons of E; is denoted by S,,
ie, S, = {{0},...,{r — 1}}. It is evident that the set P. is a partial ordered set in the set
inclusion C. In this paper, elements of the set E, are denoted by small letters such as a, b, c,
z, y, etc., while elements of the set P, (i.e., non-empyt subsets of E,) are denoted by capital
letters such as A, B, C, X, Y etc.

Definition 1 Let o be an n-ary operation on F.. Then, an n-ary operation 6 on P, with
respect to o is defined by setting

O6(Ay, ..., Ay) ={olas,...,an) | a1 € Ay, ... ,a, € A}
for any element (As,...,A,) € P™ (End of Definition)

The following three operations play an important role in multiple-valued logic design be-
cause T-valued functions consisting of these operations and the constants 0,...,7 — 1 are
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Table 2: Truth Table of A Table 3: Truth Table of U
X\Y|0 1 2 01 02 12 012 X\Y[O0 1 2 01 02 12 012
0 {00 0 0 0 0 O 0 0 1 2 01 02 12 012
101 1 0 0 1 01 1 1 1 2 1 12 12 12
2 (/01 2 01 02 12 012 2 2 22 2 2 2 2
01 |0 01 01 01 01 01 O1 0L 01 1 2 01 012 12 012
02 (0 01 02 01 02 012 012 02 102 12 2 012 02 12 012
12 |0 1 12 01 012 12 012 12 (12 12 2 12 12 12 12
012 |0 01 012 01 012 012 012 012 012 12 2 012 012 12 012

Table 4: Truth Table of X5
X |0 1 2 01 02 12 012
Xt 2 0 0 02 02 0 02
Xt 0 2 0 02 0 02 02
X2 0 0 2 0 02 02 02
X% 12 2 0 2 02 02 02
X2 2 0 2 02 2 02 02
X2 10 2 2 02 0 2 0
xXuzl2 2 2 2 2 2 2

functionally complete on the set E,. [5].
a-b = min(a,b),

a+b = max(a,b),

z 0 otherwise

where a,b € E, and S C E,. The unary operations z° are often called the universal literals.
However, when S is a singleton, z° is sometimes called a delta literal.

For simplicity, in writing elements of P,, we will remove brackets and put an underline if
no confusion arises. That is, for example, 0, 02 and 012 stand for {0}, {0,2} and {0, 1,2},
respectively. Tables 2, 3 and 4 are truth tables of operations on P; with respect to -, + and
x5, respectively. Because this paper focuses on the operations on P, with respect to -, + and
z%, they are denoted by A, LI and X7, respectively. !

This paper does not allow any kinds of compositions of the operations A, U and X on P..
Compositions are restricted by the form of the formulas defined below.

Definition 2 Formulas are defined inductively in the following way.
(1) Constants {0},...,{r — 1} and literals X (i = 1,... ,n and S € P,) are formulas.
(2) If G and H are formulas, then (G A H) and (G U H) are also formulas.
(3) It is a formula if and only if we get it from (1) and (2) in a finite number of steps.

(End of Definition)

1The operations A and U do not satisfy the absorption laws and the distributive laws. Thus, the algebraic
system (P, A, L) do not form a lattice.



In writing formulas, we sometimes omit the operation A for simplicity.

It is evident that every formula expresses a function on P. when each variable X, takes
an element of P.. Furthermore, it is easy to verify that the formulas can not express all of
the functions on P, i.e., the functions on P, expressed by the formulas are not functionally
complete on F,. Thus, one of the main subjects of the paper is to clear what functions on P,
can be expressed by the formulas.

In the following, for any elements (Ay,...,A,) and (Bi,...,B,) of P*, (A;,...,A,) C
(Bi,...,By) stands for A; C B; for all i’s. Moreover, (A;,...,A,)N(By,...,B,) = { stands
for A; N B; = 0 for some 1.

Theorem 1 2 Suppose a function f on P, can be expressed by a formula. Then, f(A4;,...,4,) €
S, holds for any element (4y,...,A4,) € S™.

Theorem 2 Suppose a function f on P, can be expressed by a formula. Then, f(A;,...,A4,) C
f(Bu, ..., By) holds for any elements (A;, ... , A,) and (B, ..., B,) of P"such that (4;,...,A4,) C
(By,...,Bn). '

3 Functions Expressed by Formulas Composed of A, LI,
and Delta Literals

This section shows a necessary and sufficient condition for functions on P, that can be ex-
pressed by formulas with the operations A, U and delta literals.

Theorem 3 Let A;,..., A1, Aii1,..., A, be elements of P,. If a function f on P, is ex-
pressed by a formula, then the least element of f(A:,...,A; 1,4, Aiy1,..., A,) (which is a
subset of E,) is equal to the least element of f(Ay,...,4;_1, B, Ai+1,..., Ay) for any elements
Aand Bof P.— S,, i.e.,

minf(al, e ,Ai_l, A, Ai+1, e 7An) = minf(Al, e 7Ai—1, B’Ai+la ey An)
holds for any elements A and B of P. — S,.

From Theorems 1, 2 and 3, any function f on P, expressed by a formula satisfies the
following Condition A.

Condition A: Let f be a function on F,.

(1) If (Ay,. .., Ay) € S*, then f(A, ..., A,) €S,

(2) Forany elements (Ai,...,A,)and (By,...,B,)of P*, (Ai,...,A.) C(By,...,B,)
implies f(As,...,A,) C f(By,...,By).

(3) Let Ay,...,Ai_1,Ais1,- .., A, be elements of P,. Then, the least element of
f(A1,. ... Ai_1, A Aiyq, ..., A,) is equal to the least element of
f(AL, ..., A1, B, Ay, ..., Ay) for any elements A and B of P, — S,, i.e.,

minf(Al,... 1Ai~17AaAi+17- . ,An) = minf(Al,. . 7Ai—1,B7A'i+1a- . ;A’n)

holds for any elements A and B of P, — S,.

2All of the proofs in this paper are omitted because of the limitation of the space.
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In the remainder of this section, it is proven that Condition A is a necessary and sufficient
condition for a function on P, to be expressed by a formula with the operations A, U, and

delta literals.

Definition 3 Let f be a function on F,, and let A = (41, ooy Ainny Aigry - ,A,) be an
element of SP~!. Then, we define one-variable functions f4(X) and fi(X) (¢ = 1,...,n)
expressed by the following formulas.

fix) = {{S}/\ L XB}, 1)
s€E, BePF(s)
where Pj(s) is the set of all maximal elements of the set
Pi(s)={B € P, | min f(A;,...,Ai_1,B, Aiy1,... , Ay) = s}, (2)
and

fico=14 14 {t}A{ L] (/\X{e})} , (3)

SeP.—S, \t€S BeQi(S) \e€B

where Q% (.5) is the set of all minimal elements of
QTA(S) = {B € P’r - Sr I f(Aly' <. aAi—laB’Ai-}-l,‘ .. 7An) = S}' (4)
In the formulas (1) and (3), if Pi(s) and Q’,(S) are the empty set, then

|| XPand || (/\ X{’“})

Be}:’j(s) BeQ':"(S) keB

are defined as {0}, respectively. Moreover, in the formula (1), when B = E,., then X? is the
constant {r — 1}. (End of Definition)

In the formula (1), if f is a function satisfying Condition A, then any subset Pi(s) is a
subset of S,, or it is equal to {E,.}. Now, let us show this property. Suppose an element B of
P, — S, is a member of P;(s). Then, by Condition A(3), it follows that E, is also a member of

" (s). Therefore, when an element of P, — S, is a member of Pi(s), then E, is also a member
of Pi(s). This fact implies that P(s) is a subset of S,, or it is equal to {E,}. So, the formula
(1) is well-defined when f is a function satisfying Condition A.

Lemma 1 Let A= (A,,..., A1, Ait1,...,Ap) be an element of S*~1. Then, for a function
f satisfying Condition A,

fa(B) =
f(Ar, ... Al B A, ..., An)  f f(Al,... ,Aic1, B, Aigr, ..., An) €S,
K otherwise

holds for any element B of P,, where K is an element of P, such that
{fo} SK C f(A1,...,Ai1, B, Aiy1,. .., Ay)
and fo is the least element of f(A,,...,Ai_1, B, Ais1,... ,4s). (End of Lemma,)



Lemma 2 Let A= (Ay,...,Ai_1, Ait1,. .., As) be an element of S*~!. Then, for a function
f satisfying Condition A,

fi(B) =
{O} lff(Al)‘ ’Ai—l7BaAi+1a"' aAn)ESr
{0}U f(A1,... , A1, B, Aiy1,... ,Ay)  otherwise

holds for any element B € P,. (End of Lemma)

Lemma 3 Let A = (A;,..., Ai—1, Ait1,... , An) be an element of SP~1. Then, for a function
f satisfying Condition A,

FaB)U fi(B) = f(Ay, ..., Ai1, B, Agys, ... , An)
holds for any element B € P..

In the following, this section proves that any function satisfying Condition A can be ex-
pressed by a formula, and also shows a method how a formula can be formulated by a function
satisfying Condition A.

Definition 4 Let f be a function on P,. Then, f; is defined as a function on P, expressed
by the following formula.

A, X)) =LA, X), (5)
=1
where
fiXy, ..., Xn) = L] N XV A (f;’,(X,.) U f};(Xi))) .
A=(A1,.. ,Ai_1,Aig1, An)ESPTT \J=1(749)

(End of Definition)

Here, let us introduce a subset of P*, which will be denoted by I(r,n), below.
U {(A,... \A) e P* | A; € P~ S, and Ay,..., Aiy, Ay, ..., Ay € S,}

That is, each element (A, ..., A,) of I(r,n) consists of elements of S,, but except for one.

Lemma 4 Let F be a function satisfying Condition A. Then,

yAn)  if f(Ar,...,An) €S, UI(r,n)
otherwise

fi(Ay,.. . Ay) = { f(Al,.I.(.

holds for any element (Ay,... , A,) € PP, where K is an element of P, such that {0} C K C
{0} U f(Ar, ..., 4n). (End of Lemma)
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Definition 5 Let f be a function on P, let S be an element of P, — S,, and let T( f,S) is
the set of all minimal elements of the following subset of P".

T(f,S) = {(A1,... , As) € P | f(Ay1,...,An) =S and (Ay,...,A,) € SPUI(r,n)} (6)

Then, f; is defined as a function on P, expressed by the following formula.

fz(Xl,... ,Xn)={80}u ,: I_l {U{t}/\fg(Xl, ,Xn)}] y (7)
SePr—Sr \teS
where
L] {/\Xl{"}/\---/\/\X,{f}} if T(f,8) # 0
fs(X1, o, Xn) = (Ar..,An)eT(£,5) \beA beAn (8)
{0} otherwise
and s is the least element of U f(Ay, ..., Ap). (End of Definition)
(A1,...,An)EPR
Lemma 5 Let f be a function on P, satisfying Condition A. Then,
_ {so} if (A1,...,A,) € SPUI(r,n)
FoAr,- o An) = { f(Ay,...,A,) otherwise,
holds for any element (A, ..., A,) € P, where s, is the least element of the union
U f(Ay, ... A). (End of Lemma)

(Al e ,An)GP,P'

Theorem 4 Let f be a function on P, satisfying Condition A. Then,
f(Ay, ..., An) = fi(A1, ..., A U fa(Ay, .., A)

holds for any element (A,,...,A,) € P, where f; and f, are the formulas (5) and (7),
respectively. (End of Theorem)

4 Examples of Functions Satisfying Condition A

Consider the function f on P; whose truth table is given in Table 5. It is not difficult to verify
that f satisfies Condition A. Then, this section illustrates how we can form the formula that

expresses the function f.

Example 1 Let us first consider the formulas (1) and (3). It follows by Eq. (2) that we have
the following three subsets of P;.

Fy(0) = {B € Py|min f(B,0) =0} ={0,2,01,02,12

1) = {BePminf(B0=1}={1)
Py(2) {B € P3)min f(B,0) =2} =0

I
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Table 5: Example of Function f Satisfying Condition A

Thus, since Pgl(O) = {012}, pgl(l) = {1},

(1).

X\WW10 1 2 0 02 12 012
0 (0 0 0 0 0 02 02
101 1 2 1 12 12 12
2 (0 2 0 02 0 02 02
0L |01 01 02 012 012 012 012
02 0 02 0 02 0 02 02
12 1012 012 02 012 012 012 012
012 | 012 012 02 012 012 012 012

|
|
|
|

and Fj(2) = 0, we have the formula f}(X) by Eq.

(0A012) L (1A XH) U (2A0)
— l/\Xl

In a similar way, we have the formulas f}(X), f}(X), RY), f2(Y), and f}(Y), below.

Moreover, it follows by Eq. (4) that we have

Qp(01)
Qp(02)
Qu(12)
Qy(012)

Thus, since QO(Ol) = {01}, QO(OQ)

f3(X) by Eq. (3).

1(X) = 1xtu x2

) = X1

(Y) =0 )

2(Y)=1uY?

3(Y) =12 )
{Be P—S;| f(B,0) =
{BeP— S| f(B,0) =
{BeP—S3| f(B,0) =
{Be P —-S;| f(B,0) =

§(12)

= § and Q}(012) = {12},

9)
(10)
01} = {01},
02} =0,
12} =0, and
012} = {12,012}

we have the formula

fo(X) = (0X°X'U1XXY) UOUOU (0X2X2U 1X2X2L 2X2X2)
= 1XOx1u1xix2i Xix2, (11)
In a similar way, we have the formulas fi (X)), fgl(X ), fé(Y), ff(Y), and fg(Y), below.

AL (X) = 1X2X1 U X0y 2 U 1XIX2 U XLX2, )
Agl( ): X0x1 xixz
oY) = (12)
2(Y) = 0Y2 XW2u1viy2uyly?,
(V) = Y°Y1 Yiyz,

2
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Table 6: Truth Tables of fi(X) and fi(X)  Table 7: Truth Tables of f2(Y) and f2(Y)
X |01 20 02 12 012 Y 01201 02 12 012
fo(X)QlQmQﬂQl AV)Jooo 0 0 0o o
fx)lo 1 2 01 02 012 012 £yl 12 1 12 12 12
AM)QzQQzQ 02 02 Ay)lo 2002 0 02 02
ffxX)lo 0 0 o1 0 o012 012 Bfryjlo oo o 0 02
ﬁw)gggglﬂgmsu A(v)|0 0 0 0 012 012 012
f2(X)jo 0002 0 02 02 Ay)jo 0002 0 02 0
Table 8: Truth Table of fi = fi U f
XorY[0 1 2 0L 02 12 012
/LX) ]0 1 0 01 0 012 012
flix)y Jo 1 2 01 02 012 012
AXx)ylo 2002 0 02 02
fY)ylooo o 0 02 02
AY) |1 12 1 12 12 12
Ay)y|lo 2002 0 02 0
Tables 6 and 7 show the truth tables of fi and fi for which i = 1,2 and A € {0,1,2}.
(End of Example)

It follows by Lemma 3 that

f(X,B) = fi(X) U fi(X) and f(B,Y) =

) ufAY)

hold for every A € {0,1,2} and every B € P, where f1(X), fi(X), f3(Y) and fA(Y) have
been obtained in Egs. (9), (10), (11) and (12). Table 8 shows the truth tables of f4 U fi,

where i = 1,2 and A € {0,1,2}.

Example 2 Let us next consider the formula (5) in Definition 4. It follows by Egs. (9) and
(11) that we have the formula fg( yu fo( ) below.

RX)UfRX) = 1x*ulxexiulxix2y xix2

= 1xLyxix2

In a similar way, by Egs. (10), (11) and (12), we have the formulas

AEOUAE)
RX)uf(X)
ROUl™)
) U FEY)
ROUR)

= 1X1U X2

X1
Yiy2
1uY?
YL

Therefore, the formula f1(X,Y) of (5) in Definition 4 is given as

fl(Xa Y) = fl(Xa Y) U f2(X, Y),

(13)



Table 9: Truth Table of fi1(X,Y) Table 10: Truth Table of fo(X,Y)
X\Y|] 0 1 2 01 02 12 012 X\Y [0 1 2 01 02 12 012
0 g 0 0 0 0 02 02 0 {1000 0 0 0 0
1 1 1 2 1 12 12 12 1 1000 0 0 0 O
2 0 2 0 02 0 02 02 2 {000 0 0 0 0
01 101 01 02 01 012 Q12 012 01 |0 0 0 012 012 012 012
02 0 02 0 02 0 02 02 02 1000 02 0 02 02
12 1012 012 02 012 012 012 012 12 10 0 0 012 012 012 012
012 | 012 012 02 012 012 012 012 012 {0 0 0 012 012 012 012

where
FY) = YRR URE)) Uy (AE) UfE0)ur2 (AU X)) and

PUY) = X2 (U

N—

UXH (RO URW)) u X2 (RO AE)).
Table 9 is the truth table of f;(X,Y). (End of Example)

Example 3 In this example, let us consider the formula (7) in Definition 5. It follows by Eq.
(6) that we have the following subsets of PZ.

T(f,02) = {(02,01),(02,12),(02,012)}
T(f,12) = 0

T(f,012) = {(A,B)| Ae{01,12,012} and B € P; — S3}
Therefore, since we have
T(f,01) = 0,
T(£,02) = {(02,01),(0212)},
T(f,l_Z) = (), and
T(£,012) = {(01,01),(0L,02),(01,12),(12,01), (12,02), (12,12)},

it follows by Eq. (8) that we have the following formulas.

foo(X,Y) = XOXx2ylyly xox2iyly2
fiz(X,Y) = 0

foe(X,Y) = XOXLyoyly xOxly0y2 XOxiyiy2(y
XAx2yoyl ) x1x2y0y2 ) X1x2yly2
Thus, the formula f,(X,Y") of (7) in Definition 5 is obtained as the formula below.

f2(X7 Y) = 0u {.QfDl(Xa Y) szQZ(X>Y)} u {QfM(X’Y) Ulfo_lz_(X, Y) UZfM(X’ Y)}

= fe(X,Y)ULlfua(X,Y) U fo(X,Y) (14)
Table 10 is the truth table of fo(X,Y). (End of Example)

It follows by Theorem 4 that the function f of Table 5 can be expressed by the formula
(X, Y)U fo(X,Y), where f1(X,Y) and fo(X,Y) are the formulas given in (13) and (14),
respectively.
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5 Functions Expressed by Formulas Composed of A, L
and Universal Literals

This section discusses functions on P, expressed by formulas, which are composed of the
operations A, L and universal literals. Then, a necessary and sufficient condition for a function
on P, to be expressed by a formula when r is equal to 3.

Theorem 5 Let f be a function on P,. If f can be expressed by a formula, then

(| FlA... A, A A, Ag) #0

A€P.—S,

holds for any elements A;, ..., A;_1, Aiy1,..., A, of P.. (End of Theorem)

By Theorems 1, 2 and 5, any function f on P, expressed by a formula satisfies the following
Condition B.

Condition B: Let f be a function on P..

(1) If (Aq,...,A,) € S?, then f(A,,... ,A,) €S,

(2) Forany elements (A;,...,A,)and (By,...,By,)of P* (Ay,...,Ay) C(By,...,B,)
implies f(Alv LR ,An) g f(Bly' .. ’B'n)'

3) () f(A1...,Ai1,A A, Ay) # 0 holds for any elements A, ..., A1,

A€Pr—-Sr
Ai+1a e ,An of P.,-.

In the following, this section proves that Condition B is a necessary and sufficient condition
for a function on P; to be expressed by a formula with the operations A, U, and universal
literals.

Definition 6 Let (A,,...,A,) be any element of P". Then, a = X' A--- A X2 is said to

be the type-1 term corresponding to (4y, ..., A,). Next, let (By,..., B,) be any element of

Pr— St Then, 8= /\ X l{e} Ao A /\ X/¢} is said to be the type-2 term corresponding to
e€B; e€By,

(B1, ... ,Bn). (End of Definition)

Let S be an element of P,, and let T be an element of P, — S,. Then, it is easy to verify
that the following two equations are valid.

{r-1} ifXCS

X5 = {0} fXNS=0 (15)
{0,7 — 1} otherwise
@ _ J{or-1} ¥TCX

/\ X = { {0} otherwise (16)

eeT

Therefore, for any type-1 term o and any type-2 term 3, a(As, ..., An) = {r — 1}, {0,r — 1},
or {0}, and B(A,...,As) = {0,7 — 1} or {0} hold for any element (4,,...,A4,) € P".

Lemma 6 For any type-1 term o corresponding to (A,...,A,) € P,



(1) (By,...,Ba) C (Au,..., An) iff a(By, ..., By) = {r—1},
2) (Ar,..., A) N (By,...,B)) =0 iff a(B,,...,B,) = {0},

(3) (B1;~-- ,Bn) Z (Al,... ,An) and (Al,... ,An)ﬂ(Bl,..‘,Bn)=@iffa(Bl,... aBn) =
{O,T‘——l}

hold for any (By,...,B,) € P (End of Lemma)
Lemma 7 For any type-2 term « corresponding to (4i,...,A4,) € P* — 87,

(1) (Ay,...,A;) C(By,...,By) iff a(By,...,B,) ={0,r — 1},

(2) (Ay,...,An) € (By,...,By) il a(By,...,B,) = {0}
hold for any (B,...,B,) € P . (End of Lemma)

Let f be a function satisfying Condition B, and let S be an element of P.. Then, define
two subsets of P, denoted by L(f,S) and U(f, S), below.

L(f,S) = {(A1,...,A,) € P"| f(A1,...,Ay) C S} and
U(f,S) = {(As,...,A)) € P | f(As,...,A,) NS # 0}

Let L(f,S) and U'(f,S) be the sets of all maximal elements of L(f,S) and of all minimal
elements of U(f, S), respectively. Further, let U(f,S) = U'(f,S) — S

Lemma 8 Let f be a function satisfying Condition B, and let S be an element of P,. Then,
(f)? can be expressed by the following formula.

|| cat || Ba HL(£S)#00r U(f,S)#0
(f)S _ ) Ael(t.8) A€U(£,8) (17)

{0} otherwise

where ay and 34 are the type-1 and type-2 terms corresponding to A, respectively.
(End of Lemma)

Now, let us consider formulas of one-variable functions satisfying Condition B. Any one-
variable function f satisfying Condition B is in at least one of the following three cases 3.

(B-1) f(A) # 01 holds for any element A € P; — Ss.
(B-2) f(A) # 02 holds for any element A € P; — Ss.
(B-3) f(A) # 12 holds for any element A € P; — Ss.

3If f is in neither one of the cases (B-1), (B-2), (B-3), then it implies that we have three distinct elements
A, B, C in P — S3 such that f(A) = 01, f(B) = 02, and f(C) = 12. However, this contradicts to the fact
that f satisfies Condition B(3).
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Table 11: Example of (B-4) Table 12: Example of (B-5)
z\y|[0 1 2 01 02 12 012 z\y|0 1 2 01 02 12 012
0 (0 1 2 01 02 012 012 00 0 0 90 0 0 0
1412 2 2 2 2 2 2 110 1 0 0 0 0 01
210 2 1 02 012 12 012 210 2 1 02 012 12 012
0102 12 2 012 0i2 012 012 0110 00 0 0t 0 01 01
02 10 12 12 012 012 012 012 02 10 02 01 012 012 012 012
12102 2 12 02 012 12 012 12 [0 012 01 012 012 012 012
012 102 12 12 (Qi2 012 0l2 0i2 012 [0 012 01 012 012 012 012

Table 13: Example of (B-6)
swlo 1 2 01 02 12 012
6o 0o 0 0 0 0 0
110 1 1 0 0 1 01
2 (0 2 2 02 02 2 02
010 01 012 01 012 012 012
02 |0 012 02 012 012 012 012
1210 12 12 012 012 12 012
0120 012 012 012 012 012 012

Property 1 Any one-variable function f satisfying Condition B can be expressed by the
following formula.

F2(X)A(Lu f2(X)) if f is in the case (B-1)
fX)=¢ QAAFUX)UFHX)U (LA f2(X)) if fis in the case (B-2) (18)
(1A fYUX)) U FAHX) if f is in the case (B-3)

(End of Property)

By Property 1, every one-variable function satisfying Condition B can be expressed by a

formula.
Next, let us consider the case where functions satisfying Condition B depend more than

one variable. Then, any function f satisfying Condition B is in at least one of the three cases
below.

(B-4) f(Ai,...,A;) # 01 holds for any element (A;,...A,) € (Ps — S3)™
(B-5) f(Ay,...,A,) # 12 holds for any element (4;,...A,) € (Ps — S3)™

(B-6) N f(A,...,A) =1

(A1,... ,Ap)E(P3—S3)™

Tables 11, 12 and 13 are examples of two-variable functions being in the cases (B-4), (B-5),
and (B-6), respectively.
Then, we can prove Properties 1 ~ 6, which show a way for constructing formulas of

n-variable functions satisfying Condition B.
Let A be an element (A,..., A1, Ait1,... , A,) of PP 1. Then, denote the one-variable

function f(Ai,..., A1, X, A1, -+, An) by fi(X).



Property 2 Suppose a function f satisfying Condition B is in the case (B-5). Let f’ be a
function expressed by the formula

ff=ptu..-up" (19)
where
pi(X]_, .. ,Xn) =
L] (FAX) A XA AXETIAXET A A XA, (20)
A=(A1,.  Aic1,Ait1,e. ,An)ES:TSHI

Then, for any element (As,...,A,) € Py,

,  f(Ar, . AL i (AL A) € (Ps—Ss)
FlAy,..., An) = { K otherwise

where K is an element of P, such that {0} C K C {0} U F(A;,...,A4y). (End of Property)

Property 3 Suppose a function f satisfying Condition B is in the case (B-5). Let f” be a
function expressed by the formula

X X = | {U({t}AfT(S)(Xl,... ,Xn))}, (21)
SeP3—S3 teS
where T'(S) is the set of all minimal elements of the set
T(S)={(A1,...,An) € (Ps—S3)" | f(A1,...,A,) =5}

and

Fre X X)) = | {/\X{e}/\-.-A A X{e}}. (22)

(A1,..e ,An)ET(S) e€A e€EAn
Then, for any element (A, ..., A,) € Py,
1" _ {0} if (Al, c.. ,An) & (P3 — 53)"
fi(As-- 5 An) = { f(As,...,Ay) otherwise
(End of Property)

Property 4 Any function f satisfying Condition B can be expressed by f = f' U f”, if f is
in the case (B-5). (End of Property)

Property 5 Suppose a function f satisfying Condition B is in the case (B-4). Let A =
(A, ..., A1, Ay, ..., Ay) be an element of S7~'. Then, define ¢ and & as functions on P,
expressed by the following formulas.

Ga(Xn, o, Xa) = FAX) U A AXET AXET A A X, (23)
where A} = E3 —A; (j=1,...,i—Li+1,...,n).
h(X1,..., X)) =

{(ﬂ L] X{‘) U f2(X,. .. ,Xn)}/\{<|_n_| L] X;*) U F2(X, ... ,Xn)ul} (24)

1=1 A€S;3 i=1 A€Ss
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Then, f can be expressed by the following formula.
f( Xy, X)) =G( X, ., Xp) AR(X, .-, X)), (25)

where G is A-ing of all the g’s of Eq. (23), i.e.,

G Xy, . X)= AN N diX,... . X) (26)

=1 \Ades;™!
(End of Property)

Property 6 Suppose a function f satisfying Condition B is in the case (B-6). Then, f is in
either one of the following two cases.

(1) f(A) # 02 holds for any element A € Pg, or
(2) f(A) = 02 holds for some element A € Py.

If f is in the case (1), then f can be expressed by
f(Xla L) ) (lAf_(Xl"--aXn))Ufg(Xl,”- n)u(l/\f (Xla -,Xn))' (27)
Let w be a function expressed by the following formula.

’w(Xl,... ,Xn) = U fl(Al) U"'Ugn(An)a (28)

(Al,...,An)EQQZ_
Where Q(_)g-: {(Al, ,An) (S P:;n | f(Aly ,An) =0_2_} 4, and

XzA if Ae S

&i(4) ={ 0  otherwise.

Then, f can be expressed by the following formula, if f is in the case (2).
f(Xy,. ., X)) =G Xy, ..., Xn) ANw(Xy,. .., Xy), (29)

where G(X,...,X,) is given by Eq. (26). (End of Property)

6 Examples of Function Satisfying Condition B

This section shows examples of 2-variable functions satisfying Condition B, and illustrates
how they can be expressed by formulas.

Example 4 Consider the function f defined by Table 12, which is in the case (B-5). The
formula expressing f is given by Properties 2, 3, and 4. First, consider the formulas f 1(X)
and f5(Y), which appear in Eq. (20). Table 14 shows the truth tables of the six one-variable
functions f3(X), f1(X), f3(X), f5(Y), f1(Y) and f}(Y). Since f3(X) and f}(Y) are in (B-2)
(or (B-3)), f1(X) is in (B-3), and f3(Y) isin (B-1), it follows by Eq. (17) and (18) that these
one-variable functions are expressed by the following formulas.

4Qo2 N (P3 — S3)™ = @ holds, since f is in the case (B-6).
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Table 14: One-Variable Functions f} and f% of Example 4

XorY|0 1 2 01 02 12 012
ARX)Jo o0 0 0 0 O
fix) o 1 2 01 02 012 012
AX)(001 0 0 0 01
fY)Y|000 0 0 0 0
ffY) {0 1 0 01 0 01 01
AY)|o 2 1 02 012 12 012
Table 15: Truth Table of f’ of Example 4 Table 16: Truth Table of f” of Example 4
X\Y]o 1 2 01 02 12 012 X\Y|0 1 2 01 02 12 012
00 0 0 0 0 0 ¢ 0/000 0 0 0 0
1]0 1 0 0 0 0 0 1 /000 0 0 0 0
2 {0 2 1 02 02 12 012 2 {000 0 0 0 0
00 |0 01 0 0 0 0 01 001|000 00 0o 0 01
02 |0 02 01 02 012 012 012 02 {0 0 0 012 012 012 012
12 |0 012 01 012 012 012 012 12 {0 0 0 012 012 012 012
012 |0 012 01 012 012 012 012 012 [0 0 0 012 012 012 012
f(X)=0, fi(X)=1XuX2 fi(X)=1X2

Y 3(Y) =YEQ1uY®)

fY)=0 f(Y)
Therefore, it follows by Eq. (19) that f’ is expressed by the following formula.

I
f—

I
=h

fr=XMYV)UXHEY)UXEF(Y) U f(X)Y2U fL(X)YHU £ (X)Y2 (30)

Table 15 is the truth table of f’. Next, consider f” in Eq. (21). Since

>

(01) = {(01,01),(01,12)},
7(02) = T(12)=0, and
T(012) = {(02,01),(02,02), (02, 12), (12,01), (12,02), (12,12)},

it follows by Eq. (22) that we have the following formulas.
fronX,Y) = XeXyoyly XOXxiyly?
Fropy(X:Y) = XEX2voylu XOX2y0y2u XOX2yly2 u XAX2Yy Yty
XiX2yQy2 | xix2yly2
We then have f”(X,Y) below by Eq. (21).
f”(Xa Y) = lfT(m) (Xa Y) L lfT(g_l_z) (X7 Y) U fT(QlZ) (Xa Y) (31)

Table 16 is the truth table of f”. It follows by Property 4 that f(X,Y) = f/(X,Y)u f"(X,Y).
(End of Example)



110

Table 17: Truth Table of G of Example 5 Table 18: Truth Table of h of Example 5

X\Y]0 1 2 01 02 12 012 X\Y |0 1 2 01 02 12 012
0 |0 1 2 01 02 012 012 0 1222 2 2 2 2
112 2 2 2 2 2 2 11222 2 2 2 2
2 |0 2 1 02 02 12 012 2 1222 2 2 2 2
0L |02 12 2 012 02 012 012 0L |2 2 2 012 012 012 012
02 |0 12 12 012 012 012 012 02 12 2 2 012 012 012 012
12 102 2 12 02 012 12 0l2 12 12 2 2 02 012 12 Q12
012 {02 12 12 (012 012 012 012 012 |2 2 2 012 012 012 012

Example 5 Consider the function f defined by Table 11, which is in (B-4). The formula
expressing f is given by Property 5. First, consider the formula g} (X) and ¢g(Y) of Eq. (23).
It follows by Eq. (17) and (18) that the one-variable functions f4(X) and f%(Y’) are obtained
below.

~

fo(X) = X1, fAX)=1uXx f(X)=1uX%,

) =1yiuy?, f}(Y)=2 BY)=Y21uyw)

Then, by Eq. (23), we have
(X, Y) = XtuYL, ga(X,Y)=1uX2UY® g(XY)=1uX®Uys,
RX,Y) = X2UIYIUY2, gX(X,Y)=2, B(X,Y) = XL UYR(QUYD).

By Eq. (26), we have the function G(X,Y’) expressed by A-ing of all the above g4%(X,Y)’s.
Table 17 is the truth table of G(X,Y). Next, consider h in Eq. (24). It follows by Eq. (17)
that the functions f12(X,Y) and f%2(X,Y) are expressed by the following formulas.

2xY) = Xtuxy2yyluyZu xoxiyeu xix2y?
f2(X)Y) = X2 X1y x%y2 ) xi2yd vyl

Thus, by Eq. (24), we have
WX,Y) = (U(X, Y) U f(X, Y)) A (v(X, Y) U f2(X,Y) U ;),

where v(X,Y) = X2u XLUX2UuY2UYLuY2 Table 18 is the truth table of A(X,Y). Lastly,
by Eq. (25), f(X,Y) are expressed by the following formula.

f(X,Y) = G(X,Y)AR(X,Y)
= X, Y)AGX,Y)ANGX,Y) NG (X, Y)AG(X,Y)Ag3(X,Y) AR(X,Y)

(End of Example)

Example 6 Consider the function f define by Table 13, which is in (B-6). The formula
expressing f is given by Property 6. Since f is in the case (2) of Property 6, f is expressed
by the formula given in Eq. (29).

First, consider the formula G(X,Y). It follows by Eq. (17) and (18) that one-variable
functions fi(X) and f3(Y) are obtained below.



Table 19: Truth Table of G of Example 6 Table 20: Truth Table of w of Example 6

X\Y|j0o 1 2 01 02 12 012 X\Y |0 1 2 01 02 12 012
g (6 0 0 0 0 0 O 0 |1 1 2 1 12 12 12
1 {0 1 1 0 0 1 01 1 1 1 2 1 12 12 12
2 10 2 2 12 02 2 02 2 (2 2 2 2 2 2 2
01 10 01 012 012 012 012 012 01 |1 1 2 1 12 12 12
02 (0 012 02 012 02 012 012 02 (12 12 2 12 12 12 12
12 |10 12 12 012 012 12 012 12 112 12 2 12 12 12 12
012 |0 012 012 012 012 012 012 012 |12 12 2 12 12 12 12
RXO=0 fX)=QAXRUXE f(X)=X2A(LUXR)
RY)=0, f(Y)=1nvZ fY) =y

Thus, we obtain ¢g4(X,Y) and ¢4(X,Y) of Eq. (23) below.
G Y)=Y2 gX)Y)=QQAXB)UX2UY®2 g(X,Y)=X2A(1UuX2)uyd
BX,Y)=X2 ¢(X,Y)=X2U(1AYE) GB(X,Y) = XLy

By Eq. (26), we have the function G(X,Y’) expressed by A-ing of all the above g% (X,Y)’s.

Table 19 is the truth table of G.
Next, consider w(X,Y’) of Eq. (28). Because

Qo2 = {(2,01),(2,02), (2,012), (02,02)},

it follow by Eq. (28) that the formula w is obtained below.
w(X,Y)=1uXx2uy?

Table 20 is the truth table of w. Lastly, it follows by Eq. (29) that the following formula
expresses the function f.

f(X,)Y) = GX,)Y) A Aw(X,Y)
= ggl(X,Y)/\gi(X,Y)/\gé(X,Y)/\gé(X,Y)/\gi(X,Y)/\gz(X,Y)/\w(X,Y).

(End of Example)

7 Conclusions

This paper discussed functions over P, that preserves the set inclusion relation C. We referred
the three kinds of operations Min, Max, and Literals over E,, because they are functionally
complete on the r-valued set E,.. This paper then proved some of the mathematical properties
of functions over P, that can be expressed by formulas. It is one of the open problems that
which set of operations 64,02, ... 0, over P, can realize any function over P, preserving the
set inclusion relation C.
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