goooboooobgon
0 18490 20130 57-63

Reversible multi-head finite automata and
space-bounded Turing machines

Kenichi Morita
Graduate School of Engineering, Hiroshima University
 morita.rcomp@gmail.com

1 Introduction

A multi-head finite automaton is a classical model for language recognition, and has
relatively high recognition capability (see [1] for the survey). In [6], a reversible two-
way multi-head finite automaton is introduced, and it is conjectured that a deterministic
two-way multi-head finite automaton can be simulated by a reversible one with the same
number of heads. Here, we show it by giving a concrete conversion method. The technique
employed here is based on the method of Lange et al. [2] where a computation tree
of a deterministic space-bounded Turing machine is traversed by a reversible one using
the same amount of space. But, our method is much simpler and does not assume a
simulated automaton always halts, and hence the converted reversible automaton traverses
a computation graph that may not be a tree. This method can be applied to a general
class of deterministic Turing machines. We also show that reversible MFAs can be easily
implemented by a rotary element, a kind of a reversible logic element.

2 A two-way multi-head finite automaton

‘Definition 1 A two-way multi-head finite automaton (MFA) consists of a finite-state
control, a finite number of heads that can move in two directions, and a read-only input

tape (Fig. 1). An MFA with k heads is denoted by MFA (k). It is formally defined by
M = (_Q,E,kf, 67[>a <]aq0vA7 R)7

where () s a nonempty finite set of stdtes, X' is a nonempty finite set of input symbols,
k(€ {1,2,...}) is a number of heads, I> and < are left and right endmarkers, respectively,
which are not elements of X' (i.e., {>, A}NLT = D), qo (€ Q) is the initial state, A(C Q) is

- Input tape .
[>[b]a]afalb[b]a]<
Heads: hBA hIA h2A

q | Finite-state control

Figure 1: A two-way multi-head finite automaton (MFA).

58

a set of accepting states, and R (C Q) is a set of rejecting states such that ANR = 0. 61sa
subset of (@x ((ZU{>, 9})*U{~1,0,+1}*)x Q) that determines the transition relation on
M’s configurations (defined below). Note that —1,0, and +1 stand for left-shift, no-shift,
and right-shift of each head, respectively. In what follows, we also use — and + instead
of =1 and +1 for simplicity. Each element r = [p,x,q] € § is called a rule (in the triple
form) of M, where x = [s1,...,s%] € (U {>, <} orx =[dy,...,di] € {~1,0,+1}*.
A rule of the form [p,[s1,. .., sk],q] is called a read-rule, and means if M s in the state
p and reads symbols [sy,. .., si] by its k heads, then enter the state q. A rule of the form
[p,[d1,. .., dx),q] is called a shift-rule, and means if M is in the state p then shift the heads
to the directions [di,...,dx] and enter the state q.

Suppose a word of the form >w< € ({>}2Z*{<}) is given to M. For any ¢ € Q
and for any h € {0,...,|w| + 1}*, a triple [>w<,q,h] is called a configuration of M
on w. We now define a function s, : {0,...,|w| + 1}* — (Z U {>, <})* as follows.
If bwd = aga;---apany1 (hence ap = D>,any1 = <, and w = a;1---a, € X*), and
h=[hy,...,h) €{0,...,|w| + 1}*, then s,(h) = [an,,..,an,]. The function s, gives a
k-tuple of symbols in >w< read by the k heads of M at the position h. The transition
relation |—A7 between a pair of configurations is defined as follows.

[>w<,q,h] | [Pwa, g, 1]
iff ([g,5w(h),¢) €8 A B =h) v 3de{-1,0,41}* ([g,d,¢] €5 A h'=h+d)

The reflexive and transitive closure of the relation I_AZ is denoted by lﬁ

Definition 2 Let M = (Q, Z,k,4,1>,<, g0, A, R) be an MFA. M is called deterministic
iff the following condition holds.

Vr=[px,q €6 Vro=[p,x,¢]€0

(ri#10 A p=p)= (x¢{-1,0,+1} Ax' ¢ {~1,0,+1}* Ax # X))
It means that for any two distinct rules r; and r2 in 0, if p = p’ then they are both
read-rules and the k-tuples of symbols x and X" are different.

M is called reversible iff the following condition holds.

Vr=[pxgq € Vro=[x,q]€d

(i #£712 Ag=¢q)= (x ¢ {~1,0,+1}* Ax' ¢ {-1,0,+1}* Ax # X))
It means that for any two distinct rules vy and ry in 6, if ¢ = q' then they are both
read-rules and the k-tuples of symbols x and x' are different.

We denote a deterministic MFA (or MFA(k)) by DMFA (or DMFA(k)), and a re-.
versible and deterministic MFA (or MFA(k)) by RDMFA (or RDMFA(k)).

Definition 3 Let M = (Q,X,k,6,>,<,90, A, R) be an MFA. We say an input word
w € X* is accepted by M, if [>w<,qo,0] ‘T*i [>w<,¢,h] for some g € A and
h € {0,...,|w| + 1}*, where 0 = [0,...,0] € {0}*. The configurations [>w<, go, 0]
and [>w<, g, h] such that ¢ € A are called an initial configuration and an accepting con-
figuration, respectively. The language accepted by M is the set of all words accepted by
M, and is denoted by L(M), i.e., ~

L(M) = {w|3g € A4,3h € {0,. .., w| + 1}*([>w<, 4, 0] | [>w<,g,h])}.

Lemma 1 [6] Let M = (Q, X, k,6,>,<,4q0, A, R) be an RDMFA. If the wnitial state of
M does not appear as the third component of any rule, then M eventually halts for any
input w € L™,

3 Converting a DMFA (k) into an RDMFA (k) |

We show that for any given DMFA(k) M we can construct an RDMFA(k) M' that
simulates M. Here, we make M so that it traverses a computation graph from the node
that corresponds to the initial configuration. Note that, if M halts on an input w, then
the computation graph becomes a finite tree. But, if it loops, then the graph is not a
tree. We shall see that both cases are managed properly. .

Theorem 1 For any DMFA(k) M = (Q, X,k,6,>,<,q, A, R), we can construct an
RDMFA(k) Mt = (QF, 2k, 6", 0>, 4, g0, {38}, {ad}) that satisfies the following.

Ywe Z* (we L(M) = [bwd,q,0] | [bwa, ¢, 0))
Ywe £* (w g L(M) = [bw<,q,0] £ [bw<, g4, 0])

Proof outline. We first define the computation graph Gur = (V, E) of M with an
input w € X* as follows. Let C be the set of all configurations of M with w, i.e.,
C = {[pwx,¢,h] g€ Q Ah € {0,...,|w|+1}*}. The set V(C C) of nodes is the
smallest set that contains the initial configuration [>w<, o, 0], and satisfies the following
condition: Vey,c; € C((c1 €V A (aiby; @@ V e 1)) & ¢ € V). The set E of
directed edges is: E = {(c1,¢2) | 1,2 e V Ao |— c2}. Apparently Gy, is a finite
connected graph. Since M is deterministic, outdegree of each node in V is either 0 or 1,
where a node of outdegree 0 corresponds to a halting configuration. It is easy to see there
is at most one node of outdegree 0 in G Mw, and if there is one, then G, is a tree (Fig. 2
(a)). On the other hand, if there is no node of outdegree 0, then the graph represents the
computation of M having a loop, and thus it is not a tree (Fig. 2 (b)).

Here we assume M performs read and shift operations alternately. Hence, Q is written

a8 @ = Qread U Qonitt for some Qreaq and Qupig such that Qread N Qshite = @, and & satisfies
the following condition:
V [p,x,Q] € 0 (X € (ZU {Da q})k :>p € Qread A q € Qshift) A
v [pvx) q] € 0 (X € {_70’+}k =pE Qshift /\q € Qread)-
We define the following five functions.
prev-read(q) = {[p,d] | p € Qumis Ad € {—,0,+}* A [p d,q] € 6}
prev-shift(q,s) = {p|p € Qreaa A [p,8,9] € 5}

deg:(q) = |prev—read(q)|

degs(q,s) = |prev-shift(g,s)|

degmax(q) deg:() if ¢ € Qread
max max{degs(¢q,s) | s € (XU {>,<})*} if ¢ € Qunist

Assume M is in the configuration [>w<,q,h]. If ¢ is a read-state (shift-state, respec-
tively), then deg;(¢) (degs(g, s,,(h))) denotes the total number of previous configurations

of [>w<, ¢, h], and each element [p,d] € prev-read(q) (p € prev-shift(q, s,,(h))) gives a -

previous state and a shift direction (a previous state). We further assume that the set Q
and, of course, the set {—1,0,+1} are totally ordered, and thus the elements of the sets
prev-read(q) and prev-shift(q, s) are sorted based on these orders. So, in the following,
we denote prev-read(q) and prev-shift(q, s) by the ordered lists as below.

preV-read(q) = [[p]. y dl]’ sy [pdegr(q)) ddegr(q)]]
prev-shift(g,s) = [p1,...,Pdeg(qs)]

59

60

We now construct an RDMFA (k) M that simulates the DMFA(k) M by traversing Gasw
for a given w. First, Q' is as below.
Q= {¢,41q€QtU{d, ¥ 1qeQAje({1}U{l,... degmax(a)})}
6t is given as below, where S = (Z U {>, <})*.
= 6,U---UGUHU---Us UG UG,
51 = { [ph dl: q2]3 SRR [pdeg,(q)—ly ddég,(q)—ly qdeg,(q)], [pdeg,(q)a ddegr(q)’ Q] I
q € Qread A degi(q) > 1 Aprev-read(q) = [[p1,di], . - -, [Paeg.(a) ddegr(q)]] b
52 = { [pl,S, QQ], SRR [Pdegs(q,s)—la 5, qdegs(q,s)]’ [pdega(q,s)a s, q] l
q € Qenie NS € S Adegy(q,s) > 1 A prev-shift(q,s) = [p1,. . ., Pdegs(as)] }
53 = { [qu _dl,P}L) [qdeg,(q), —ddegx(q)’p(lieg,(q)] I
q € Qread N degr(Q) 2 1A prev‘rea'd(Q) = [[Pl,d1], ceey [pdeg;(q)a ddegr(Q)H }
0y = { [qla Sapﬂv) [qdegs(q,s)’ S,p(liegs(q,s)] I
q € Qunite A S € S A degs(g,s) > 1 A prev-shift(q,s) = [p1,- - -, Pdegs(a.)] }
5= {[¢",5,9] | 4 € Qunir — (AU R) A's € S Adegs(g,5) =0}
&= {[px4 | [p,x,q) €6} (i=1,...,5)
56 = {[quvqll | q € Qread - {QO} As € SA _‘ap([qisJ)] € 5)}
b= {[9:0,¢"] | g€ A}
o= {[g,0,¢'] |[g€ R}

The set of states Q! has four types of states. They are of the forms q,§,¢’ and ¢. The
states without a superscript (i.e., g and §) are for forward computation, while those with
a superscript (i.e., ¢/ and §’) are for backward computation. Note that Q' contains ¢*
and §' even if degnax(q) = 0. The states with “*” (i.e., ¢ and ¢’) are the ones indicating
that an accepting configuration was found in the process of traverse, while those without
“*” (je., q and ¢7) are for indicating no accepting configuration has been found so far.

The set of rules ; (d7, respectively) is for simulating forward computation of M in
G for M’s shift-states (read-states). 03 (44, respectively) is for simulating backward
computation of M in Gy, for M’s read-states (shift-states). ds is for turning the direction
of computation from backward to forward in Gy, for shift-states. b (i=1,...,5)is the
set of rules for the states of the form §, and is identical to d; except that each state has
“” § is for turning the direction of computation from forward to backward in G, for
halting configurations with a read-state. 8, (dr, respectively) is for turning the direction
of computation from forward to backward for accepting (rejecting) states. Each rule in d,
makes M change the state from a one without “~” to the corresponding one with “~”.
We can verify that M is deterministic and reversible by a careful inspection of 4'.

M?' simulates M as follows. First, consider the case Gys,, is a tree. If an input w
is given, M' traverses G, by the depth-first search (Fig. 2 (a)). Note that the search
starts not from the root of the tree but from the leaf node [>w<, go,0]. Since each node
of G, is identified by the configuration of M of the form [>w<, g,h, it is easy for M?
to keep it by the configuration of M. But, if [>w<, g, h] is a non-leaf node, it may be
visited degmax(q) + 1 times (i.e., the number of its child nodes plus 1) in the process of
depth-first search, and thus M' should keep this information in the finite state control.
To do so, M uses degmax(q) +1 states ¢,, gd8==x(9) and q for each state g of M. Here,
the states ¢', . . ., gd¢8mex(9) are used for visiting its child nodes, and q is used for visiting its
parent node. In other words, the states with a superscript are for going downward in the
tree (i.e., a backward simulation of M), and the state without a superscript is for going'

upward in the tree (i.e., a forward simulation). At a leaf node [>w<, g, h], which satisfies

degs(q, s,(h)) = 0, M turns the direction of computing by the rule [g!, s, (h), q] € 6s.

If M' enters an accepting state of M, say ¢,, which is the root of the tree while
traversing the tree, then M' goes to the state §,, and continues the depth-first search.
After that, M1 uses the states of the form § and ¢’ indicating that the input w should
be accepted. M will eventually reach the initial configuration of M by its configuration
[>w<, g5, 0]. Thus, M1 halts and accepts the input. Note that we can assume there is no
rule of the form [go, s, g] such that s & {t>}* in §, because the initial configuration of M
is [>w<, qo, 0]. Therefore, M never reaches a configuration [>w<, go, h] of M such that
h # 0. If M7 enters a halting state of M other than the accepting states, then it continues
the depth-first search without entering a state of the form §. Also in this case, Mt will
finally reach the initial configuration of M by its configuration [>w<, ¢},0]. Thus, M*
halts and rejects the input. |

Second, consider the case G, is not a tree (Fig. 2 (b)). In this case, since there is
no accepting configuration in Gyr,,, M never enters an accepting state of M no matter
how M1 visits the nodes of Gjs,. Thus, M! uses only the states without “*”. From &t
we can see g¢ is the only halting state without “~”. By Lemma 1, M must halt with the

configuration [>w<, g5, 0], and rejects the input. By above, we have the theorem. o

(b)

Figure 2: Examples of computation graphs G, of a DMFA(k) M. Each node rep-
resents a configuration of M, though only a state of the finite-state control is writ-
ten in a circle.- Thick arrows are the edges of Gu,. The node labeled by gy repre-
sents the initial configuration of M. An RDMFA(k) M' traverses these graphs along
thin arrows using its configurations. (a) This is a case M halts in an accepting
state gq,. Here, the state transition of M in the traversal of the tree is as follows:
o= ¢ =G >3 = q3s > de — s g — G — Qs> GG — G g — g
G — Gp — @3 — 41 = G1 — G2 — G5 — gL. (b) This is a case M loops forever. Here, Mt
traverses the graph as follows: o > ¢; = ¢} 2 ¢l v~ >G> @ — g —> ¢4

4 Applying the method to Turing machines

It has been shown by Lange et al. [2] that DSPACE(S(n)) = RDSPACE(S(n)) holds for
any space function S(n). However, by applying the method of the previous section, we
can convert a deterministic Turing machine to a reversible one very easily. By this, we
can obtain a slightly stronger result by a much simpler method. (Here, we omit its proof.)

61

62

Input tape (read-only)
[>[alb[ala]blc[blafab]a]<]
[A
G | Finite-state control

Storage tape

— 4
(>[a]ba]a]b [#I#]#[#[#]#]#]#]$

Figure 3: A two-tape Turing machine.

Definition 4 A two-tape Turing machine (TM) consists of a finite-state control with two
heads, a read-only input tape, and a storage tape (Fig. 3) . It is defined by

T= (Q,Z,F767>7<7q0’#7A7R)’

where Q is a nonempty finite set of states, £ and I are nonempty finite sets of input
symbols and storage tape symbols. > and < are left and right endmarkers such that
{,<}N (X UT) =0, where only > is used for the storage tape. go (€ Q) is the initial
state, # (& I') is a blank symbol of the storage tape, A(C Q) and R(C Q) are sets
of accepting and rejecting states such that AN R = (. & is a subset of (@ x (XU -
{>,<}) x (FU{>, #})2)U{-1,0,+1}?) x Q) that determines the transition relation on
T’s configurations. Each element r = [p,z,y,q| € 8 is called a rule (in the quadruple
form) of T, where (z,y) = (s1,[s2,83]) € (Z U {>,<}) x (I' U {>,#})?) or (z,y) =
(d1,d2) € {—1,0,+1}2. A rule of the form [p, s1,[s2, s3], q] is called a read-write-rule, and
means if T is in the state p and reads an input symbol s, and a storage tape symbol s,
then rewrites sy to s3 and enters the state q. A rule of the form [p,dy,dz,q] is called a
shift-rule, and means if T is in the state p then shift the two heads to the directions d;
and do, and enter the state q. Determinism and reversibility of T are defined similarly as
in the case of MFAs.

Theorem 2 Forany DTMT = (Q, X, I',6,>>, 4, qo, #, A, R), we can construct an RDTM
T'=(Q\ X, I',0">,9,q,#, {45}, {as}) such that the following holds.

Vwe X* (weL(T) = [bw<,>,q,0,0] |F [>w<,>,43,0,0])
Yw € Z* (w ¢ L(T) AN T with w uses bounded amount of the storage tape
= [bw<,,9,0,0] |5 [Pw<,>,45,0,0])
YVwe 2* (w ¢ L(T) N T with w uses unbounded amount of the storage tape
‘ = T'’s computation starting from [>w<, >, go, 0, 0] does not halt)

Furthermore, if T uses at most m squares of the storage tape on an input w, then TT with
w also uses at most m squares in any of its configuration in its computing process.

5 Reversible logic circuits that simulate RDMFAs

It is possible to implement an RDMFA using only rotary elements as in the case of a
reversible Turing machine [3,'4, 5]. A rotary element [3] is a reversible logic element
with 4 input and 4 output lines, and 2 states shown in Fig. 4. In [3, 5], a construction
method of a finite control unit and a tape square unit of a reversible Turing machine out
of rotary elements is given. Though a similar method can also be applied for constructing
an RMFA, accessing a tape square by many heads should be managed properly. Here, we
show an example of the circuit without giving a detailed explanation.

t+l t+1

4 O

Figure 4: Operation of a rotary element. The case where the directions of the bar and
the comimg signal are parallel (left), and the case where they are orthogonal (right).

t=0 .
1| S) 5| I
211 Fa] g gl
R —————)| Bl Gs gl e
B 1 L& J Li,‘*‘*.r* ! th L.n Il
|. I —4 ., !
- fitsissienl 5T i
UBE T —| 0& ics: it]
il il i
R e [1Y recSauinie a5 4 T EHE
I LT Jieais: Gy L e (]| s
[t |] = l-lr HJ L."-‘r_ 3" O -1. HJ L.”"r_ EHJ
O 11 R e IO
. __j_ g -'H [Sass) ! ﬂ'” ! Lﬂ._l !
- Ui L 0 b1t] i | L-W'—xj |_
5| (BT e] e T
Lﬁ = i I TG SR iR
—LL 5 i L ah LOBE T e, LR T T
— B i st zatias 2 e
. fas fa fasaanniils H o HHE
Begin ~—oI O ST (4] Sl It =411
s S i
hi h2 § 1 1 , $

Figure 5: A circuit composed only of rotary elements that simulates the RMFA (2) Mj,..

Consider the RDMFA(2) M, in the quadruple form that accepts Lom = {1"|n =
2™ for some m € {0,1,...}}, where $ is used as both left and right end-markers.

M2m = ({90, 91, g2, 93,94,95,9a, G }, {1}, 2,00m,8,%,90,{¢a}, {a:})
bom ={(1) lgo, [8,8], [0,4], @], (2) a1, (8,1}, [0, 4], au), (3) [au, (5,8, [+,], @],

(4) [g2, [1,1],[0,~], gs], (5) [g2, [1,8], [, +], gal, (6) (92, (3, 8], [0, 0] %),
(7) lgs, [1,1], [+, -], Q2] (8) lgs, [L,8], [, 0], qs]) las, [1,1), [, 4], q4],
(10) [ga, [8,1], [+,], @], (11) [g5, [8,8], [0,0], qal, (12) a5, [1,8], [0,0], 6] }

Fig. 5 shows the whole circuit of Mym for the input 12. Giving a particle at the Begin

port in Fig. 5, the circuit starts to simulate Mym. The particle finally comes out from the

output port Accept since 1> € Lym. If an input 1™ € Lym is given, the particle will appear

from the Reject port.

References

[1] Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head ﬁmte automata: Ongms and directions. Theoret.
Comput. Sm 412, 83 96 (2011)

[2] Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. Syst. Sci. 60, 354-367
(2000)

[3] Morita, K.: A simple reversible logic element and cellular automata for reversible computing. In: Proc. 3rd Int. Conf.
on Machines, Computations, and Universality, LNCS 2055. pp. 102-113. Springer-Verlag (2001)

[4] Morita, K.: Reversible computing and cellular automata — A survey. Theoret. Comput. Sci. 395, 101-131 (2008)

[5] Morita, K.: Constructmg a reversible Turing machine by a rotary element, a reversible logic element with memory.
Hiroshima University Institutional Repository, http:/ /ir.lib.hiroshima-u.ac.jp/00029224 (2010)

[6] Morita, K.: Two-way reversible multi-head finite automata. Fundamenta Informaticae 110, 241-254 (2011)

