A Consideration on Functions Preserving Set Inclusion Relation

富山県立大学・工学部 高木昇 (Noboru Takagi) Department of Electronics and Informatics, Toyama Prefectural University

Abstract—This paper discusses functions over the set of non-empty subsets of $\{0, 1, \ldots, r-1\}$ that are monotonic in the set inclusion relation. Min, Max and Literal operations play an important role in multiple-valued logic design/circuits because they can realize any function over $\{0, 1, \ldots, r-1\}$. Operations over the set of non-empty subsets of $\{0, 1, \ldots, r-1\}$ that preserve the set inclusion relation are introduced from Min, Max and Literal operations over $\{0, 1, \ldots, r-1\}$. Then, this paper proves some of mathematical properties of functions over the set of non-empty subsets of $\{0, 1, \ldots, r-1\}$ that are composed of the operations introduced.

Keywords: Multiple-Valued Logic Design/Circuits, Set Inclusion Relation, Clone Theory

1 Introduction

S. C. Kleene [1] first introduced regularity into ternary operations over the set of truth values $\{0, 1, u\}$ in the following way.

A truth table for a ternary operation is regular if it satisfies the condition that "A given column (row) contains 1 in the u row (column), only if the column (row) consists entirely of 1's; and likewise for 0".

Kleene's regularity is one of the ways how binary operations can be expanded into ternary operations. Table 1 is the truth tables of regular ternary operations, which are given from the traditional binary operations AND, OR and NOT.

It is worth to notice that M. Goto [2] independently introduced ternary operations that are identical with the Kleene's ternary operations in Table 1. He showed that the ternary operations can be a model for analyzing undetermined behavior existing in binary systems, such as hazards in binary logic circuits. After Goto's work, M. Mukaidono studied mathematical properties of functions over $\{0,1,u\}$ that can be expressed by a formula composed of the three ternary operations (He called the ternary functions regular ternary logic functions). One of Mukaidono's main results[3] is that a function f over $\{0,1,u\}$ is a regular ternary logic function if and only if the function f is monotonic in the partial ordered relation, defined by Figure 1. I. G. Rosenberg [8] indicated that the set of regular ternary logic functions is this clone generated by the Kleene's ternary logic, i.e., the clone is identical with the clone over the 3-element universe $\{\{0\}, \{1\}, \{0,1\}\}$ that preserves the set inclusion relation \subseteq .

This paper discusses functions over the set of non-empty subsets of $\{0, 1, \ldots, r-1\}$ when r is more than 2. In the following, E_r and P_r denote the r-valued set $\{0, 1, \ldots, r-1\}$ and the set of non-empty subsets of E_r , respectively.

Table 1: Truth Tables of Regular Ternary Operations NOT, AND and OR

	NOT	_)		OR	
				u			
0	1	0	0	0	0	1	u
1	0	0	1	u	1	1	1
u	u	0	u	u	u	1	\mathbf{u}

Figure 1: Partial Ordered Relation on $\{0, 1, u\}$

First, this paper shows a definition for expanding operations over E_r into operations over P_r . This definition is identical with the Kleene's regularity when r is equal to 2, and it has already been shown by M. Mukaidono [4] and I. G. Rosenberg [8]. Min, Max, and Literal operations play an important role in multiple-valued logic design/circuits, because they can realize any multiple-valued logic function over E_r . Therefore, Min, Max, and Literal operations are focused on in this paper. This paper then clarifies mathematical properties of functions over P_r , which are expressed by formulas composed of the operations given from Min, Max, and Literal operations over E_r .

This paper is organized below. Section 2 is for preliminaries. This section shows the definition for expanding operations over E_r into operations over P_r , and then gives some of their mathematical properties. Section 3 focuses on Min, Max, and Delta Literal operations over E_r . They are expanded into operations over P_r , and then this section proves a necessary and sufficient condition for a function over P_r to be expressed by a formula composed of these operations. Section 4 shows examples for the results obtained in Section 3. Section 5 discusses mathematical properties of functions over P_r when we selected Min, Max, and Universal Literal operations over E_r . Then, Section 6 gives examples for the results appeared in Section 7 concludes the paper.

2 Preliminaries

Let E_r be the r-valued set $\{0, \ldots, r-1\}$, and let P_r be the set of all non-empty subsets of E_r , i.e., $P_r = 2^{E_r} - \{\emptyset\}$, where 2^{E_r} is the power set of E_r . If a subset of E_r consists of only one element, then it is called a singleton. The set of all singletons of E_r is denoted by S_r , i.e., $S_r = \{\{0\}, \ldots, \{r-1\}\}$. It is evident that the set P_r is a partial ordered set in the set inclusion \subseteq . In this paper, elements of the set E_r are denoted by small letters such as a, b, c, x, y, etc., while elements of the set P_r (i.e., non-empty subsets of E_r) are denoted by capital letters such as A, B, C, X, Y etc.

Definition 1 Let o be an n-ary operation on E_r . Then, an n-ary operation \hat{o} on P_r with respect to o is defined by setting

$$\hat{o}(A_1,\ldots,A_n) = \{o(a_1,\ldots,a_n) \mid a_1 \in A_1,\ldots,a_n \in A_n\}$$

for any element $(A_1, \ldots, A_n) \in P_r^n$. (End of Definition)

The following three operations play an important role in multiple-valued logic design because r-valued functions consisting of these operations and the constants $0, \ldots, r-1$ are

	Tal	ole 2	: Tru	th T	able o	of ∧			Table	3: 7	[ru	th Ta	ble of	· 🗆	
$X \setminus Y$	0	<u>1</u>	<u>2</u>	<u>01</u>	<u>02</u>	<u>12</u>	<u>012</u>	$X \setminus Y$	0	1	<u>2</u>	<u>01</u>	<u>02</u>	<u>12</u>	012
0	0	0	0	0	0	0	0	<u>0</u>	0	1	2	01	02	12	012
<u>1</u>	0	<u>1</u>	<u>1</u>	<u>01</u>	<u>01</u>	<u>1</u>	<u>01</u>	<u>1</u>	1	<u>1</u>	<u>2</u>	<u>1</u>	<u>12</u>	<u>12</u>	<u>12</u>
<u>2</u>	0	<u>1</u>	2	<u>01</u>	<u>02</u>	<u>12</u>	<u>012</u>	<u>2</u>	2	<u>2</u>	$\underline{2}$	<u>2</u>	<u>2</u>	2	<u>2</u>
<u>01</u>	0	<u>01</u>	<u>01</u>	<u>01</u>	<u>01</u>	<u>01</u>	<u>01</u>	<u>01</u>	<u>01</u>	1	<u>2</u>	<u>01</u>	<u>012</u>	<u>12</u>	012
<u>02</u>	0	<u>01</u>	<u>02</u>	<u>01</u>	<u>02</u>	012	012	<u>02</u>	02	<u>12</u>	<u>2</u>	<u>012</u>	<u>02</u>	<u>12</u>	<u>012</u>
<u>12</u>	0	1	<u>12</u>	<u>01</u>	012	<u>12</u>	012	<u>12</u>	<u>12</u>	<u>12</u>	<u>2</u>	<u>12</u>	<u>12</u>	<u>12</u>	<u>12</u>
012	0	<u>01</u>	<u>012</u>	<u>01</u>	012	<u>012</u>	012	012	012	<u>12</u>	2	<u>012</u>	<u>012</u>	<u>12</u>	012

,	Table 4: Truth Table of X^S													
X	<u>0</u>	1	<u>2</u>	<u>01</u>	<u>02</u>	<u>12</u>	012							
$X^{\underline{0}}$	2	0	0	02	02	0	02							
$X^{\underline{1}}$	0	<u>2</u>	<u>0</u>	<u>02</u>	<u>0</u>	<u>02</u>	<u>02</u>							
X^{2}	<u>0</u>	0	<u>2</u>	<u>0</u>	<u>02</u>	<u>02</u>	<u>02</u>							
$X^{\underline{01}}$	2	2	<u>0</u>	<u>2</u>	<u>02</u>	$\underline{02}$	<u>02</u>							
$X^{\underline{02}}$	<u>2</u>	<u>0</u>	<u>2</u>	<u>02</u>	<u>2</u>	<u>02</u>	<u>02</u>							
X^{12}	0	<u>2</u>	<u>2</u>	<u>02</u>	<u>02</u>	<u>2</u>	<u>02</u>							
X^{012}	2	<u>2</u>	<u>2</u>	<u>2</u>	<u>2</u>	<u>2</u>	<u>2</u>							

functionally complete on the set E_r [5].

$$a \cdot b = \min(a, b),$$

 $a + b = \max(a, b),$
 $x^{S} = \begin{cases} r - 1 & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}$

where $a, b \in E_r$ and $S \subseteq E_r$. The unary operations x^S are often called the universal literals. However, when S is a singleton, x^S is sometimes called a delta literal.

For simplicity, in writing elements of P_r , we will remove brackets and put an underline if no confusion arises. That is, for example, $\underline{0}$, $\underline{02}$ and $\underline{012}$ stand for $\{0\}$, $\{0,2\}$ and $\{0,1,2\}$, respectively. Tables 2, 3 and 4 are truth tables of operations on P_3 with respect to \cdot , + and x^S , respectively. Because this paper focuses on the operations on P_r with respect to \cdot , + and x^S , they are denoted by \wedge , \sqcup and X^S , respectively.

This paper does not allow any kinds of compositions of the operations \wedge , \sqcup and X^S on P_r . Compositions are restricted by the form of the formulas defined below.

Definition 2 Formulas are defined inductively in the following way.

- (1) Constants $\{0\}, \ldots, \{r-1\}$ and literals X_i^S $(i=1,\ldots,n \text{ and } S \in P_r)$ are formulas.
- (2) If G and H are formulas, then $(G \wedge H)$ and $(G \sqcup H)$ are also formulas.
- (3) It is a formula if and only if we get it from (1) and (2) in a finite number of steps.

(End of Definition)

The operations \wedge and \sqcup do not satisfy the absorption laws and the distributive laws. Thus, the algebraic system (P_r, \wedge, \sqcup) do not form a lattice.

In writing formulas, we sometimes omit the operation \wedge for simplicity.

It is evident that every formula expresses a function on P_r when each variable X_i takes an element of P_r . Furthermore, it is easy to verify that the formulas can not express all of the functions on P_r , i.e., the functions on P_r expressed by the formulas are not functionally complete on P_r . Thus, one of the main subjects of the paper is to clear what functions on P_r can be expressed by the formulas.

In the following, for any elements (A_1, \ldots, A_n) and (B_1, \ldots, B_n) of P_r^n , $(A_1, \ldots, A_n) \subseteq (B_1, \ldots, B_n)$ stands for $A_i \subseteq B_i$ for all *i*'s. Moreover, $(A_1, \ldots, A_n) \cap (B_1, \ldots, B_n) = \emptyset$ stands for $A_i \cap B_i = \emptyset$ for some *i*.

Theorem 1 ² Suppose a function f on P_r can be expressed by a formula. Then, $f(A_1, \ldots, A_n) \in S_r$ holds for any element $(A_1, \ldots, A_n) \in S_r^n$.

Theorem 2 Suppose a function f on P_r can be expressed by a formula. Then, $f(A_1, \ldots, A_n) \subseteq f(B_1, \ldots, B_n)$ holds for any elements (A_1, \ldots, A_n) and (B_1, \ldots, B_n) of P_r^n such that $(A_1, \ldots, A_n) \subseteq (B_1, \ldots, B_n)$.

3 Functions Expressed by Formulas Composed of \wedge , \sqcup , and Delta Literals

This section shows a necessary and sufficient condition for functions on P_r that can be expressed by formulas with the operations \wedge , \sqcup and delta literals.

Theorem 3 Let $A_1, \ldots, A_{i-1}, A_{i+1}, \ldots, A_n$ be elements of P_r . If a function f on P_r is expressed by a formula, then the least element of $f(A_1, \ldots, A_{i-1}, A, A_{i+1}, \ldots, A_n)$ (which is a subset of E_r) is equal to the least element of $f(A_1, \ldots, A_{i-1}, B, A_{i+1}, \ldots, A_n)$ for any elements A and B of $P_r - S_r$, i.e.,

$$\min f(a_1, \dots, A_{i-1}, A, A_{i+1}, \dots, A_n) = \min f(A_1, \dots, A_{i-1}, B, A_{i+1}, \dots, A_n)$$

holds for any elements A and B of $P_r - S_r$.

From Theorems 1, 2 and 3, any function f on P_r expressed by a formula satisfies the following Condition A.

Condition A: Let f be a function on P_r .

- (1) If $(A_1, ..., A_n) \in S_r^n$, then $f(A_1, ..., A_n) \in S_r$.
- (2) For any elements (A_1, \ldots, A_n) and (B_1, \ldots, B_n) of $P_r^n, (A_1, \ldots, A_n) \subseteq (B_1, \ldots, B_n)$ implies $f(A_1, \ldots, A_n) \subseteq f(B_1, \ldots, B_n)$.
- (3) Let $A_1, \ldots, A_{i-1}, A_{i+1}, \ldots, A_n$ be elements of P_r . Then, the least element of $f(A_1, \ldots, A_{i-1}, A, A_{i+1}, \ldots, A_n)$ is equal to the least element of $f(A_1, \ldots, A_{i-1}, B, A_{i+1}, \ldots, A_n)$ for any elements A and B of $P_r S_r$, i.e.,

$$\min f(A_1, \dots, A_{i-1}, A, A_{i+1}, \dots, A_n) = \min f(A_1, \dots, A_{i-1}, B, A_{i+1}, \dots, A_n)$$

holds for any elements A and B of $P_r - S_r$.

²All of the proofs in this paper are omitted because of the limitation of the space.

In the remainder of this section, it is proven that Condition A is a necessary and sufficient condition for a function on P_r to be expressed by a formula with the operations \wedge , \sqcup , and delta literals.

Definition 3 Let f be a function on P_r , and let $A = (A_1, \ldots, A_{i-1}, A_{i+1}, \ldots, A_n)$ be an element of S_r^{n-1} . Then, we define one-variable functions $f_A^i(X)$ and $\hat{f}_A^i(X)$ $(i = 1, \ldots, n)$ expressed by the following formulas.

$$\check{f}_A^i(X) = \bigsqcup_{s \in E_r} \left\{ \{s\} \land \bigsqcup_{B \in P_A^+(s)} X^B \right\},\tag{1}$$

where $\check{P}_A^i(s)$ is the set of all maximal elements of the set

$$P_A^i(s) = \{ B \in P_r \mid \min f(A_1, \dots, A_{i-1}, B, A_{i+1}, \dots, A_n) = s \},$$
 (2)

and

$$\hat{f}_A^i(X) = \bigsqcup_{S \in P_r - S_r} \left(\bigsqcup_{t \in S} \left[\{t\} \land \left\{ \bigsqcup_{B \in \hat{Q}_A^i(S)} \left(\bigwedge_{e \in B} X^{\{e\}} \right) \right\} \right] \right), \tag{3}$$

where $\hat{Q}_{A}^{i}(S)$ is the set of all minimal elements of

$$Q_A^i(S) = \{ B \in P_r - S_r \mid f(A_1, \dots, A_{i-1}, B, A_{i+1}, \dots, A_n) = S \}.$$
 (4)

In the formulas (1) and (3), if $\check{P}_A^i(s)$ and $\hat{Q}_A^i(S)$ are the empty set, then

$$\bigsqcup_{B \in \mathring{P}_A^i(s)} X^B \text{ and } \bigsqcup_{B \in \mathring{Q}_A^i(S)} \left(\bigwedge_{k \in B} X^{\{k\}} \right)$$

are defined as $\{0\}$, respectively. Moreover, in the formula (1), when $B = E_r$, then X^B is the constant $\{r-1\}$. (End of Definition)

In the formula (1), if f is a function satisfying Condition A, then any subset $\check{P}_A^i(s)$ is a subset of S_r , or it is equal to $\{E_r\}$. Now, let us show this property. Suppose an element B of $P_r - S_r$ is a member of $P_A^i(s)$. Then, by Condition A(3), it follows that E_r is also a member of $P_A^i(s)$. Therefore, when an element of $P_r - S_r$ is a member of $P_A^i(s)$, then E_r is also a member of $P_A^i(s)$. This fact implies that $\check{P}_A^i(s)$ is a subset of S_r , or it is equal to $\{E_r\}$. So, the formula (1) is well-defined when f is a function satisfying Condition A.

Lemma 1 Let $A = (A_1, \ldots, A_{i-1}, A_{i+1}, \ldots, A_n)$ be an element of S_r^{n-1} . Then, for a function f satisfying Condition A,

$$\begin{cases}
f_A^i(B) = \\
f(A_1, \dots, A_{i-1}, B, A_{i+1}, \dots, A_n) & \text{if } f(A_1, \dots, A_{i-1}, B, A_{i+1}, \dots, A_n) \in S_r \\
K & \text{otherwise}
\end{cases}$$

holds for any element B of P_r , where K is an element of P_r such that

$$\{f_0\}\subseteq K\subseteq f(A_1,\ldots,A_{i-1},B,A_{i+1},\ldots,A_n)$$

and f_0 is the least element of $f(A_1, \ldots, A_{i-1}, B, A_{i+1}, \ldots, A_n)$. (End of Lemma)

Lemma 2 Let $A = (A_1, \ldots, A_{i-1}, A_{i+1}, \ldots, A_n)$ be an element of S_r^{n-1} . Then, for a function f satisfying Condition A,

$$\hat{f}_A^i(B) = \begin{cases} \{0\} & \text{if } f(A_1, \dots, A_{i-1}, B, A_{i+1}, \dots, A_n) \in S_r \\ \{0\} \cup f(A_1, \dots, A_{i-1}, B, A_{i+1}, \dots, A_n) & \text{otherwise} \end{cases}$$

holds for any element $B \in P_r$.

(End of Lemma)

Lemma 3 Let $A = (A_1, \ldots, A_{i-1}, A_{i+1}, \ldots, A_n)$ be an element of S_r^{n-1} . Then, for a function f satisfying Condition A,

$$\check{f}_A^i(B) \sqcup \hat{f}_A^i(B) = f(A_1, \dots, A_{i-1}, B, A_{i+1}, \dots, A_n)$$

holds for any element $B \in P_r$.

In the following, this section proves that any function satisfying Condition A can be expressed by a formula, and also shows a method how a formula can be formulated by a function satisfying Condition A.

Definition 4 Let f be a function on P_r . Then, f_1 is defined as a function on P_r expressed by the following formula.

$$f_1(X_1, \dots, X_n) = \bigsqcup_{i=1}^n f^i(X_1, \dots, X_n),$$
 (5)

where

$$f^{i}(X_{1},\ldots,X_{n}) = \bigsqcup_{A=(A_{1},\ldots,A_{i-1},A_{i+1},\ldots,A_{n})\in S_{r}^{n-1}} \left(\bigwedge_{j=1(j\neq i)}^{n} X_{j}^{A_{j}} \wedge \left(\check{f}_{A}^{i}(X_{i}) \sqcup \hat{f}_{A}^{i}(X_{i})\right) \right).$$
(End of Definition)

Here, let us introduce a subset of P_r^n , which will be denoted by I(r,n), below.

$$I(r,n) = \bigcup_{i=1}^{n} \{ (A_1, \dots, A_n) \in P_r^n \mid A_i \in P_r - S_r \text{ and } A_1, \dots, A_{i-1}, A_{i+1}, \dots, A_n \in S_r \}$$

That is, each element (A_1, \ldots, A_n) of I(r, n) consists of elements of S_r , but except for one.

Lemma 4 Let F be a function satisfying Condition A. Then,

$$f_1(A_1,\ldots,A_n) = \begin{cases} f(A_1,\ldots,A_n) & \text{if } f(A_1,\ldots,A_n) \in S_r \cup I(r,n) \\ K & \text{otherwise} \end{cases}$$

holds for any element $(A_1, \ldots, A_n) \in P_r^n$, where K is an element of P_r such that $\{0\} \subseteq K \subseteq \{0\} \cup f(A_1, \ldots, A_n)$. (End of Lemma)

Definition 5 Let f be a function on P_r , let S be an element of $P_r - S_r$, and let $\hat{T}(f, S)$ is the set of all minimal elements of the following subset of P_r^n .

$$T(f,S) = \{(A_1,\ldots,A_n) \in P_r^n \mid f(A_1,\ldots,A_n) = S \text{ and } (A_1,\ldots,A_n) \notin S_r^n \cup I(r,n)\}$$
 (6)

Then, f_2 is defined as a function on P_r expressed by the following formula.

$$f_2(X_1,\ldots,X_n) = \{s_0\} \sqcup \left[\bigsqcup_{S \in P_r - S_r} \left\{ \bigsqcup_{t \in S} \{t\} \land f_S(X_1,\ldots,X_n) \right\} \right], \tag{7}$$

where

$$f_{S}(X_{1},\ldots,X_{n}) = \begin{cases} \bigsqcup_{(A_{1},\ldots,A_{n})\in\hat{T}(f,S)} \left\{ \bigwedge_{b\in A_{1}} X_{1}^{\{b\}} \wedge \cdots \wedge \bigwedge_{b\in A_{n}} X_{n}^{\{b\}} \right\} & \text{if } \hat{T}(f,S) \neq \emptyset \\ \{0\} & \text{otherwise} \end{cases}$$
(8)

and s_0 is the least element of $\bigcup_{(A_1,\dots,A_n)\in P_r^n} f(A_1,\dots,A_n)$. (End of Definition)

Lemma 5 Let f be a function on P_r satisfying Condition A. Then,

$$f_2(A_1,\ldots,A_n) = \begin{cases} \{s_0\} & \text{if } (A_1,\ldots,A_n) \in S_r^n \cup I(r,n) \\ f(A_1,\ldots,A_n) & \text{otherwise,} \end{cases}$$

holds for any element $(A_1, \ldots, A_n) \in P_r^n$, where s_0 is the least element of the union $\bigcup_{(A_1, \ldots, A_n) \in P_r^n} f(A_1, \ldots, A_n).$ (End of Lemma)

Theorem 4 Let f be a function on P_r satisfying Condition A. Then,

$$f(A_1,\ldots,A_n)=f_1(A_1,\ldots,A_n)\sqcup f_2(A_1,\ldots,A_n)$$

holds for any element $(A_1, \ldots, A_n) \in P_r^n$, where f_1 and f_2 are the formulas (5) and (7), respectively. (End of Theorem)

4 Examples of Functions Satisfying Condition A

Consider the function f on P_3 whose truth table is given in Table 5. It is not difficult to verify that f satisfies Condition A. Then, this section illustrates how we can form the formula that expresses the function f.

Example 1 Let us first consider the formulas (1) and (3). It follows by Eq. (2) that we have the following three subsets of P_3 .

$$\begin{array}{lcl} P_{\underline{0}}^{1}(0) & = & \{B \in P_{3} | \min f(B,\underline{0}) = 0\} = \{\underline{0},\underline{2},\underline{01},\underline{02},\underline{12},\underline{012}\} \\ P_{\underline{0}}^{1}(1) & = & \{B \in P_{3} | \min f(B,\underline{0}) = 1\} = \{\underline{1}\} \\ P_{\underline{0}}^{1}(2) & = & \{B \in P_{3} | \min f(B,\underline{0}) = 2\} = \emptyset \end{array}$$

Table 5: Example of Function f Satisfying Condition A

				,		0	
$X \backslash Y$	0	<u>1</u>	<u>2</u>	<u>01</u>	<u>02</u>	<u>12</u>	<u>012</u>
0	0	0	0	0	0	<u>02</u>	02
<u>1</u>	1	<u>1</u>	<u>2</u>	<u>1</u>	<u>12</u>	$\underline{12}$	<u>12</u>
<u>2</u>	0	<u>2</u>	<u>0</u>	<u>02</u>	<u>0</u>	<u>02</u>	<u>02</u>
<u>01</u>	<u>01</u>	<u>01</u>	<u>02</u>	012	012	012	012
<u>02</u>	<u>0</u>	<u>02</u>	0	<u>02</u>	<u>0</u>	<u>02</u>	<u>02</u>
<u>12</u>	<u>012</u>	012	<u>02</u>	012	012	012	012
<u>012</u>	012	012	<u>02</u>	<u>012</u>	$\underline{012}$	012	012

Thus, since $\check{P}_{\underline{0}}^1(0) = \{\underline{012}\}, \ \check{P}_{\underline{0}}^1(1) = \{\underline{1}\}, \ \text{and} \ \check{P}_{\underline{0}}^1(2) = \emptyset$, we have the formula $\check{f}_{\underline{0}}^1(X)$ by Eq. (1).

$$\check{f}_{\underline{0}}^{1}(X) = (\underline{0} \wedge \underline{012}) \sqcup (\underline{1} \wedge X^{\underline{1}}) \sqcup (\underline{2} \wedge \underline{0})
= \underline{1} \wedge X^{\underline{1}}$$
(9)

In a similar way, we have the formulas $\check{f}^1_{\underline{1}}(X)$, $\check{f}^2_{\underline{2}}(Y)$, $\check{f}^2_{\underline{1}}(Y)$, $\check{f}^2_{\underline{1}}(Y)$, and $\check{f}^2_{\underline{2}}(Y)$, below.

$$\begin{array}{l}
\check{f}_{\underline{1}}^{1}(X) = \underline{1}X^{\underline{1}} \sqcup X^{\underline{2}} \\
\check{f}_{\underline{2}}^{1}(X) = X^{\underline{1}} \\
\check{f}_{\underline{0}}^{2}(Y) = \underline{0} \\
\check{f}_{\underline{1}}^{2}(Y) = \underline{1} \sqcup Y^{\underline{2}} \\
\check{f}_{\underline{2}}^{2}(Y) = Y^{\underline{1}}
\end{array} \right\}$$
(10)

Moreover, it follows by Eq. (4) that we have

$$\begin{array}{lll} Q_{\underline{0}}^1(\underline{01}) &=& \{B \in P_3 - S_3 \mid f(B,\underline{0}) = \underline{01}\} = \{\underline{01}\}, \\ Q_{\underline{0}}^1(\underline{02}) &=& \{B \in P_3 - S_3 \mid f(B,\underline{0}) = \underline{02}\} = \emptyset, \\ Q_{\underline{0}}^1(\underline{12}) &=& \{B \in P_3 - S_3 \mid f(B,\underline{0}) = \underline{12}\} = \emptyset, \text{ and } \\ Q_{\underline{0}}^1(\underline{012}) &=& \{B \in P_1 - S_3 \mid f(B,\underline{0}) = \underline{012}\} = \{\underline{12},\underline{012}\}. \end{array}$$

Thus, since $\hat{Q}_{\underline{0}}^{1}(\underline{01}) = \{\underline{01}\}, \ \hat{Q}_{\underline{0}}^{1}(\underline{02}) = \hat{Q}_{\underline{0}}^{1}(\underline{12}) = \emptyset$ and $\hat{Q}_{\underline{0}}^{1}(\underline{012}) = \{\underline{12}\}$, we have the formula $\hat{f}_{\underline{0}}^{1}(X)$ by Eq. (3).

$$\hat{f}_{\underline{0}}^{1}(X) = (\underline{0}X^{\underline{0}}X^{\underline{1}} \sqcup \underline{1}X^{\underline{0}}X^{\underline{1}}) \sqcup \underline{0} \sqcup \underline{0} \sqcup (\underline{0}X^{\underline{2}}X^{\underline{2}} \sqcup \underline{1}X^{\underline{2}}X^{\underline{2}} \sqcup \underline{2}X^{\underline{2}}X^{\underline{2}})
= \underline{1}X^{\underline{0}}X^{\underline{1}} \sqcup \underline{1}X^{\underline{1}}X^{\underline{2}} \sqcup X^{\underline{1}}X^{\underline{2}}.$$
(11)

In a similar way, we have the formulas $\hat{f}^1_{\underline{1}}(X)$, $\hat{f}^2_{\underline{2}}(Y)$, $\hat{f}^2_{\underline{0}}(Y)$, $\hat{f}^2_{\underline{1}}(Y)$, and $\hat{f}^2_{\underline{2}}(Y)$, below.

$$\hat{f}_{\underline{1}}^{1}(X) = \underline{1}X^{\underline{0}}X^{\underline{1}} \sqcup X^{\underline{0}}Y^{\underline{2}} \sqcup \underline{1}X^{\underline{1}}X^{\underline{2}} \sqcup X^{\underline{1}}X^{\underline{2}},
\hat{f}_{\underline{2}}^{1}(X) = X^{\underline{0}}X^{\underline{1}} \sqcup X^{\underline{1}}X^{\underline{2}},
\hat{f}_{\underline{0}}^{2}(Y) = Y^{\underline{1}}Y^{\underline{2}},
\hat{f}_{\underline{1}}^{2}(Y) = \underline{1}Y^{\underline{0}}Y^{\underline{2}} \sqcup X^{\underline{0}}Y^{\underline{2}} \sqcup \underline{1}Y^{\underline{1}}Y^{\underline{2}} \sqcup Y^{\underline{1}}Y^{\underline{2}},
\hat{f}_{\underline{2}}^{2}(Y) = Y^{\underline{0}}Y^{\underline{1}} \sqcup Y^{\underline{1}}Y^{\underline{2}}.$$
(12)

Ta	Table 6: Truth Tables of $\check{f}_A^1(X)$ and $\hat{f}_A^1(X)$								}	Table 7:	Tru	th [Tab!	les of	$f \check{f}_A^2(Y)$) and	$\hat{f}_A^2(Y)$
_	X	0	1	<u>2</u>	<u>01</u>	<u>02</u>	<u>12</u>	012		Y	0	<u>1</u>	<u>2</u>	<u>01</u>	<u>02</u>	<u>12</u>	012
	$f_{\underline{0}}^{1}(X)$	0	1	0	<u>01</u>	0	<u>01</u>	01		$f_0^2(Y)$	0	0	0	0	0	0	0
	$\check{f}_{\underline{1}}^{\overline{1}}(X)$	0	1	<u>2</u>	<u>01</u>	<u>02</u>	012	$\underline{012}$		$\check{f}_{\underline{1}}^{\overline{2}}(Y)$	1	<u>1</u>	<u>2</u>	<u>1</u>	<u>12</u>	<u>12</u>	<u>12</u>
	$\check{f}_{\underline{2}}^{\bar{1}}(X)$	0	<u>2</u>	<u>0</u>	<u>02</u>	<u>0</u>	<u>02</u>	<u>02</u>		$\check{f}_{f 2}^{f 2}(Y)$	0	<u>2</u>	<u>0</u>	<u>02</u>	<u>0</u>	<u>02</u>	<u>02</u>
	$\hat{f}_{\underline{0}}^{\overline{1}}(X)$	0	<u>0</u>	<u>0</u>	<u>01</u>	0	$\underline{012}$	$\underline{012}$		$\widehat{f_{f 0}^{f 2}}(Y)$	0	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>02</u>	<u>02</u>
	$\hat{f}_1^1(X)$	0	<u>0</u>	<u>0</u>	<u>01</u>	<u>02</u>	012	012		$\hat{f}_1^{f 2}(Y)$	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	012	<u>012</u>	<u>012</u>
	$\widehat{f_{\underline{2}}^1}(X)$	<u>0</u>	<u>0</u>	<u>0</u>	<u>02</u>	<u>0</u>	<u>02</u>	<u>02</u>		$\widehat{f}_{f 2}^{f 2}(Y)$	0	<u>0</u>	<u>0</u>	<u>02</u>	<u>0</u>	<u>02</u>	<u>02</u>

Tables 6 and 7 show the truth tables of \check{f}_A^i and \hat{f}_A^i for which i = 1, 2 and $A \in \{0, 1, 2\}$. (End of Example)

It follows by Lemma 3 that

$$f(X,B) = \check{f}_{A}^{1}(X) \sqcup \hat{f}_{A}^{1}(X)$$
 and $f(B,Y) = \check{f}_{A}^{2}(Y) \sqcup \hat{f}_{A}^{2}(Y)$

hold for every $A \in \{\underline{0},\underline{1},\underline{2}\}$ and every $B \in P_3$, where $\check{f}_A^1(X),\, \hat{f}_A^1(X),\, \check{f}_A^2(Y)$ and $\hat{f}_A^2(Y)$ have been obtained in Eqs. (9), (10), (11) and (12). Table 8 shows the truth tables of $\check{f}_A^i \sqcup \hat{f}_A^i$, where i = 1, 2 and $A \in \{0, 1, 2\}$.

Example 2 Let us next consider the formula (5) in Definition 4. It follows by Eqs. (9) and (11) that we have the formula $\check{f}_{\underline{0}}^1(X) \sqcup \hat{f}_{\underline{0}}^1(X)$ below.

$$\begin{array}{rcl} \check{f}^1_{\underline{0}}(X) \sqcup \hat{f}^1_{\underline{0}}(X) & = & \underline{1}X^{\underline{1}} \sqcup \underline{1}X^{\underline{0}}X^{\underline{1}} \sqcup \underline{1}X^{\underline{1}}X^{\underline{2}} \sqcup X^{\underline{1}}X^{\underline{2}} \\ & = & 1X^{\underline{1}} \sqcup X^{\underline{1}}X^{\underline{2}} \end{array}$$

In a similar way, by Eqs. (10), (11) and (12), we have the formulas

$$\begin{array}{lcl} \check{f}_{\underline{1}}^1(X) \sqcup \hat{f}_{\underline{1}}^1(X) & = & \underline{1}X^{\underline{1}} \sqcup X^{\underline{2}}, \\ \check{f}_{\underline{2}}^1(X) \sqcup \hat{f}_{\underline{2}}^1(X) & = & X^{\underline{1}}, \\ \check{f}_{\underline{0}}^2(Y) \sqcup \hat{f}_{\underline{0}}^2(Y) & = & Y^{\underline{1}}Y^{\underline{2}}, \\ \check{f}_{\underline{1}}^2(Y) \sqcup \hat{f}_{\underline{1}}^2(Y) & = & \underline{1} \sqcup Y^{\underline{2}}, \\ \check{f}_{\underline{2}}^2(Y) \sqcup \hat{f}_{\underline{2}}^2(Y) & = & Y^{\underline{1}}. \end{array}$$

Therefore, the formula $f_1(X,Y)$ of (5) in Definition 4 is given as

$$f_1(X,Y) = f^1(X,Y) \sqcup f^2(X,Y),$$
 (13)

,	Table	Table 10: Truth Table of $f_2(X, Y)$														
$X \setminus Y$	0	1	2	<u>01</u>	<u>02</u>	<u>12</u>	012		$X \backslash Y$	0	1	<u>2</u>	<u>01</u>	<u>02</u>	<u>12</u>	012
0	0	0	0	0	0	02	02	-	0	0	0	0	0	0	0	<u>0</u>
<u>1</u>	1	<u>1</u>	<u>2</u>	1	<u>12</u>	<u>12</u>	<u>12</u>		<u>1</u>	0	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	0	<u>0</u>
$\underline{2}$	0	<u>2</u>	<u>0</u>	<u>02</u>	<u>0</u>	$\underline{02}$	$\underline{02}$		$\underline{2}$	0	<u>0</u>	0	$\underline{0}$	<u>0</u>	<u>0</u>	<u>0</u>
<u>01</u>	<u>01</u>	<u>01</u>	<u>02</u>	<u>01</u>	012	<u>012</u>	<u>012</u>		<u>01</u>	0	<u>0</u>	<u>0</u>	<u>012</u>	012	012	012
<u>02</u>	0	$\underline{02}$	0	<u>02</u>	<u>0</u>	<u>02</u>	<u>02</u>		<u>02</u>	0	<u>0</u>	<u>0</u>	<u>02</u>	<u>0</u>	<u>02</u>	<u>02</u>
<u>12</u>	012	012	<u>02</u>	012	$\underline{012}$	<u>012</u>	$\underline{012}$		<u>12</u>	<u>0</u>	0	<u>0</u>	012	012	<u>012</u>	012
012	012	$\underline{012}$	<u>02</u>	012	012	012	012		<u>012</u>	0	0	<u>0</u>	012	<u>012</u>	<u>012</u>	012

where

$$\begin{array}{lcl} f^1(X,Y) & = & Y^{\underline{0}}\left(\check{f}^1_{\underline{0}}(X) \sqcup \hat{f}^1_{\underline{0}}(X)\right) \sqcup Y^{\underline{1}}\left(\check{f}^1_{\underline{1}}(X) \sqcup \hat{f}^1_{\underline{1}}(X)\right) \sqcup Y^{\underline{2}}\left(\check{f}^1_{\underline{2}}(X) \sqcup \hat{f}^1_{\underline{2}}(X)\right) \text{ and } \\ f^2(X,Y) & = & X^{\underline{0}}\left(\check{f}^2_{\underline{0}}(Y) \sqcup \hat{f}^2_{\underline{0}}(Y)\right) \sqcup X^{\underline{1}}\left(\check{f}^2_{\underline{1}}(Y) \sqcup \hat{f}^2_{\underline{1}}(Y)\right) \sqcup X^2\left(\check{f}^2_{\underline{2}}(Y) \sqcup \hat{f}^2_{\underline{2}}(Y)\right). \end{array}$$

Table 9 is the truth table of $f_1(X, Y)$.

(End of Example)

Example 3 In this example, let us consider the formula (7) in Definition 5. It follows by Eq. (6) that we have the following subsets of P_3^2 .

$$\begin{array}{rcl} T(f,\underline{01}) & = & \emptyset \\ T(f,\underline{02}) & = & \{(\underline{02},\underline{01}),(\underline{02},\underline{12}),(\underline{02},\underline{012})\} \\ T(f,\underline{12}) & = & \emptyset \\ T(f,\underline{012}) & = & \{(A,B) \mid A \in \{\underline{01},\underline{12},\underline{012}\} \text{ and } B \in P_3 - S_3\} \end{array}$$

Therefore, since we have

$$\begin{array}{lll} \hat{T}(f,\underline{01}) &=& \emptyset, \\ \hat{T}(f,\underline{02}) &=& \left\{(\underline{02},\underline{01}),(\underline{02},\underline{12})\right\}, \\ \hat{T}(f,\underline{12}) &=& \emptyset, \text{ and} \\ \hat{T}(f,\underline{012}) &=& \left\{(\underline{01},\underline{01}),(\underline{01},\underline{02}),(\underline{01},\underline{12}),(\underline{12},\underline{01}),(\underline{12},\underline{02}),(\underline{12},\underline{12})\right\}, \end{array}$$

it follows by Eq. (8) that we have the following formulas.

$$\begin{array}{rcl} f_{\underline{01}}(X,Y) & = & \underline{0} \\ f_{\underline{02}}(X,Y) & = & X^{\underline{0}}X^{\underline{2}}Y^{\underline{0}}Y^{\underline{1}} \sqcup X^{\underline{0}}X^{\underline{2}}Y^{\underline{1}}Y^{\underline{2}} \\ f_{\underline{12}}(X,Y) & = & \underline{0} \\ f_{\underline{012}}(X,Y) & = & X^{\underline{0}}X^{\underline{1}}Y^{\underline{0}}Y^{\underline{1}} \sqcup X^{\underline{0}}X^{\underline{1}}Y^{\underline{0}}Y^{\underline{2}} \sqcup X^{\underline{0}}X^{\underline{1}}Y^{\underline{1}}Y^{\underline{2}} \sqcup X^{\underline{1}}X^{\underline{1}}Y^{\underline{1}}Y^{\underline{2}} \sqcup X^{\underline{1}}X^{\underline{1}}Y^{$$

Thus, the formula $f_2(X,Y)$ of (7) in Definition 5 is obtained as the formula below.

$$f_{2}(X,Y) = \underline{0} \sqcup \{\underline{0}f_{\underline{02}}(X,Y) \sqcup \underline{2}f_{\underline{02}}(X,Y)\} \sqcup \{\underline{0}f_{\underline{012}}(X,Y) \sqcup \underline{1}f_{\underline{012}}(X,Y) \sqcup \underline{2}f_{\underline{012}}(X,Y)\}$$

$$= f_{\underline{02}}(X,Y) \sqcup \underline{1}f_{\underline{012}}(X,Y) \sqcup f_{\underline{012}}(X,Y)$$
(14)

Table 10 is the truth table of $f_2(X, Y)$.

(End of Example)

It follows by Theorem 4 that the function f of Table 5 can be expressed by the formula $f_1(X,Y) \sqcup f_2(X,Y)$, where $f_1(X,Y)$ and $f_2(X,Y)$ are the formulas given in (13) and (14), respectively.

5 Functions Expressed by Formulas Composed of \wedge , \sqcup and Universal Literals

This section discusses functions on P_r expressed by formulas, which are composed of the operations \land , \sqcup and universal literals. Then, a necessary and sufficient condition for a function on P_r to be expressed by a formula when r is equal to 3.

Theorem 5 Let f be a function on P_r . If f can be expressed by a formula, then

$$\bigcap_{A \in P_r - S_r} f(A_1, \dots, A_{i-1}, A, A_{i+1}, \dots, A_n) \neq \emptyset$$

holds for any elements $A_1, \ldots, A_{i-1}, A_{i+1}, \ldots, A_n$ of P_r . (End of Theorem)

By Theorems 1, 2 and 5, any function f on P_r expressed by a formula satisfies the following Condition B.

Condition B: Let f be a function on P_r .

- (1) If $(A_1, \ldots, A_n) \in S_r^n$, then $f(A_1, \ldots, A_n) \in S_r$.
- (2) For any elements (A_1, \ldots, A_n) and (B_1, \ldots, B_n) of $P_r^n, (A_1, \ldots, A_n) \subseteq (B_1, \ldots, B_n)$ implies $f(A_1, \ldots, A_n) \subseteq f(B_1, \ldots, B_n)$.
- (3) $\bigcap_{\substack{A \in P_r S_r \\ A_{i+1}, \dots, A_n \text{ of } P_r}} f(A_1, \dots, A_{i-1}, A, A_{i+1}, \dots, A_n) \neq \emptyset \text{ holds for any elements } A_1, \dots, A_{i-1},$

In the following, this section proves that Condition B is a necessary and sufficient condition for a function on P_3 to be expressed by a formula with the operations \wedge , \sqcup , and universal literals.

Definition 6 Let (A_1, \ldots, A_n) be any element of P_r^n . Then, $\alpha = X_1^{A_1} \wedge \cdots \wedge X_n^{A_n}$ is said to be the type-1 term corresponding to (A_1, \ldots, A_n) . Next, let (B_1, \ldots, B_n) be any element of $P_r^n - S_r^n$. Then, $\beta = \bigwedge_{e \in B_1} X_1^{\{e\}} \wedge \cdots \wedge \bigwedge_{e \in B_n} X_n^{\{e\}}$ is said to be the type-2 term corresponding to $(B_1,\ldots,B_n).$ (End of Definition)

Let S be an element of P_r , and let T be an element of $P_r - S_r$. Then, it is easy to verify that the following two equations are valid.

$$X^{S} = \begin{cases} \{r-1\} & \text{if } X \subseteq S \\ \{0\} & \text{if } X \cap S = \emptyset \\ \{0, r-1\} & \text{otherwise} \end{cases}$$

$$\bigwedge_{e \in T} X^{\{e\}} = \begin{cases} \{0, r-1\} & \text{if } T \subseteq X \\ \{0\} & \text{otherwise} \end{cases}$$

$$(15)$$

$$\bigwedge_{e \in T} X^{\{e\}} = \begin{cases}
\{0, r - 1\} & \text{if } T \subseteq X \\
\{0\} & \text{otherwise}
\end{cases}$$
(16)

Therefore, for any type-1 term α and any type-2 term β , $\alpha(A_1, \ldots, A_n) = \{r-1\}, \{0, r-1\},$ or $\{0\}$, and $\beta(A_1, ..., A_n) = \{0, r-1\}$ or $\{0\}$ hold for any element $(A_1, ..., A_n) \in P_r^n$.

Lemma 6 For any type-1 term α corresponding to $(A_1, \ldots, A_n) \in P_r^n$,

(1)
$$(B_1, \ldots, B_n) \subseteq (A_1, \ldots, A_n)$$
 iff $\alpha(B_1, \ldots, B_n) = \{r - 1\}$,

(2)
$$(A_1, \ldots, A_n) \cap (B_1, \ldots, B_n) = \emptyset$$
 iff $\alpha(B_1, \ldots, B_n) = \{0\},$

(3)
$$(B_1, \ldots, B_n) \not\subseteq (A_1, \ldots, A_n)$$
 and $(A_1, \ldots, A_n) \cap (B_1, \ldots, B_n) = \emptyset$ iff $\alpha(B_1, \ldots, B_n) = \{0, r-1\}$

hold for any $(B_1, \ldots, B_n) \in P_r^n$.

(End of Lemma)

Lemma 7 For any type-2 term α corresponding to $(A_1, \ldots, A_n) \in P_r^n - S_r^n$

(1)
$$(A_1, \ldots, A_n) \subseteq (B_1, \ldots, B_n)$$
 iff $\alpha(B_1, \ldots, B_n) = \{0, r-1\}$,

(2)
$$(A_1, \ldots, A_n) \not\subseteq (B_1, \ldots, B_n)$$
 iff $\alpha(B_1, \ldots, B_n) = \{0\}$

hold for any
$$(B_1, \ldots, B_n) \in P_r^n$$
.

(End of Lemma)

Let f be a function satisfying Condition B, and let S be an element of P_r . Then, define two subsets of P_r^n , denoted by L(f,S) and U(f,S), below.

$$L(f,S) = \{(A_1, \dots, A_n) \in P_r^n \mid f(A_1, \dots, A_n) \subseteq S\} \text{ and } U(f,S) = \{(A_1, \dots, A_n) \in P_r^n \mid f(A_1, \dots, A_n) \cap S \neq \emptyset\}.$$

Let $\check{L}(f,S)$ and U'(f,S) be the sets of all maximal elements of L(f,S) and of all minimal elements of U(f,S), respectively. Further, let $\hat{U}(f,S) = U'(f,S) - S_r^n$.

Lemma 8 Let f be a function satisfying Condition B, and let S be an element of P_r . Then, $(f)^S$ can be expressed by the following formula.

$$(f)^{S} = \begin{cases} \bigsqcup_{A \in \check{L}(f,S)} \alpha_{A} \sqcup \bigsqcup_{A \in \hat{U}(f,S)} \beta_{A} & \text{if } \check{L}(f,S) \neq \emptyset \text{ or } \hat{U}(f,S) \neq \emptyset \\ \{0\} & \text{otherwise} \end{cases}$$

$$(17)$$

where α_A and β_A are the type-1 and type-2 terms corresponding to A, respectively.

(End of Lemma)

Now, let us consider formulas of one-variable functions satisfying Condition B. Any one-variable function f satisfying Condition B is in at least one of the following three cases 3 .

- **(B-1)** $f(A) \neq \underline{01}$ holds for any element $A \in P_3 S_3$.
- **(B-2)** $f(A) \neq \underline{02}$ holds for any element $A \in P_3 S_3$.
- **(B-3)** $f(A) \neq \underline{12}$ holds for any element $A \in P_3 S_3$.

³If f is in neither one of the cases (B-1), (B-2), (B-3), then it implies that we have three distinct elements A, B, C in $P_3 - S_3$ such that $f(A) = \underline{01}$, $f(B) = \underline{02}$, and $f(C) = \underline{12}$. However, this contradicts to the fact that f satisfies Condition B(3).

	Table 11: Example of (B-4)									Table 12: Example of (B-5)							
$x \backslash y$	0	<u>1</u>	<u>2</u>	<u>01</u>	<u>02</u>	<u>12</u>	<u>012</u>		$x \backslash y$	0	<u>1</u>	<u>2</u>	<u>01</u>	<u>02</u>	<u>12</u>	$\underline{012}$	
0	0	1	2	<u>01</u>	<u>02</u>	012	012		0	0	0	0	<u>0</u>	0	<u>0</u>	0	
<u>1</u>	2	$\underline{2}$	<u>2</u>	<u>2</u>	<u>2</u>	<u>2</u>	<u>2</u>		<u>1</u>	0	<u>1</u>	<u>0</u>	<u>01</u>	<u>0</u>	<u>01</u>	<u>01</u>	
<u>2</u>	<u>0</u>	<u>2</u>	<u>1</u>	<u>02</u>	012	<u>12</u>	012		<u>2</u>	0	<u>2</u>	<u>1</u>	<u>02</u>	<u>012</u>	<u>12</u>	$\underline{012}$	
<u>01</u>	<u>02</u>	<u>12</u>	<u>2</u>	<u>012</u>	<u>012</u>	$\underline{012}$	$\underline{012}$		<u>01</u>	0	<u>01</u>	<u>0</u>	<u>01</u>	<u>0</u>	<u>01</u>	<u>01</u>	
<u>02</u>	<u>0</u>	<u>12</u>	<u>12</u>	012	$\underline{012}$	012	012		<u>02</u>	<u>0</u>	<u>02</u>	<u>01</u>	012	$\underline{012}$	<u>012</u>	$\underline{012}$	
<u>12</u>	<u>02</u>	<u>2</u>	<u>12</u>	<u>02</u>	$\underline{012}$	<u>12</u>	012		<u>12</u>	0	<u>012</u>	<u>01</u>	012	012	<u>012</u>	012	
012	02	<u>12</u>	<u>12</u>	012	012	012	012		012	0	012	01	012	012	012	012	

Table 13: Example of (B-6)

				-	,	,	
$x \backslash y$	0_	<u>1</u>	<u>2</u>	<u>01</u>	<u>02</u>	<u>12</u>	012
<u>0</u>	0	0	0	0	0	0	0
$\frac{1}{2}$	0	<u>1</u>	<u>1</u>	<u>01</u>	<u>01</u>	1	<u>01</u>
<u>2</u>	<u>0</u>	<u>2</u>	<u>2</u>	<u>02</u>	<u>02</u>	<u>2</u>	<u>02</u>
<u>01</u>	0	<u>01</u>	<u>012</u>	<u>01</u>	<u>012</u>	<u>012</u>	012
$\frac{02}{12}$	0	012	<u>02</u>	012	012	012	$\underline{012}$
<u>12</u>	0	<u>12</u>	<u>12</u>	012	012	<u>12</u>	012
012	0	012	<u>012</u>	<u>012</u>	<u>012</u>	<u>012</u>	$\underline{012}$

Property 1 Any one-variable function f satisfying Condition B can be expressed by the following formula.

$$f(X) = \begin{cases} f^{\underline{12}}(X) \wedge (\underline{1} \sqcup f^{\underline{02}}(X)) & \text{if } f \text{ is in the case (B-1)} \\ (\underline{1} \wedge f^{\underline{1}}(X)) \sqcup f^{\underline{2}}(X) \sqcup (\underline{1} \wedge f^{\underline{12}}(X)) & \text{if } f \text{ is in the case (B-2)} \\ (\underline{1} \wedge f^{\underline{1}}(X)) \sqcup f^{\underline{2}}(X) & \text{if } f \text{ is in the case (B-3)} \end{cases}$$
 (18)

(End of Property)

By Property 1, every one-variable function satisfying Condition B can be expressed by a formula.

Next, let us consider the case where functions satisfying Condition B depend more than one variable. Then, any function f satisfying Condition B is in at least one of the three cases below.

(B-4)
$$f(A_1,\ldots,A_n)\neq \underline{01}$$
 holds for any element $(A_1,\ldots A_n)\in (P_3-S_3)^n$.

(B-5)
$$f(A_1,\ldots,A_n)\neq \underline{12}$$
 holds for any element $(A_1,\ldots,A_n)\in (P_3-S_3)^n$.

(B-6)
$$\bigcap_{(A_1,\ldots,A_n)\in (P_3-S_3)^n} f(A_1,\ldots,A_n) = \underline{1}.$$

Tables 11, 12 and 13 are examples of two-variable functions being in the cases (B-4), (B-5), and (B-6), respectively.

Then, we can prove Properties $1\sim 6$, which show a way for constructing formulas of n-variable functions satisfying Condition B.

Let A be an element $(A_1, \ldots, A_{i-1}, A_{i+1}, \ldots, A_n)$ of P_r^{n-1} . Then, denote the one-variable function $f(A_1, \ldots, A_{i-1}, X, A_{i+1}, \ldots, A_n)$ by $f_A^i(X)$.

Property 2 Suppose a function f satisfying Condition B is in the case (B-5). Let f' be a function expressed by the formula

$$f' = p^1 \sqcup \dots \sqcup p^n, \tag{19}$$

where

$$p^{i}(X_{1}, \dots, X_{n}) = \bigsqcup_{A=(A_{1}, \dots, A_{i-1}, A_{i+1}, \dots, A_{n}) \in S_{3}^{n-1}} (f_{A}^{i}(X_{i}) \wedge X_{1}^{A_{1}} \wedge \dots \wedge X_{i-1}^{A_{i-1}} \wedge X_{i+1}^{A_{i+1}} \wedge \dots \wedge X_{n}^{A_{n}}).$$
(20)

Then, for any element $(A_1, \ldots, A_n) \in P_3^n$

$$f'(A_1,\ldots,A_n) = \begin{cases} f(A_1,\ldots,A_n) & \text{if } (A_1,\ldots,A_n) \not\in (P_3-S_3)^n \\ K & \text{otherwise} \end{cases}$$

where K is an element of P_r such that $\{0\} \subseteq K \subseteq \{0\} \cup F(A_1, \ldots, A_n)$. (End of Property)

Property 3 Suppose a function f satisfying Condition B is in the case (B-5). Let f'' be a function expressed by the formula

$$f''(X_1, \dots, X_n) = \bigsqcup_{S \in P_3 - S_3} \left\{ \bigsqcup_{t \in S} \left(\{t\} \land f_{\hat{T}(S)}(X_1, \dots, X_n) \right) \right\}, \tag{21}$$

where $\hat{T}(S)$ is the set of all minimal elements of the set

$$T(S) = \{(A_1, \dots, A_n) \in (P_3 - S_3)^n \mid f(A_1, \dots, A_n) = S\}$$

and

$$f_{\hat{T}(S)}(X_1,\dots,X_n) = \bigsqcup_{(A_1,\dots,A_n)\in\hat{T}(S)} \left\{ \bigwedge_{e\in A_1} X^{\{e\}} \wedge \dots \wedge \bigwedge_{e\in A_n} X^{\{e\}} \right\}.$$
 (22)

Then, for any element $(A_1, \ldots, A_n) \in P_3^n$,

$$f''(A_1,\ldots,A_n) = \begin{cases} \{0\} & \text{if } (A_1,\ldots,A_n) \notin (P_3 - S_3)^n \\ f(A_1,\ldots,A_n) & \text{otherwise} \end{cases}$$

(End of Property)

Property 4 Any function f satisfying Condition B can be expressed by $f = f' \sqcup f''$, if f is in the case (B-5). (End of Property)

Property 5 Suppose a function f satisfying Condition B is in the case (B-4). Let $A = (A_1, \ldots, A_{i-1}, A_{i+1}, \ldots, A_n)$ be an element of S_3^{n-1} . Then, define g_A^i and h as functions on P_r expressed by the following formulas.

$$g_A^i(X_1, \dots, X_n) = f_A^i(X_i) \sqcup (X_1^{A_1'} \wedge \dots \wedge X_{i-1}^{A_{i-1}'} \wedge X_{i+1}^{A_{i+1}'} \wedge \dots \wedge X_n^{A_n'}), \tag{23}$$

where $A'_{j} = E_{3} - A_{j}$ (j = 1, ..., i - 1, i + 1, ..., n).

$$h(X_1, \dots, X_n) = \left\{ \left(\bigsqcup_{i=1}^n \bigsqcup_{A \in S_3} X_i^A \right) \sqcup f^{\underline{12}}(X_1, \dots, X_n) \right\} \wedge \left\{ \left(\bigsqcup_{i=1}^n \bigsqcup_{A \in S_3} X_i^A \right) \sqcup f^{\underline{02}}(X_1, \dots, X_n) \sqcup \underline{1} \right\} (24)$$

Then, f can be expressed by the following formula.

$$f(X_1, \dots, X_n) = G(X_1, \dots, X_n) \wedge h(X_1, \dots, X_n),$$
 (25)

where G is \land -ing of all the g_A^i 's of Eq. (23), i.e.,

$$G(X_1, \dots, X_n) = \bigwedge_{i=1}^n \left(\bigwedge_{A \in S_3^{n-1}} g_A^i(X_1, \dots, X_n) \right)$$
 (26)

(End of Property)

Property 6 Suppose a function f satisfying Condition B is in the case (B-6). Then, f is in either one of the following two cases.

- (1) $f(A) \neq \underline{02}$ holds for any element $A \in P_3^n$, or
- (2) $f(A) = \underline{02}$ holds for some element $A \in P_3^n$.

If f is in the case (1), then f can be expressed by

$$f(X_1,\ldots,X_n) = \left(\underline{1} \wedge f^{\underline{1}}(X_1,\ldots,X_n)\right) \sqcup f^{\underline{2}}(X_1,\ldots,X_n) \sqcup \left(\underline{1} \wedge f^{\underline{12}}(X_1,\ldots,X_n)\right). \tag{27}$$

Let w be a function expressed by the following formula.

$$w(X_1, \dots, X_n) = \bigsqcup_{(A_1, \dots, A_n) \in Q_{02}} \xi_1(A_1) \sqcup \dots \sqcup \xi_n(A_n),$$
 (28)

where $Q_{\underline{02}}=\{(A_1,\ldots,A_n)\in P_3^n\mid f(A_1,\ldots,A_n)=\underline{02}\}$ 4, and

$$\xi_i(A) = \begin{cases} X_i^A & \text{if } A \in S_3\\ \underline{0} & \text{otherwise.} \end{cases}$$

Then, f can be expressed by the following formula, if f is in the case (2).

$$f(X_1, \dots, X_n) = G(X_1, \dots, X_n) \wedge w(X_1, \dots, X_n),$$
 (29)

where $G(X_1, \ldots, X_n)$ is given by Eq. (26). (End of Property)

6 Examples of Function Satisfying Condition B

This section shows examples of 2-variable functions satisfying Condition B, and illustrates how they can be expressed by formulas.

Example 4 Consider the function f defined by Table 12, which is in the case (B-5). The formula expressing f is given by Properties 2, 3, and 4. First, consider the formulas $f_A^1(X)$ and $f_A^2(Y)$, which appear in Eq. (20). Table 14 shows the truth tables of the six one-variable functions $f_{\underline{0}}^1(X)$, $f_{\underline{1}}^1(X)$, $f_{\underline{0}}^2(Y)$, $f_{\underline{1}}^1(Y)$ and $f_{\underline{2}}^2(Y)$. Since $f_{\underline{2}}^1(X)$ and $f_{\underline{1}}^2(Y)$ are in (B-2) (or (B-3)), $f_{\underline{1}}^1(X)$ is in (B-3), and $f_{\underline{2}}^2(Y)$ is in (B-1), it follows by Eq. (17) and (18) that these one-variable functions are expressed by the following formulas.

 $^{^4}Q_{\underline{02}}\cap (P_3-S_3)^n=\emptyset$ holds, since f is in the case (B-6).

Table 14: One-Variable Functions f_A^1 and f_A^2 of Example 4

X or Y	0	1	<u>2</u>	<u>01</u>	<u>02</u>	<u>12</u>	<u>012</u>
$f_0^1(X)$	0	0	0	0	0	0	0
$f_1^{\overline{1}}(X)$	<u>0</u>	<u>1</u>	<u>2</u>	<u>01</u>	<u>02</u>	012	$\underline{012}$
$f_2^{\overline{1}}(X)$	0	<u>0</u>	1	<u>0</u>	<u>01</u>	<u>01</u>	<u>01</u>
$f_0^{ar{2}}(Y)$	0	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
$f_1^{\overline{2}}(Y)$	0	<u>1</u>	<u>0</u>	<u>01</u>	<u>0</u>	<u>01</u>	<u>01</u>
$f_{\underline{2}}^{\overline{2}}(Y)$	0	<u>2</u>	1	<u>02</u>	012	<u>12</u>	012

Table 15: Truth Table of f' of Example 4 Table 16: Truth Table of f'' of Example 4 $\begin{array}{c} \frac{1}{2} \\ \frac{01}{02} \end{array}$ $\frac{1}{2}$ <u>02</u> <u>0</u> <u>1</u> <u>0</u> <u>01</u> <u>01</u> <u>02</u> <u>01</u> <u>02</u> 012 012 <u>02</u> <u>0</u> <u>0</u> <u>12</u> <u>012</u> <u>12</u> 0 0

$$\begin{array}{ll} f^1_{\underline{0}}(X) = \underline{0}, & f^1_{\underline{1}}(X) = \underline{1}X^{\underline{1}} \sqcup X^{\underline{2}}, & f^1_{\underline{2}}(X) = \underline{1}X^{\underline{2}} \\ f^2_{\underline{0}}(Y) = \underline{0}, & f^2_{\underline{1}}(Y) = \underline{1}Y^{\underline{1}}, & f^2_{\underline{2}}(Y) = Y^{\underline{12}}(\underline{1} \sqcup Y^{\underline{01}}) \end{array}$$

Therefore, it follows by Eq. (19) that f' is expressed by the following formula.

$$f' = X^{\underline{0}} f_0^2(Y) \sqcup X^{\underline{1}} f_1^2(Y) \sqcup X^{\underline{2}} f_2^2(Y) \sqcup f_0^1(X) Y^{\underline{0}} \sqcup f_1^1(X) Y^{\underline{1}} \sqcup f_2^1(X) Y^{\underline{2}}$$

$$\tag{30}$$

Table 15 is the truth table of f'. Next, consider f'' in Eq. (21). Since

$$\begin{array}{lll} \hat{T}(\underline{01}) &=& \{(\underline{01},\underline{01}),(\underline{01},\underline{12})\}, \\ \hat{T}(\underline{02}) &=& \hat{T}(\underline{12}) = \emptyset, \text{ and} \\ \hat{T}(\underline{012}) &=& \{(\underline{02},\underline{01}),(\underline{02},\underline{02}),(\underline{02},\underline{12}),(\underline{12},\underline{01}),(\underline{12},\underline{02}),(\underline{12},\underline{12})\}, \end{array}$$

it follows by Eq. (22) that we have the following formulas.

$$\begin{array}{rcl} f_{\hat{T}(\underline{01})}(X,Y) & = & X^{\underline{0}}X^{\underline{1}}Y^{\underline{0}}Y^{\underline{1}} \sqcup X^{\underline{0}}X^{\underline{1}}Y^{\underline{1}}Y^{\underline{2}} \\ f_{\hat{T}(\underline{012})}(X,Y) & = & X^{\underline{0}}X^{\underline{2}}Y^{\underline{0}}Y^{\underline{1}} \sqcup X^{\underline{0}}X^{\underline{2}}Y^{\underline{0}}Y^{\underline{2}} \sqcup X^{\underline{0}}X^{\underline{2}}Y^{\underline{1}}Y^{\underline{2}} \sqcup X^{\underline{1}}X^{\underline{2}}Y^{\underline{0}}Y^{\underline{1}} \sqcup X^{\underline{1}}X^{\underline{2}}Y^{\underline{0}}Y^{\underline{1}} \sqcup X^{\underline{1}}X^{\underline{2}}Y^{\underline{1}}Y^{\underline{2}} \\ & & X^{\underline{1}}X^{\underline{2}}Y^{\underline{0}}Y^{\underline{2}} \sqcup X^{\underline{1}}X^{\underline{2}}Y^{\underline{1}}Y^{\underline{2}} \end{array}$$

We then have f''(X, Y) below by Eq. (21).

$$f''(X,Y) = \underline{1}f_{\hat{T}(01)}(X,Y) \sqcup \underline{1}f_{\hat{T}(012)}(X,Y) \sqcup f_{\hat{T}(012)}(X,Y)$$
(31)

Table 16 is the truth table of f''. It follows by Property 4 that $f(X,Y) = f'(X,Y) \sqcup f''(X,Y)$. (End of Example)

Table 17:	Truth	Table	of C	7 of	Examp	le 5
3213210	-	0 (١1	00	10	010

Table	18:	Truth	Table	of	h of	Example	5
I WOIC	10.	II au	10010	OI.	10 OI		·

Table 11: If the Table of C of Estample o							P		I WOIC I	· ·	4	-	. word	JI 10 OI		iipic o
$X \setminus Y$	0	1	<u>2</u>	<u>01</u>	<u>02</u>	<u>12</u>	<u>012</u>	_	$X \setminus Y$	0	1	<u>2</u>	<u>01</u>	<u>02</u>	<u>12</u>	<u>012</u>
0	0	1	2	<u>01</u>	<u>02</u>	012	012		0	2	<u>2</u>	2	2	2	2	2
<u>1</u>	2	<u>2</u>	$\underline{2}$	<u>2</u>	<u>2</u>	<u>2</u>	$\underline{2}$		<u>1</u>	2	<u>2</u>	<u>2</u>	$\underline{2}$	<u>2</u>	<u>2</u>	<u>2</u>
<u>2</u>	0	<u>2</u>	<u>1</u>	<u>02</u>	012	$\underline{12}$	<u>012</u>		<u>2</u>	2	$\underline{2}$	<u>2</u>	<u>2</u>	<u>2</u>	<u>2</u>	<u>2</u>
<u>01</u>	02	<u>12</u>	<u>2</u>	<u>012</u>	<u>02</u>	012	<u>012</u>		<u>01</u>	2	<u>2</u>	<u>2</u>	012	<u>012</u>	<u>012</u>	012
<u>02</u>	0	<u>12</u>	<u>12</u>	012	012	012	<u>012</u>		<u>02</u>	2	<u>2</u>	<u>2</u>	$\underline{012}$	012	$\underline{012}$	012
$\underline{12}$	02	<u>2</u>	<u>12</u>	<u>02</u>	012	<u>12</u>	012		<u>12</u>	2	<u>2</u>	<u>2</u>	<u>02</u>	012	<u>12</u>	012
012	02	12	12	012	012	012	012		012	2	2	2	012	012	012	012

Example 5 Consider the function f defined by Table 11, which is in (B-4). The formula expressing f is given by Property 5. First, consider the formula $g_A^1(X)$ and $g_A^2(Y)$ of Eq. (23). It follows by Eq. (17) and (18) that the one-variable functions $f_A^1(X)$ and $f_A^2(Y)$ are obtained below.

$$\begin{split} f_{\underline{0}}^1(X) &= X^{\underline{1}}, & f_{\underline{1}}^1(X) = \underline{1} \sqcup X^{\underline{12}}, & f_{\underline{2}}^1(X) = \underline{1} \sqcup X^{\underline{01}}, \\ f_{\underline{0}}^2(Y) &= \underline{1}Y^{\underline{1}} \sqcup Y^{\underline{2}}, & f_{\underline{1}}^2(Y) = \underline{2}, & f_{\underline{2}}^2(Y) &= Y^{\underline{12}}(\underline{1} \sqcup Y^{\underline{01}}) \end{split}$$

Then, by Eq. (23), we have

$$\begin{split} g_{\underline{0}}^1(X,Y) &= X^{\underline{1}} \sqcup Y^{\underline{12}}, & g_{\underline{1}}^1(X,Y) = \underline{1} \sqcup X^{\underline{12}} \sqcup Y^{\underline{02}}, & g_{\underline{2}}^1(X,Y) = \underline{1} \sqcup X^{\underline{01}} \sqcup Y^{\underline{01}}, \\ g_0^2(X,Y) &= X^{\underline{12}} \sqcup \underline{1}Y^{\underline{1}} \sqcup Y^{\underline{2}}, & g_1^2(X,Y) = \underline{2}, & g_2^2(X,Y) = X^{\underline{01}} \sqcup Y^{\underline{12}}(\underline{1} \sqcup Y^{\underline{01}}). \end{split}$$

By Eq. (26), we have the function G(X,Y) expressed by \land -ing of all the above $g_A^i(X,Y)$'s. Table 17 is the truth table of G(X,Y). Next, consider h in Eq. (24). It follows by Eq. (17) that the functions $f^{12}(X,Y)$ and $f^{02}(X,Y)$ are expressed by the following formulas.

$$\begin{array}{rcl} f^{\underline{12}}(X,Y) & = & X^{\underline{1}} \sqcup X^{\underline{12}}Y^{\underline{12}} \sqcup Y^{\underline{1}} \sqcup Y^{\underline{2}} \sqcup X^{\underline{0}}X^{\underline{1}}Y^{\underline{0}} \sqcup X^{\underline{1}}X^{\underline{2}}Y^{\underline{0}} \\ f^{\underline{02}}(X,Y) & = & X^{\underline{0}}Y^{\underline{02}} \sqcup X^{\underline{1}} \sqcup X^{\underline{01}}Y^{\underline{2}} \sqcup X^{\underline{12}}Y^{\underline{01}} \sqcup Y^{\underline{1}} \end{array}$$

Thus, by Eq. (24), we have

$$h(X,Y) = \Big(v(X,Y) \sqcup f^{\underline{12}}(X,Y)\Big) \wedge \Big(v(X,Y) \sqcup f^{\underline{02}}(X,Y) \sqcup \underline{1}\Big),$$

where $v(X,Y) = X^{\underline{0}} \sqcup X^{\underline{1}} \sqcup X^{\underline{2}} \sqcup Y^{\underline{0}} \sqcup Y^{\underline{1}} \sqcup Y^{\underline{2}}$. Table 18 is the truth table of h(X,Y). Lastly, by Eq. (25), f(X,Y) are expressed by the following formula.

$$f(X,Y) = G(X,Y) \wedge h(X,Y)$$

$$= g_{\underline{0}}^{1}(X,Y) \wedge g_{\underline{1}}^{1}(X,Y) \wedge g_{\underline{2}}^{1}(X,Y) \wedge g_{\underline{0}}^{2}(X,Y) \wedge g_{\underline{1}}^{2}(X,Y) \wedge g_{\underline{2}}^{2}(X,Y) \wedge h(X,Y)$$
(End of Example)

Example 6 Consider the function f define by Table 13, which is in (B-6). The formula expressing f is given by Property 6. Since f is in the case (2) of Property 6, f is expressed by the formula given in Eq. (29).

First, consider the formula G(X,Y). It follows by Eq. (17) and (18) that one-variable functions $f_A^1(X)$ and $f_A^2(Y)$ are obtained below.

Table 19: Truth Table of G of Example 6								${ m T}_{ m c}$	Table 20: Truth Table of w of Example 6								
$X \setminus Y$	0	1	<u>2</u>	<u>01</u>	<u>02</u>	<u>12</u>	<u>012</u>		$X \backslash Y$	0	1	<u>2</u>	<u>01</u>	<u>02</u>	<u>12</u>	012	
0	0	0	0	0	0	0	0		0	1	1	2	1	12	12	<u>12</u>	
<u>1</u>	0	<u>1</u>	<u>1</u>	<u>01</u>	<u>01</u>	1	<u>01</u>		<u>1</u>	1	<u>1</u>	$\underline{2}$	<u>1</u>	<u>12</u>	<u>12</u>	<u>12</u>	
<u>2</u>	0	<u>2</u>	<u>2</u>	$\underline{12}$	<u>02</u>	<u>2</u>	<u>02</u>		<u>2</u>	2	$\underline{2}$	<u>2</u>	<u>2</u>	<u>2</u>	<u>2</u>	<u>2</u>	
<u>01</u>	0	<u>01</u>	012	012	012	012	012		<u>01</u>	1	1	<u>2</u>	<u>1</u>	<u>12</u>	<u>12</u>	<u>12</u>	
<u>02</u>	<u>0</u>	012	$\underline{02}$	012	<u>02</u>	012	012		<u>02</u>	<u>12</u>	<u>12</u>	<u>2</u>	<u>12</u>	<u>12</u>	<u>12</u>	<u>12</u>	
<u>12</u>	0	<u>12</u>	<u>12</u>	012	012	<u>12</u>	012		<u>12</u>	<u>12</u>	<u>12</u>	<u>2</u>	<u>12</u>	<u>12</u>	<u>12</u>	<u>12</u>	
<u>012</u>	0	012	012	012	$\underline{012}$	012	$\underline{012}$		$\underline{012}$	12	<u>12</u>	<u>2</u>	<u>12</u>	<u>12</u>	<u>12</u>	<u>12</u>	
	$f_{\underline{0}}^{1}(X) = \underline{0} f_{\underline{1}}^{1}(X) = (\underline{1} \wedge X^{\underline{12}}) \sqcup X^{\underline{2}} f_{\underline{2}}^{1}(X) = X^{\underline{12}} \wedge (\underline{1} \sqcup X^{\underline{02}})$																
		$f_{\underline{0}}^{2}($	Y) = y	$0, f_{\underline{1}}^2$	2(Y) =	= <u>1</u> ^ Y	Y^{12}		$f_{\underline{2}}^2(Y$	<u>(</u>) =	Y^{12}						

Thus, we obtain $g_A^1(X,Y)$ and $g_A^2(X,Y)$ of Eq. (23) below.

$$\begin{array}{ll} g_{\underline{0}}^1(X,Y) = Y^{\underline{12}} & g_{\underline{1}}^1(X,Y) = (\underline{1} \wedge X^{\underline{12}}) \sqcup X^{\underline{2}} \sqcup Y^{\underline{02}} & g_{\underline{2}}^1(X,Y) = X^{\underline{12}} \wedge (\underline{1} \sqcup X^{\underline{02}}) \sqcup Y^{\underline{01}} \\ g_{\underline{0}}^2(X,Y) = X^{\underline{12}} & g_{\underline{1}}^2(X,Y) = X^{\underline{02}} \sqcup (\underline{1} \wedge Y^{\underline{12}}) & g_{\underline{2}}^2(X,Y) = X^{\underline{01}} \sqcup Y^{\underline{12}} \end{array}$$

By Eq. (26), we have the function G(X,Y) expressed by \wedge -ing of all the above $g_A^i(X,Y)$'s. Table 19 is the truth table of G.

Next, consider w(X, Y) of Eq. (28). Because

$$Q_{02} = \{(2,01), (2,02), (2,012), (02,02)\},\$$

it follow by Eq. (28) that the formula w is obtained below.

$$w(X,Y) = \underline{1} \sqcup X^{\underline{2}} \sqcup Y^{\underline{2}}$$

Table 20 is the truth table of w. Lastly, it follows by Eq. (29) that the following formula expresses the function f.

$$\begin{array}{lcl} f(X,Y) & = & G(X,Y) \wedge w(X,Y) \\ & = & g_{\underline{0}}^1(X,Y) \wedge g_{\underline{1}}^1(X,Y) \wedge g_{\underline{2}}^1(X,Y) \wedge g_{\underline{0}}^2(X,Y) \wedge g_{\underline{1}}^2(X,Y) \wedge g_{\underline{2}}^2(X,Y) \wedge w(X,Y). \end{array}$$
 (End of Example)

7 Conclusions

This paper discussed functions over P_r that preserves the set inclusion relation \subseteq . We referred the three kinds of operations Min, Max, and Literals over E_r , because they are functionally complete on the r-valued set E_r . This paper then proved some of the mathematical properties of functions over P_r that can be expressed by formulas. It is one of the open problems that which set of operations $\hat{o}_1, \hat{o}_2, \ldots, \hat{o}_m$ over P_r can realize any function over P_r preserving the set inclusion relation \subseteq .

References

- [1] S. C. Kleene, Introduction to metamathematics, North-Holland Pub., pp. 332-340, 1952.
- [2] M. Goto, "Application of three-valued logic to construct the theory of relay networks," (in Japanese), Proc. Joint Meeting IEE, IECE, and I. of Illum. E. of Japan, 1948.
- [3] M. Mukaidono, "Regular ternary logic functions Ternary logic functions suitable for treating ambiguity," *IEEE Trans. on Computers*, vol. c-35, no. 2, pp. 179-183, 1986.
- [4] M. Mukaidono, "On the B-ternary logical function," *IECE Trans.*, vol. 55-D, no. 6, pp. 355-362, 1972 (in Japanese)
- [5] J. C. Muzio and T. C. Wesselkamper, Multiple-Valued Switching Theory.
- [6] M. Mukaidono: "The B-ternary logic and its applications to the detection of hazards in combinational switching circuits," *Proc. of the 8th ISMVL*, pp. 269-275, 1978.
- [7] N. Takagi, Y. Nakamura and K. Nakashima: "Set-valued functions and regularity," *Proc.* of the 27th ISMVL, pp. 89-94, 1997.
- [8] I. G. Rosenberg, "Multiple-valued hyperstructures," *Proc. of the 28th ISMVL*, pp. 326-333, 1998.