Parameter Scalingに基づく気泡流中の非線形波動方程式 の統一的導出方法(液体の圧縮性による強い減衰)

東京大学大学院工学系研究科 金川 哲也 (KANAGAWA Tetsuya) Department of Mechanical Engineering, The university of Tokyo

はじめに 1

気泡を含む液体中においては、単相媒質中に比べ、圧力波のふるまいが著しく異なる. そ の特徴のひとつに、気泡振動によって誘起される波の分散性が挙げられる. 弱非線形のレ ジームにおいては、van Wijngaarden による Korteweg-de Vries (KdV) 方程式の導出[1]を 皮切りに、多数の非線形波動方程式が導かれてきた(たとえば、[2]).

本稿では、気泡流中の平面進行波の弱非線形伝播を記述する、非線形波動方程式の統一 的導出方法を提示する. 波の分散性と波の非線形性が競合する遠方場における孤立波の形 成や、波の散逸性と波の非線形性が競合する遠方場における衝撃波の形成は、非線形波動 論(とくに弱非線形波の伝播)における重要事項である.この事実から、気泡流中の多様な 弱非線形波動を捉えるために、非線形性に対する分散性と散逸性などの波の多様な性質の 相対的な大きさを特徴付ける操作に、本質が存在すると考えることができる. 具体的に述 べるために、波の非線形性の大きさを表す無次元振幅 $\epsilon (\ll 1)$ を用いて、気泡流中の圧力 波を特徴付ける3つの無次元数を定義する:

$$\frac{U^*}{c_{L0}^*} \equiv O(\epsilon^a),\tag{1}$$

$$\frac{R_0^*}{L^*} \equiv O(\epsilon^b),\tag{2}$$

$$\frac{U^*}{c_{L0}^*} \equiv O(\epsilon^a), \qquad (1)$$

$$\frac{R_0^*}{L^*} \equiv O(\epsilon^b), \qquad (2)$$

$$\frac{\omega^*}{\omega_B^*} \equiv O(\epsilon^c). \qquad (3)$$

ここに、 U^* 、 L^* 、 ω^* はそれぞれ波の代表的な伝播速度 (気泡流中の位相速度や群速度)、波 長、周波数, c_{L0}^* は初期液単相音速, R_0^* は初期気泡半径, ω_B^* は単一気泡の固有角振動数で ある ("*" は有次元量). さらに, a, b, c は, 対象とする波動に応じて決まる定数である. 式 (1)と(2)の左辺の無次元比は、それぞれ、波の散逸性の大きさ(音響放射減衰による)、波 の分散性の大きさをあらわす. 右辺にも着目すると、(1)(2)は、非線形性に対する散逸性、 分散性の相対的な大きさを規定する操作に他ならない. 式(1)-(3)とは, 気泡流中の多様 な弱非線形波動のうち、以下の特徴を有する波だけを抽出するためのスケーリングである: 波の位相速度が液単相音速にくらべて $O(\epsilon^a)$ だけ小さく, 波長が気泡径にくらべて $O(\epsilon^b)$ だけ大きく、さらに、入射波の振動数が気泡の固有振動数にくらべて $O(\epsilon^c)$ だけ小さい.

2流体モデルに基づく気泡流の支配方程式に対する漸近解析を行う. その結果, 低周波数 領域が KdV-Burgers (KdVB) 方程式で、比較的高周波数領域が非線形 Schrödinger (NLS) 方程式で、それぞれ記述される.

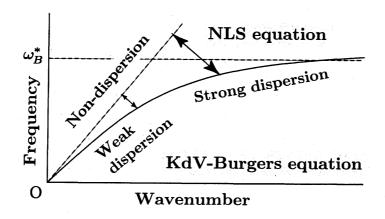


Fig. 1: Weakly nonlinear waves in the low- and high- frequency bands are governed by the KdVB and NLS equations, respectively. Here ω_B^* denotes the eigenfrequency of a single bubble.

2 問題設定および基礎方程式

多数の微細気泡を一様に含む静止液体中における, 有限振幅の1次元(平面波)進行波を 扱う. 本稿では、従来の多くの研究で無視されてきた(たとえば、[1])液体の小さな圧縮性 を考慮する. 一方で, 気体の粘性, 気体と液体の熱伝導性, 気液界面を通しての相変化およ びエネルギー輸送、さらに Reynolds 応力は無視する.

2.1 基礎方程式系

気泡流の支配方程式系は、気相と液相それぞれに対する質量および運動量の保存則、気 泡壁の運動方程式, また, 状態方程式などから構成される [3, 4]. まず, 2 流体モデルに基づ く質量および運動量の保存則は.

$$\left(\frac{\partial}{\partial t^*}(\alpha \rho_G^*) + \frac{\partial}{\partial x^*}(\alpha \rho_G^* u_G^*) = 0,\right)$$
(4)

$$\frac{\partial}{\partial t^*} \left[(1 - \alpha) \rho_L^* \right] + \frac{\partial}{\partial x^*} \left[(1 - \alpha) \rho_L^* u_L^* \right] = 0, \tag{5}$$

$$\frac{\partial}{\partial t^*} (\alpha \rho_G^* u_G^*) + \frac{\partial}{\partial x^*} (\alpha \rho_G^* u_G^{*2}) + \alpha \frac{\partial p_G^*}{\partial x^*} = F^*, \tag{6}$$

$$\begin{cases}
\frac{\partial}{\partial t^{*}}(\alpha \rho_{G}^{*}) + \frac{\partial}{\partial x^{*}}(\alpha \rho_{G}^{*}u_{G}^{*}) = 0, \\
\frac{\partial}{\partial t^{*}}\left[(1 - \alpha)\rho_{L}^{*}\right] + \frac{\partial}{\partial x^{*}}\left[(1 - \alpha)\rho_{L}^{*}u_{L}^{*}\right] = 0, \\
\frac{\partial}{\partial t^{*}}(\alpha \rho_{G}^{*}u_{G}^{*}) + \frac{\partial}{\partial x^{*}}\left(\alpha \rho_{G}^{*}u_{G}^{*2}\right) + \alpha \frac{\partial p_{G}^{*}}{\partial x^{*}} = F^{*}, \\
\frac{\partial}{\partial t^{*}}\left[(1 - \alpha)\rho_{L}^{*}u_{L}^{*}\right] + \frac{\partial}{\partial x^{*}}\left[(1 - \alpha)\rho_{L}^{*}u_{L}^{*2}\right] + (1 - \alpha)\frac{\partial p_{L}^{*}}{\partial x^{*}} + P^{*}\frac{\partial \alpha}{\partial x^{*}} = -F^{*}.
\end{cases} (7)$$

ここに, t^* は時間, x^* は空間座標, α はボイド率 (気相の体積分率), ρ^* は密度, u^* は流速, p^st は圧力であり、添え字 G および L はそれぞれ気相および液相に付随する体積平均化さ れた変数を意味する. なお,体積平均圧力 p_G^* と p_L^* に加え,気液界面における面積積分に よって定義された局所的な液体圧力 P^* が導入されている. 相関の運動量輸送項 F^* とし

ては、以下の付加慣性力のモデルを用いる[4,5]:

$$F^* = -\beta_1 \alpha \rho_L^* \left(\frac{D_G u_G^*}{Dt^*} - \frac{D_L u_L^*}{Dt^*} \right) - \beta_2 \rho_L^* (u_G^* - u_L^*) \frac{D_G \alpha}{Dt^*} - \beta_3 \alpha (u_G^* - u_L^*) \frac{D_G \rho_L^*}{Dt^*}.$$
(8)

ここに、付加慣性係数 β_i (i=1,2,3) は球形気泡の場合 1/2 とおかれるが、本稿では具体的な値を与えぬまま進める。また、 D_G/Dt^* と D_L/Dt^* はそれぞれ気相と液相に沿う Lagrange 微分である。

圧縮性液体中における気泡の膨張・収縮運動をあらわす Keller 方程式を用いる [6]:

$$\left(1 - \frac{1}{c_{L0}^*} \frac{D_G R^*}{Dt^*}\right) R^* \frac{D_G^2 R^*}{Dt^{*2}} + \frac{3}{2} \left(1 - \frac{1}{3c_{L0}^*} \frac{D_G R^*}{Dt^*}\right) \left(\frac{D_G R^*}{Dt^*}\right)^2
= \left(1 + \frac{1}{c_{L0}^*} \frac{D_G R^*}{Dt^*}\right) \frac{P^*}{\rho_{L0}^*} + \frac{R^*}{\rho_{L0}^* c_{L0}^*} \frac{D_G}{Dt^*} (p_L^* + P^*).$$
(9)

ここに, R* は平均化された気泡半径である. 右辺第2項は, 気泡振動にともなう周囲液体への音波の放射に基づく気泡振動の減衰項である.

方程式系 (4)-(9) は,以下に示す,気相のポリトロープ変化の関係式,液相の Tait 状態方程式,気泡内気体の質量保存則,気液界面における法線方向応力のつりあい式によって閉じられる:

$$\begin{cases}
\frac{p_G^*}{p_{G0}^*} = \left(\frac{\rho_G^*}{\rho_{G0}^*}\right)^{\gamma}, & p_L^* = p_{L0}^* + \frac{\rho_{L0}^* c_{L0}^{*2}}{n} \left[\left(\frac{\rho_L^*}{\rho_{L0}^*}\right)^n - 1\right], \\
\frac{\rho_G^*}{\rho_{G0}^*} = \left(\frac{R_0^*}{R^*}\right)^3, & p_G^* - (p_L^* + P^*) = \frac{2\sigma^*}{R^*} + \frac{4\mu^*}{R^*} \frac{D_G R^*}{Dt^*}.
\end{cases} (10)$$

ここに, γ はポリトロープ指数, n は物質定数, σ^* は表面張力, μ^* は液体の粘性係数である. 添え字 0 が付いた量は初期静止状態における値であり, すべて定数であることを注意しておく.

2.2 多重尺度法による解析

現象を特徴付ける代表的な時間 T^* と長さ L^* を用いて、時間 t^* と空間座標 x^* を、 $t=t^*/T^*$ 、 $x=x^*/L^*$ と無次元化する. 小さなパラメータとして、波の代表的な無次元振幅 $\epsilon(\ll 1)$ を用いて、独立変数 t および x に対する複数のスケール

$$t_m = \epsilon^m t, \quad x_m = \epsilon^m x, \quad (m = 0, 1, 2, \dots, N),$$
 (11)

を導入する. これよりただちに、偏微分演算子が展開される(微分展開法):

$$\frac{\partial}{\partial t} = \sum_{m=0}^{N} \epsilon^m \frac{\partial}{\partial t_m}, \quad \frac{\partial}{\partial x} = \sum_{m=0}^{N} \epsilon^m \frac{\partial}{\partial x_m}.$$
 (12)

従属変数として、まず、lpha、 u_G^* 、 u_L^* 、 R^* 、 p_L^* を ϵ のべき級数に展開する:

$$\alpha/\alpha_0 = 1 + \epsilon \alpha_1 + \epsilon^2 \alpha_2 + \cdots, \tag{13}$$

$$u_G^*/U^* = \epsilon u_{G1} + \epsilon^2 u_{G2} + \cdots, \tag{14}$$

$$u_L^*/U^* = \epsilon u_{L1} + \epsilon^2 u_{L2} + \cdots, (15)$$

$$R^*/R_0^* = 1 + \epsilon R_1 + \epsilon^2 R_2 + \cdots,$$
 (16)

$$p_L^* = p_{L0}^* + \epsilon \rho_{L0}^* U^{*2} p_{L1} + \epsilon^2 \rho_{L0}^* U^{*2} p_{L2} + \cdots$$
 (17)

ここで, $U^* (\equiv L^*/T^*)$ は代表的な波の伝播速度である.

つづいて、液相密度 ρ_L^* の展開を以下のように定める:

$$\rho_L^*/\rho_{L0}^* = \begin{cases} 1 + \epsilon^2 \rho_{L1} + \epsilon^3 \rho_{L2} + \cdots, \\ 1 + \epsilon^5 \rho_{L1} + \epsilon^6 \rho_{L2} + \cdots. \end{cases}$$
(18)

すなわち, ρ_L^*/ρ_{L0}^* の変動は他変数 (13)–(17) よりも小さいと仮定しており, 1 行目が KdVB 方程式 $(3\mathfrak{m})$, 2 行目が NLS 方程式 $(4\mathfrak{m})$ の導出においてそれぞれ用いられる. なお, p_L^* と ρ_L^* は先述の Tait 式を満足せねばならず, それゆえ, これらの摂動も Tait 式によって関係づけられる. その具体形, たとえば p_{L1} と ρ_{L1} の間に存在する陽な関係は, 後の解析においてあらわれる.

初期状態における, 気相および液相の圧力ならびに密度比を

$$p_{G0} \equiv \frac{p_{G0}^*}{\rho_{L0}^* U^{*2}} \equiv O(1), \quad p_{L0} \equiv \frac{p_{L0}^*}{\rho_{L0}^* U^{*2}} \equiv O(1), \quad \rho_0 \equiv \frac{\rho_{G0}^*}{\rho_{L0}^*} \equiv O(\epsilon^3), \tag{19}$$

と定義する. 本解析において, ρο の寄与はないことを述べておく.

最後に, 単一気泡の固有角振動数 ω_R の定義を与える:

$$\omega_B^* \equiv \sqrt{\frac{3\gamma(p_{L0}^* + 2\sigma^*/R_0^*) - 2\sigma^*/R_0^*}{\rho_{L0}^*R_0^{*2}}}.$$
 (20)

3 Korteweg-de Vries-Burgers 方程式 [7, 8]

長波長かつ低周波数領域に着目し、KdVB 方程式を導くための物理パラメータのスケーリングを、振幅 $\epsilon (\ll 1)$ を用いて、以下のように設定する:

$$\frac{U^*}{c_{L0}^*} \equiv O(\sqrt{\epsilon}) \equiv V\sqrt{\epsilon}, \quad \frac{R_0^*}{L^*} \equiv O(\sqrt{\epsilon}) \equiv \Delta\sqrt{\epsilon}, \quad \frac{\omega^*}{\omega_R^*} \equiv O(\sqrt{\epsilon}) \equiv \Omega\sqrt{\epsilon}. \tag{21}$$

ここに, V, Δ , Ω はすべて O(1) の定数であり, $\omega^* \equiv 1/T^*$ は音源の角振動数をあらわす. スケーリング (21) は, 代表的な波の位相速度が初期液単相音速にくらべて $O(\sqrt{\epsilon})$ だけ小さく, 代表的な長さが初期気泡径にくらべて $O(1/\sqrt{\epsilon})$ だけ大きく, さらに, 入射波の振動数が気泡の固有振動数にくらべて $O(\sqrt{\epsilon})$ だけ小さいことを意味する.

基礎方程式系 (4)–(7) と (9) に対応する, ϵ に対する最低次の方程式は, 以下の線形方程 式系である:

$$\begin{cases}
\frac{\partial \alpha_{1}}{\partial t_{0}} - 3\frac{\partial R_{1}}{\partial t_{0}} + \frac{\partial u_{G1}}{\partial x_{0}} = 0, \\
\alpha_{0}\frac{\partial \alpha_{1}}{\partial t_{0}} - (1 - \alpha_{0})\frac{\partial u_{L1}}{\partial x_{0}} = 0, \\
\beta_{1}\frac{\partial u_{G1}}{\partial t_{0}} - \beta_{1}\frac{\partial u_{L1}}{\partial t_{0}} - 3\gamma p_{G0}\frac{\partial R_{1}}{\partial x_{0}} = 0, \\
(1 - \alpha_{0} + \beta_{1}\alpha_{0})\frac{\partial u_{L1}}{\partial t_{0}} - \beta_{1}\alpha_{0}\frac{\partial u_{G1}}{\partial t_{0}} + (1 - \alpha_{0})\frac{\partial p_{L1}}{\partial x_{0}} = 0, \\
R_{1} + \frac{\Omega^{2}}{\Delta^{2}}p_{L1} = 0.
\end{cases} (22)$$

$$\alpha_0 \frac{\partial \alpha_1}{\partial t_0} - (1 - \alpha_0) \frac{\partial u_{L1}}{\partial x_0} = 0, \tag{23}$$

$$\beta_1 \frac{\partial u_{G1}}{\partial t_0} - \beta_1 \frac{\partial u_{L1}}{\partial t_0} - 3\gamma p_{G0} \frac{\partial R_1}{\partial x_0} = 0, \tag{24}$$

$$(1 - \alpha_0 + \beta_1 \alpha_0) \frac{\partial u_{L1}}{\partial t_0} - \beta_1 \alpha_0 \frac{\partial u_{G1}}{\partial t_0} + (1 - \alpha_0) \frac{\partial p_{L1}}{\partial x_0} = 0, \tag{25}$$

$$R_1 + \frac{\Omega^2}{\Lambda^2} p_{L1} = 0. {(26)}$$

同様に $O(\epsilon^2)$ の方程式系も得る. これらは、それぞれ、無次元気泡径の第1近似解 R_1 お よび第2近似解 R_2 を未知変数とする単一方程式にまとめることができる:

$$O(\epsilon): \quad \frac{\partial^2 R_1}{\partial t_0^2} - v_p^2 \frac{\partial^2 R_1}{\partial x_0^2} = 0, \tag{27}$$

$$O(\epsilon^2): \frac{\partial^2 R_2}{\partial t_0^2} - v_p^2 \frac{\partial^2 R_2}{\partial x_0^2} = K(t_0, t_1, x_0, x_1).$$
 (28)

ここに, 位相速度 v_p は

$$v_p = \sqrt{\frac{3\alpha_0(1 - \alpha_0 + \beta_1)\gamma p_{G0} + \beta_1(1 - \alpha_0)\Delta^2/\Omega^2}{3\beta_1\alpha_0(1 - \alpha_0)}}.$$
 (29)

で与えられ、以後、 $v_p \equiv 1$ となるように代表速度 U^* を定める.

式 (27) と (28) において, 右向き進行波のみに着目する. 非同次方程式 (28) に対する可 解条件

$$K(\varphi_0, t_1, x_1) = 0, \quad (\varphi_0 \equiv x_0 - t_0),$$
 (30)

を用い、いくらかの操作を経て、KdVB方程式が導かれる:

$$\frac{\partial f}{\partial \tau} + \Pi_1 f \frac{\partial f}{\partial \xi} + \Pi_2 \frac{\partial^2 f}{\partial \xi^2} + \Pi_3 \frac{\partial^3 f}{\partial \xi^3} = 0.$$
 (31a)

ここに、以下のような変数変換をおこなった:

$$\tau \equiv \epsilon t, \quad \xi \equiv x - (1 + \epsilon \Pi_0)t.$$
 (31b)

さらに、係数 Π_0 , Π_2 , Π_3 は以下のように与えられる:

$$\Pi_0 = -\frac{(1 - \alpha_0)\Delta^2 V^2}{6\alpha_0 \Omega^2}, \quad \Pi_2 = -\frac{1}{6\alpha_0} \left(4\mu + \frac{\Delta^3 V}{\Omega^2} \right), \quad \Pi_3 = \frac{\Delta^2}{6\alpha_0}. \tag{32}$$

散逸係数 Π_2 は負値, 分散係数 Π_3 は正値である. また, 非線形係数 Π_1 は負値であるが, その陽な形は複雑ゆえ省略する.

式 (27) より, t_0 と x_0 で特徴付けられる近傍場においては, 圧力波は線形波動方程式にしたがう. いっぽう, 式 (28) より, $O(1/\epsilon)$ の時間空間スケールの遠方場においては, 弱い分散性, 弱い非線形性および弱い散逸性の発現・競合によって, 減衰をともなうソリトンが形成される.

4 非線形 Schrödinger 方程式 [7, 8]

つづいて, 前節に比較して高周波数および短波長領域を記述する, 以下のスケーリングを起点として, NLS 方程式の導出をおこなう:

$$\frac{U^*}{c_{L0}^*} \equiv O(\epsilon^2) \equiv V\epsilon^2, \quad \frac{R_0^*}{L^*} \equiv O(1) \equiv \Delta, \quad \frac{\omega^*}{\omega_B^*} \equiv O(1) \equiv \Omega.$$
 (33)

ここで、代表的な時間を $T^* \equiv 1/\omega_B^*$ と定めた. 代表的な位相速度は前節よりも小さく設定されており、初期気泡径は代表的な長さと同程度 (短波)、さらに気泡の固有振動数と入射波の振動数が同程度であることを規定している.

3節と同様の計算を 3次まで進めるが、本稿では紙数の都合上その処方箋を述べるにとどめる. $O(\epsilon)$ の方程式系のうち、質量および運動量保存則の形は式 (22)–(25) と同じであるが、式 (26) に対応する線形 Keller 方程式は

$$\frac{\partial^2 R_1}{\partial t_0^2} + R_1 + \frac{p_{L1}}{\Delta^2} = 0, (34)$$

となり、時間に関する 2 階導関数、すなわち分散項を含む、それゆえ、式 (27) に対応する R_1 についての線形方程式には 4 階導関数がふくまれる:

$$\mathcal{L}_1[R_1] \equiv \frac{\partial^2 R_1}{\partial t_0^2} - \left[\frac{\Delta^2}{3\alpha_0} + \frac{(1 - \alpha_0 + \beta_1)\gamma p_{G0}}{\beta_1 (1 - \alpha_0)} \right] \frac{\partial^2 R_1}{\partial x_0^2} - \frac{\Delta^2}{3\alpha_0} \frac{\partial^4 R_1}{\partial x_0^2 \partial t_0^2} = 0.$$
 (35)

したがって, 前節とは異なり, スケーリング (33) のもとでは近傍場において分散性の効果があらわれる.式 (35) の解として,以下のような準単色波列を仮定する:

$$R_1 = A(t_1, \dots; x_1, \dots) e^{i\theta} + \text{c.c.}, \quad \theta = kx_0 - \Omega(k)t_0.$$
(36)

ここに, A は複素振幅, $k \equiv k^*L^*$ は無次元波数である. すなわち, 搬送波 $e^{i\theta}$ のゆっくりとした変化が, 包絡波 A によって記述される.

3次までの計算をすすめると, $O(\epsilon)$ の方程式 (35) に対応する以下の方程式が得られる:

$$O(\epsilon^2): \quad \mathcal{L}_1[R_2] = \Gamma_1 e^{2i\theta} + \Gamma_2 e^{i\theta} + c.c., \tag{37}$$

$$O(\epsilon^3): \quad \mathcal{L}_1[R_3] = \Lambda_1 e^{3i\theta} + \Lambda_2 e^{2i\theta} + \Lambda_3 e^{i\theta} + c.c.. \tag{38}$$

ここに, Γ_i と Λ_i は, A およびその導関数から構成される複素変数である (陽な形は省略する). これらの右辺において, 可解条件より, $e^{i\theta}$ の係数がゼロとならねばならない. したがって,

$$\Gamma_2 = 0 \implies \frac{\partial A}{\partial t_1} + v_g \frac{\partial A}{\partial x_1} = 0,$$
(39)

$$\Lambda_3 = 0 \implies i\left(\frac{\partial A}{\partial t_2} + v_g \frac{\partial A}{\partial x_2}\right) + \frac{q}{2} \frac{\partial^2 A}{\partial x_1^2} + \nu_1 |A|^2 A + i\nu_2 A = 0, \tag{40}$$

および、これらの複素共役を得る.

式(39)と(40)から,以下のNLS方程式を得る:

$$i\frac{\partial A}{\partial \tau} + \frac{q}{2}\frac{\partial^2 A}{\partial \xi^2} + \nu_1 |A|^2 A + i\nu_2 A = 0.$$
 (41a)

ただし、以下の変数変換を用いた:

$$\tau \equiv \epsilon^2 t, \quad \xi \equiv \epsilon (x - v_a t).$$
 (41b)

ここに, v_g は群速度, $q=\mathrm{d}v_g/\mathrm{d}k$ は群速度の波数による導関数である. 非線形係数 ν_1 は 負値, 散逸係数 ν_2 は正値であり, その陽な表式は紙数の都合上省略する.

NLS 方程式 (41) は, $O(1/\epsilon^2)$ の時間空間スケールにおける, 群速度の導関数に比例する分散性, 振幅の 3 次の非線形性, また液体粘性および気泡からの音響放射による散逸性, これらの釣り合いによって定まる包絡波の発展を記述する.

5 おわりに

物理パラメータのスケーリングと多重尺度法を用いて、気泡を一様に含む静止液体中の平面進行波の弱非線形伝播を記述する、非線形波動方程式を統一的に導く方法を述べた、その方法を用いて、2 流体モデルの気泡流の基礎方程式系から、低周波数領域を記述するKorteweg-de Vries-Burgers 方程式、高周波数領域を記述する非線形 Schrödinger 方程式を導いた.

本稿では述べなかったが、本導出方法を用いたさらなる発展と展望を、2つ述べておく:

- 1. 音源径と波長の比で定義される無次元数のスケーリングを付加することで,弱い回 折を伴う準平面波としてのビームの弱非線形伝播を取り扱うことが可能である. 実 際に, 低周波数領域に対する KZK (Khokhlov-Zabolotskaya-Kuznetsov) 方程式を導 いた [8, 9].
- 2. NLS 方程式よりも高周波数のモードに関する検討を行った. 高周波数で分散性が小さく, 液単相音速程度の位相速度で伝播する短波を調べた. その結果, 液相の強い圧縮性に基づく急激な音響放射減衰によって, 波が近傍場において消滅し, 遠方場が形成されない結果を得ている (非線形伝播が存在しない). しかしながら, このモードに対する異なる報告も存在し, 詳細な解明と公表には, いましばらくの時間を要しそうである.

参考文献

- [1] L. van Wijngaarden, "On the equations of motion for mixtures of liquid and gas bubbles," J. Fluid Mech., 33 (1968), 465.
- [2] N. A. Gumerov, "Quasi-monochromatic weakly non-linear waves in a low dispersion bubble medium," J. Appl. Math. Mech., 56 (1992), 50.
- [3] R. Egashira, T. Yano and S. Fujikawa, "Linear wave propagation of fast and slow modes in mixtures of liquid and gas bubbles," Fluid Dyn. Res., 34 (2004), 317.
- [4] T. Yano, R. Egashira and S. Fujikawa, "Linear analysis of dispersive waves in bubbly flows based on averaged equations," *J. Phys. Soc. Jpn.*, **75** (2006), 104401.
- [5] I. Eames and J. C. R. Hunt, "Forces on bodies moving unsteadily in rapidly compressed flows," J. Fluid Mech., **505** (2004), 349.
- [6] J. B. Keller and I. I. Kolodner, "Damping of underwater explosion bubble oscillations," J. Appl. Phys., 27 (1956), 1152.
- [7] T. Kanagawa, T. Yano, M. Watanabe and S. Fujikawa, "Unified theory based on parameter scaling for derivation of nonlinear wave equations in bubbly liquids," *J. Fluid Sci. Technol.*, **5** (2010), 351.
- [8] T. Yano, T. Kanagawa, M. Watanabe and S. Fujikawa, "Nonlinear wave propagation in bubbly liquids," in *Bubble Dynamics and Shock Wave Research* (Springer, Heidelberg, 2013), Chap. 4.
- [9] T. Kanagawa, T. Yano, M. Watanabe and S. Fujikawa, "Nonlinear wave equation for ultrasound beam in nonuniform bubbly liquids," J. Fluid Sci. Technol., 6 (2011), 279.