
Reversible multi-head finite automata and
space-bounded Turing machines

Kenichi Morita
Graduate School of Engineering, Hiroshima University

morita.rcomp@gmail.com

1 Introduction
A multi-head finite automaton is a classical model for language recognition, and has
relatively high recognition capability (see [1] for the survey). In [6], a reversible two-
way multi-head finite automaton is introduced, and it is conjectured that a deterministic
two-way multi-head finite automaton can be simulated by a reversible one with the same
number of heads. Here, we show it by giving a concrete conversion method. The technique
employed here is based on the method of Lange et al. [2] where a computation tree
of a deterministic space-bounded Turing machine is traversed by a reversible one using
the same amount of space. But, our method is much simpler and does not assume a
simulated automaton always halts, and hence the converted reversible automaton traverses
a computation graph that may not be a tree, This method can be applied to a general
class of deterministic Turing machines. We also show that reversible MFAs can be easily
implemented by a rotary element, a kind of a reversible logic element.

2 A two-way multi-head finite automaton
Definition 1 A two-way multi-head finite automaton (MFA) consists of a finite-state
control, a finite number of heads that can move in two directions, and a read-only input
tape (Fig. 1). An MFA with k heads is denoted by $MFA(k)$. It is formally defined by

$M=(Q, \Sigma, k, \delta, \triangleright, \triangleleft, q_{0}, A, R)-\backslash,$

where Q is a nonempty finite set of states, Σ is a nonempty finite set of input symbols,
k $(\in\{1,2, \ldots \})$ is a number of heads, $\triangleright and\triangleleft are$ left and ntght endmarkers, respectively,
which are not elements of $\Sigma(i.e., \{\triangleright, \triangleleft\}\cap\Sigma=\emptyset),$ $q_{0}(\in Q)$ is the initial state, $A(\subset Q)$ is

Figure 1: A two-way multi-head finite automaton (MFA).

数理解析研究所講究録
第 1849巻 2013年 57-63 57

a set of accepting states, and $R(\subset Q)$ is a set of rejecting states such that $A\cap R=\emptyset.$ δ is a
subset of $(Q\cross((\Sigma\cup\{\triangleright, \triangleleft\})^{k}\cup\{-1,0, +1\}^{k})\cross Q)$ that determines the tmnsition relation on
M ’s configumtions (defined below). Note $that-1,0,$ $and+1$ stand for left-shift, no-shift,
and right-shifl of each head, respectively. In what follows, we also $use-and+instead$

of $-1and+1$ for simplicity. Each element $r=\lceil p,$ $x,$ $q]\in\delta$ is called a rule (in the triple
form) of M , where $x=[s_{1}, \ldots, s_{k}]\in(\Sigma\cup\{\triangleright, \triangleleft\})^{k}$ or $x=[d_{1}, \ldots, d_{k}]\in\{-1,0, +1\}^{k}.$

A rule of the form $\lceil p,$ $[s_{1}, \ldots, s_{k}],$ $q]$ is called a read-rule, and means if M is in the state
p and reads symbols $[s_{1}, \ldots, s_{k}]$ by its k heads, then enter the state $q.$ A rule of the form

$\lceil p,$ $[d_{1}, \ldots, d_{k}],$ $q]$ is called a shift-rule, and means if M is in the state p then shift the heads
to the directions $[d_{1}, \ldots, d_{k}]$ and enter the state $q.$

Suppose a word of the form $\triangleright w\triangleleft\in(\{\triangleright\}\Sigma^{*}\{\triangleleft\})$ is given to M . For any $q\in Q$

and for any $h\in\{0, \ldots, |w|+1\}^{k}$, a triple $[\triangleright w\triangleleft, q, h]$ is called a configumtion of M

on w . We now define a function s_{w} : $\{0, \ldots, |w|+1\}^{k}arrow(\Sigma\cup\{\triangleright, \triangleleft\})^{k}$ as follows.
If $\triangleright w\triangleleft=a_{0}a_{1}\cdots a_{n}a_{n+1}$ $($hence $a_{0}=\triangleright, a_{n+1}=\triangleleft, and w=a_{1}\cdots a_{n}\in\Sigma^{*})$, and
$h=[h_{1}, \ldots, h_{k}]\in\{0, \ldots , |w|+1\}^{k}$, then $s_{w}(h)=[a_{h_{1}}, \ldots, a_{h_{k}}]$. The function s_{w} gives a
k-tuple of symbols in $\triangleright w\triangleleft$ read by the k heads of M at the position h . The tmnsition
relation \vdash_{M} between a pair of configurations is defined as fQllows.

$[\triangleright w\triangleleft, q, h]\vdash_{M}[\triangleright w\triangleleft, q’, h’]$

iff $([q, s_{w}(h), q’]\in\delta\wedge h’=h)\vee\exists d\in\{-1,0, +1\}^{k}([q, d, q’]\in\delta\wedge h’=h+d)$

The reflexive and transitive closure of the relation \vdash_{M} is denoted by $\vdash_{M}^{*}.$

Definition 2 Let $M=(Q, \Sigma, k, \delta, \triangleright, \triangleleft, q_{0}, A, R)$ be an $MFA.$ M is called deterministic
iff the following condition holds.

$\forall r_{1}=[p, x, q]\in\delta, \forall r_{2}=[p’, x’, q’]\in\delta$

$((r_{1}\neq r_{2}\wedge p=p’)\Rightarrow(x\not\in\{-1,0, +1\}^{k}\wedge x’\not\in\{-1,0, +1\}^{k}\wedge x\neq x’))$

It means that for any two distinct rules r_{1} and r_{2} in δ , if $p=p’$ then they are both
read-rules and the k -tuples of symbols x and $x’$ are different.

M is called reversible iff the following condition holds.
$\forall r_{1}=[p, x, q]\in\delta, \forall r_{2}=[p’, x’, q’]\in\delta$

$((r_{1}\neq r_{2}\wedge q=q’)\Rightarrow(x\not\in\{-1,0, +1\}^{k}\wedge x’\not\in\{-1,0, +1\}^{k}\wedge x\neq x’))$

It means that for any two $d\iota$stinct rules r_{1} and r_{2} in δ , if $q=q’$ then they are both
read-rules and the k -tuples of symbols x and $x’$ are different.

We denote a deterministic MFA (or MFA(k)) by DMFA (or DMFA(k)), and a re-
versible and deterministic MFA (or MFA(k)) by RDMFA (or RDMFA(k)).

Definition 3 Let $M=(Q, \Sigma, k, \delta, \triangleright, \triangleleft, q_{0}, A, R)$ be an MFA . We say an input word
$w\in\Sigma^{*}$ is accepted by M , if $[\triangleright w\triangleleft, q_{0},0]$ $\vdash_{M}^{*}[\triangleright w\triangleleft, q, h]$ for some $q\in$ A and
$h\in\{0, \ldots, |w|+1\}^{k}$, where $0=[0, \ldots, 0]\in\{0\}^{k}$. The configurations $[\triangleright w\triangleleft, q_{0},0]$

and $[\triangleright w\triangleleft, q, h]$ such that $q\in A$ are called an initial configuration and an accepting con-
figuration, respectively. The language accepted by M is the set of all words accepted by
M , and is denoted by $L(M)$, i. e.,

$L(M)=\{w|\exists q\in A, \exists h\in\{0, \ldots, |w|+1\}^{k}([\triangleright w\triangleleft, q_{0},0]\vdash_{M}^{*}[\triangleright w\triangleleft, q, h])\}.$

Lemma 1 [6] Let $M=(Q, \Sigma, k, \delta, \triangleright, \triangleleft, q_{0}, A, R)$ be an RDMFA. If the initial state of
M does not appear as the third component of any rule, then M eventually halts for any
input $w\in\Sigma^{*}$

58

3Converting a DMFA (k) into an RDMFA(k)

We show that for any given DMFA$(k)M$ we can construct an RDMFA$(k)M\dagger$ that
simulates M . Here, we make M^{\uparrow} so that it traverses a computation graph from the node
that corresponds to the initial configuration. Note that, if M halts on an input w , then
the computation graph becomes a finite tree. But, if it loops, then the graph is not a
tree. We shall see that both cases are managed properly.

Theorem 1 For any DMFA $(k)M=(Q, \Sigma, k, \delta, \triangleright, \triangleleft, q_{0}, A, R)$, we can construct an
RDMFA $(k)M^{\uparrow}=(Q^{\uparrow}, \Sigma, k, \delta^{\uparrow}, \triangleright, \triangleleft, q_{0}, \{\hat{q}_{0}^{1}\}, \{q_{0}^{1}\})$ that satisfies the following.

$\forall w\in\Sigma^{*}(w\in L(M)\Rightarrow[\triangleright w\triangleleft, q_{0},0]\vdash_{M\dagger}^{*}[\triangleright w\triangleleft,\hat{q}_{0}^{1},0])$

$\forall w\in\Sigma^{*}(w\not\in L(M)\Rightarrow[\triangleright w\triangleleft, q_{0},0]\vdash_{M\dagger}^{*}[\triangleright w\triangleleft, q_{0}^{1},0])$

Proof outline. We first define the computation graph $G_{M,w}=(V, E)$ of M with an
input $w\in\Sigma^{*}$ as follows. Let C be the set of all configurations of M with w , i.e.,
$C=\{[\triangleright w\triangleleft, q, h]|q\in Q\wedge h\in\{0, \ldots, |w|+1\}^{k}\}$. The set $V(\subset C)$ of nodes is the
smallest set that contains the initial configuration $[\triangleright w\triangleleft, q_{0},0]$, and satisfies the following
condition: $\forall c_{1},$ $c_{2}\in C((c_{1}\in V\wedge(c_{1}\vdash_{M}c_{2}\vee c_{2}\vdash_{M}c_{1}))\Rightarrow c_{2}\in V)$. The set E of
directed edges is: $E=\{(c_{1}, c_{2})|c_{1}, c_{2}\in V\wedge c_{1}\vdash_{M}c_{2}\}$. Apparently $G_{M,w}$ is a finite
connected graph. Since M is deterministic, outdegree of each node in V is either 0 or 1,
where a node of outdegree 0 corresponds to a halting configuration. It is easy to see there
is at most one node of outdegree 0 in $G_{M,w}$, and if there is one, then $G_{M,w}$ is a tree (Fig. 2
(a) $)$. On the other hand, if there is no node of outdegree 0 , then the graph represents the
computation of M having a loop, and thus it is not a tree (Fig. 2 (b)).

Here we assume M performs read and shift operations alternately. Hence, Q is written
as $Q=Q_{read}\cup Q_{shift}$ for some Q_{read} and Q_{shift} such that $Q_{read}\cap Q_{shift}=\emptyset$, and δ satisfies
the following condition:

$\forall\lceil p, x, q]\in\delta(x\in(\Sigma\cup\{\triangleright, \triangleleft\})^{k}\Rightarrow p\in Q_{read}\wedge q\in Q_{shift})\wedge$

$\forall\lceil p, x, q]\in\delta(x\in\{-, 0, +\}^{k}\Rightarrow p\in Q_{shift}\wedge q\in Q_{read})$.
We define the following five functions.

prev-read(q) $=$ $\{[p, d]|p\in Q_{shift}\wedge d\in \{-, 0, +\}^{k}\wedge\lceil p, d, q]\in\delta\}$

$prev-shift(q, s) = \{p|p\in Q_{read}\wedge[p, s, q]\in\delta\}$

$\deg_{r}(q)$ $=$ prev-read$(q)|$

$\deg_{s}(q, s)$ $=$

$\{|prev-$

shi$ft(q, s)|$

$\deg_{\max}(q) =$
$\deg_{r}(q)$ if $q\in Q_{read}$

$\max\{\deg_{s}(q, s)|s\in(\Sigma\cup\{\triangleright, \triangleleft\})^{k}\}$ if $q\in Q_{shift}$

Assume M is in the configuration $[\triangleright w\triangleleft, q, h]$. If q is a read-state (shift-state, respec-
tively), then $\deg_{r}(q)(\deg_{s}(q, s_{w}(h)))$ denotes the total number of previous configurations
of $[\triangleright w\triangleleft, q, h]$, and each element $[p, d]\in$ prev-read$(q)(p\in prev-shift(q, s_{w}(h)))$ gives a
previous state and a shift direction (a previous state). We further assume that the set Q

and, of course, the set $\{-1,0, +1\}$ are totally ordered, and thus the elements of the sets
prev-read (q) and prev-shift (q, s) are sorted based on these orders. So, in the following,
we denote prev-read(q) and prev-shift (q, s) by the ordered lists as below.

prev-read (q) $=$ $[[p_{1}, d_{1}], \ldots, [p_{\deg_{r}(q)}, d_{\deg_{r}(q)}]]$

$prev-shift(q, s) = [p_{1}, \ldots,p_{\deg_{s}(q,s)}]$

59

We now construct an RDMFA$(k)M\dagger$ that simulates the DMFA$(k)M$ by traversing $G_{M,w}$

for a given w . First, Q^{\uparrow} is as below.
$Q^{\dagger}= \{q,\hat{q}|q\in Q\}\cup\{q^{j},\hat{q}^{j}|q\in Q\wedge j\in(\{1\}\cup\{1, \ldots, \deg_{\max}(q)\})\}$

δ^{\uparrow} is given as below, where $S=(\Sigma\cup\{\triangleright, \triangleleft\})^{k}.$

$\delta\dagger=$ $\delta_{1}\cup\cdots\cup\delta_{6}\cup\hat{\delta}_{1}\cup\cdots\cup\hat{\delta}_{5}\cup\delta_{a}\cup\delta_{r}$

$\delta_{1}=\{[p_{1}, d_{1}, q^{2}]\cdot,$
$\ldots,$

$[p_{\deg_{r}(q)-1}, d_{\deg_{r}(q)-1}, q^{\deg_{r}(q)}],$ $[p_{\deg_{r}(q)}, d_{\deg_{r}(q\rangle}, q]|$

$q\in Q_{read}\wedge\deg_{r}(q)\geq 1\wedge prev-read(q)=[[p_{1}, d_{1}], \ldots, [p_{\deg_{r}(q)}, d_{\deg_{r}(q)}]]\}$

$\delta_{2}=\{[p_{1}, s, q^{2}],$
$\ldots,$

$[p_{\deg_{s}(q,s)-1}, s, q^{\deg_{s}(q,s)}],$ $[p_{\deg_{8}(q,s)}, s, q]|$

$q\in Q_{shiR}\wedge s\in S\wedge\deg_{s}(q, s)\geq 1\wedge prev-shift(q, s)=[p_{1}, \ldots,p_{de\ (q,s)}]\}$

$\delta_{3}=\{[q^{1}, -d_{1},p_{1}^{1}],$
$\ldots,$

$[q^{\deg_{r}(q)}, -d_{\deg_{r}(q)},p_{\deg_{r}(q)}^{1}]|$

$q\in Q_{read}\wedge\deg_{r}(q)\geq 1\wedge prev-read(q)=[[p_{1}, d_{1}], \ldots, [p_{\deg_{r}(q)}, d_{\deg_{r}(q)}]]\}$

$\delta_{4}=\{[q^{1}, s,p_{1}^{1}],$
$\ldots,$

$[q^{\deg_{8}(q,s)}, s,p_{de\ (q,s)}^{1}]|$

$q\in Q_{shift}\wedge s\in S\wedge\deg_{s}(q, s)\geq 1\wedge prev-shift(q, s)=[p_{1}, \ldots,p_{de\ (q,s)}]\}$

$\delta_{5}=\{[q^{1}, s, q]|q\in Q_{shiR}-(A\cup R)\wedge s\in S\wedge\deg_{s}(q, s)=0\}$

$\hat{\delta}_{i}=\{[\hat{p}, x,\hat{q}]||p, x, q]\in\delta_{i}\}(i=1, \ldots, 5)$

$\delta_{6}=\{[q, s, q^{1}]|q\in Q_{read}-\{q_{0}\}\wedge s\in S\wedge\neg\exists p([q, s,p]\in\delta)\}$

$\delta_{a}=\{[q, 0,\hat{q}^{1}]|q\in A\}$

$\delta_{r}=\{[q, 0, q^{1}]|q\in R\}$

The set of states Q^{\uparrow} has four types of states. They are of the forms q,\hat{q} , qj and $\dot{\phi}^{\wedge}$. The
states without a superscript $(i.e., q and \hat{q})$ are for forward computation, while those with
a superscript $(i.e., q^{j} and \hat{q}^{j})$ are for backward computation. Note that Q^{\dagger} contains q^{1}

and \hat{q}^{1} even if $\deg_{\max}(q)=0$. The states with $”\wedge$ ”
$(i.e., \hat{q} and \hat{q}^{j})$ are the ones indicating

that an accepting configuration was found in the process of traverse, while those without
$”\wedge,,$ $(i.e., q and q^{j})$ are for indicating no accepting configuration has been found so far.

The set of rules δ_{1} $(\delta_{2},$ respectively) is for simulating forward computation of M in
$G_{M,w}$ for M ’s shift-states (read-states). $\delta_{3}(\delta_{4},$ respectively) is for simulating backward
computation of M in $G_{M,w}$ for M ’s read-states (shift-states). δ_{5} is for tuming the direction
of computation from backward to forward in $G_{M,w}$ for shift-states. $\hat{\delta}_{i}(i=1, \ldots, 5)$ is the
set of rules for the states of the form \hat{q} , and is identical to δ_{i} except that each state has

$”\wedge$ ”
δ_{6} is for turning the direction of computation from forward to backward in $G_{M,w}$ for

halting configurations with a read-state. δ_{a} $(\delta_{r},$ respectively) is for tuming the direction
of computation from forward to backward for accepting (rejecting) states. Each rule in δ_{a}

makes $M\dagger$ change the state from a one without $”\wedge,$, to the corresponding one with $”\wedge$ ”

We can verify that M^{\uparrow} is deterministic and reversible by a careful inspection of $\delta\dagger.$

M^{\uparrow} simulates M as follows. First, consider the case $G_{M,w}$ is a tree. If an input w

is given, M^{\uparrow} traverses $G_{M,w}$ by the depth-first search (Fig. 2 (a)). Note that the search
starts not from the root of the tree but from the leaf node $[\triangleright w\triangleleft, q_{0},0]$. Since each node
of $G_{M,w}$ is identified by the configuration of M of the form $[\triangleright w\triangleleft, q, h]$, it is easy for M^{\uparrow}

to keep it by the configuration of $M\dagger$. But, if $[\triangleright w\triangleleft, q, h]$ is a non-leaf node, it may be
visited $\deg_{\max}(q)+1$ times (i.e., the number of its child nodes plus 1) in the process of
depth-first search, and thus $M\dagger$ should keep this information in the finite state control.
To do so, M^{\uparrow} uses $\deg_{\max}(q)+1$ states $q^{1},$

$\ldots,$
$q^{\deg_{\max}(q)}$, and q for each state q of M . Here,

the states $q^{1},$

$\ldots,$
$q^{\deg_{\max}(q)}$ are used for visiting its child nodes, and q is used for visiting its

parent node. In other wQrds, the states with a superscript are for going downward in the
tree $(i.e., a$ backward simulation $of M)$, and the state without a superscript is for going

60

upward in the tree (i.e., a forward simulation). At a leaf node $[\triangleright w\triangleleft, q, h]$, which satisfies
$\deg_{s}(q, s_{w}(h))=0,$ M^{\uparrow} turns the direction of computing by the rule $[q^{1}, s_{w}(h), q]\in\delta_{5}.$

If M^{\uparrow} enters an accepting state of M , say q_{a} , which is the root of the tree while
traversing the tree, then $M\dagger$ goes to the state \hat{q}_{a} , and continues the depth-first search.
After that, M^{\uparrow} uses the states of the form \hat{q} and \hat{q}^{j} indicating that the input w should
be accepted. $M\dagger$ will eventually reach the initial configuration of M by its configuration
$[\triangleright w\triangleleft,\hat{q}_{0}^{1},0]$. Thus, M^{\uparrow} halts and accepts the input. Note that we can assume there is no
rule of the form $[q_{0}, s, q]$ such that $s\not\in\{\triangleright\}^{k}$ in δ , because the initial configuration of M

is $[\triangleright w\triangleleft, q_{0},0]$. Therefore, M^{\uparrow} never reaches a configuration $[\triangleright w\triangleleft, q_{0}, h]$ of M such that
$h\neq 0$. If $M\dagger$ enters a halting state of M other than the accepting states, then it continues
the depth-first search without entering a state of the form \hat{q} . Also in this case, M^{\uparrow} will
finally reach the initial configuration of M by its configuration $[\triangleright w\triangleleft, q_{0}^{1},0]$. Thus, M^{\uparrow}

halts and rejects the input.
Second, consider the case $G_{M,w}$ is not a tree (Fig. 2 (b)). In this case, since there is

no accepting configuration in $G_{M,w},$
M^{\uparrow} never enters an accepting state of M no matter

how $M\dagger$ visits the nodes of $G_{M,w}$. Thus, M^{\uparrow} uses only the states without $”\wedge,$, From $\delta\dagger$

we can see q_{0}^{1} is the only halting state without $”\wedge,$, By Lemma 1, $M\dagger$ must halt with the
configuration $[\triangleright w\triangleleft, q_{0}^{1},0]$, and rejects the input. By above, we have the theorem. \square

Figure 2: Examples of computation graphs $G_{M,w}$ of a DMFA$(k)M$. Each node rep-
resents a configuration of M , though only a state of the finite-state control is writ-
ten in a circle. Thick arrows are the edges of $G_{M,w}$. The node labeled by q_{0} repre-
sents the initial configuration of M . An RDMFA$(k)M^{\uparrow}$ traverses these graphs along
thin arrows using its configurations. (a) This is a case M halts in an accepting
state q_{a} . Here, the state transition of $M\dagger$ in the traversal of the tree is as follows:
$q_{0}arrow q_{2}arrow q_{6}^{3}arrow q_{3}^{1}arrow q_{3}arrow q_{6}arrow q_{a}^{2}arrow q_{7}^{1}arrow q_{4}^{1}arrow q_{4}arrow q_{7}^{2}arrow q_{5}^{1}arrow q_{5}arrow q_{7}arrow$

$q_{a}arrow\hat{q}_{a}^{1}arrow\hat{q}_{6}^{1}arrow\hat{q}_{1}^{1}arrow\hat{q}_{1}arrow\hat{q}_{6}^{2}arrow\hat{q}_{2}^{1}arrow\hat{q}_{0}^{1}.$ (b) This is a case M loops forever. Here, M^{\uparrow}

traverses the graph as follows: $q_{0}arrow q_{2}^{2}arrow q_{3}^{1}arrow q_{1}^{1}arrow q_{1}arrow q_{3}^{2}arrow q_{6}^{1}arrow q_{5}^{1}arrow q_{2}^{1}arrow q_{0}^{1}.$

4 Applying the method to Turing machines
It has been shown by Lange et al. [2] that DSPACE(S (n)) $=$ RDSPACE$(S(n))$ holds for
any space function $S(n)$. However, by applying the method of the previous section, we
can convert a deterministic Turing machine to a reversible one very easily. By this, we
can obtain a slightly stronger result by a much simpler method. (Here, we omit its proof.)

61

Figure 3: A two-tape Turing machine.

Definition 4 A two-tape Turing machine (TM) consists of a finite-state contml with two
heads, a read-only input tape, and a storage tape (Fig. 3). It is defined by

$T=(Q, \Sigma, \Gamma, \delta, \triangleright, \triangleleft, q_{0}, \#, A, R)$,

where Q is a nonempty finite set of states, Σ and Γ are nonempty finite sets of input
symbols and stomge tape symbols. \triangleright $and\triangleleft$ are left and right endmarkers such that
$\{\triangleright, \triangleleft\}\cap(\Sigma\cup\Gamma)=\emptyset$, where $only\triangleright is$ used for the storage tape. $q_{0}(\in Q)$ is the initial
state, $\neq(\not\in\Gamma)$ is a blank symbol of the storage tape, $A(\subset Q)$ and $R(\subset Q)$ are sets
of accepting and rejecting states such that $A\cap R=\emptyset.$ δ is a subset of $(Q\cross(((\Sigma\cup$

$\{\triangleright, \triangleleft\})\cross(\Gamma\cup\{\triangleright, \neq\})^{2})\cup\{-1,0, +1\}^{2})\cross Q)$ that determines the tmnsition relation on
T ’s configumtions. Each element $r=|p,$ $x,$ $y,$ $q]\in\delta$ is called a rule (in the quadruple
form) of T , where $(x, y)=(\mathcal{S}_{1}, [s_{2}, s_{3}])\in((\Sigma\cup\{\triangleright, \triangleleft\})\cross(\Gamma\cup\{\triangleright, \neq\})^{2})$ or $(x, y)=$
$(d_{1}, d_{2})\in\{-1,0, +1\}^{2}.$ A rule of the form $[p, s_{1}, [s_{2}, s_{3}], q]$ is called a read-write-rule, and
means if T is in the state p and reads an input symbol s_{1} and a storage tape symbol $\mathcal{S}_{2},$

then rewntes s_{2} to s_{3} and enters the state $q.$ A rule of the form $\lceil y,$ $d_{1},$ $d_{2},$ $q]$ is called a
shift-rule, and means if T is in the state p then shift the two heads to the directions d_{1}

and d_{2} , and enter the state q . Determinism and reversibility of T are defined similarly as
in the case of MFAs.

Theorem 2 For any $DTMT=(Q, \Sigma, \Gamma, \delta, \triangleright, \triangleleft, q_{0}, \#, A, R)$, we can construct an RDTM
$\tau\uparrow=(Q^{\uparrow}, \Sigma, \Gamma, \delta^{\uparrow}, \triangleright, \triangleleft, q_{0}, \neq, \{\hat{q}_{0}^{1}\}, \{q_{0}^{1}\})$ such that the following holds.

$\forall w\in\Sigma^{*}$ $(w\in L(T)\Rightarrow[\triangleright w\triangleleft, \triangleright, q_{0},0,0]\vdash_{\tau\dagger}^{*}[\triangleright w\triangleleft, \triangleright,\hat{q}_{0}^{1},0,0])$

$\forall w\in\Sigma^{*}$ $(w\not\in L(T)\wedge T$ with w uses bounded amount of the storage tape
$\Rightarrow[\triangleright w\triangleleft, \triangleright, q_{0},0,0]\vdash_{T\dagger}^{*}[\triangleright w\triangleleft, \triangleright, q_{0}^{1},0,0])$

$\forall w\in\Sigma^{*}$ $(w\not\in L(T)\wedge T$ with w uses unbounded amount of the storage tape
$\Rightarrow T^{\uparrow}s$ computation starting from $[\triangleright w\triangleleft, \triangleright, q_{0},0,0]$ does not halt)

Furthermore, if T uses at most m squares of the storage tape on an input w , then $\tau\dagger$ with
w also uses at most m squares in any of its configumtion in its ωmputing process.

5 Reversible logic circuits that simulate RDMFAs
It is possible to implement an RDMFA using only rotary elements as in the case of a
reversible Turing machine $[3, |4,5].$ A rotary element [3] is a reversible logic element
with 4 input and 4 output lines, and 2 states shown in Fig. 4. In [3, 5], a construction
method of a finite control unit and a tape square unit of a reversible TUring machine out
of rotary elements is given. Though a similar method can also be applied for constructing
an RMFA, accessing a tape square by many heads should be managed properly. Here, we
show an example of the circuit without giving a detailed explanation.

62

$\Phi^{t} D|t+1 D^{t}- D\}t+1.$

Figure 4: Operation of a rotary element. The case where the directions of the bar and
the comimg signal are parallel (left), and the case where they are orthogonal (right).

Figure 5: A circuit composed only of rotary elements that simulates the RMFA(2) $M_{2^{m}}’.$

Consider the RDMFA(2) $M_{2^{m}}$ in the quadruple form that accepts $L_{2^{m}}=\{1^{n}|n=$
2^{m} for some $m\in\{0,1, \ldots\}\}$, where $ is used as both left and right end-markers.

$M_{2^{m}}=(\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{a}, q_{r}\}, \{1\}, 2, \delta_{2^{m}}, {\}, {\}, q_{0}, \{q_{a}\}, \{q_{r}\})$

$\delta_{2^{m}}=\{(1)$ $[q_{0}, [{\}, {\}], [0, +], q_{1}]$, (2) $[q_{1}, [{\}, 1], [0, +], q_{1}],$ (3) $[q_{1}, [{\}, {\}], [+, -], q_{2}],$

(4) $[q_{2}, [1,1], [0, -], q_{3}],$ (5) $[q_{2}, [1, {\}], [-, +], q_{4}]$, (6) $[q_{2}, [{\}, {\}], [0,0], q_{r}],$

(7) $[q_{3}, [1,1], [+, -], q_{2}]$, (8) $[q_{3}, [1, {\}], [-, 0], q_{5}],$ (9) $[q_{4}, [1,1], [-, +], q_{4}],$

(10) $[q_{4}, [{\}, 1], [+, -], q_{2}],$ (11) $[q_{5}, [{\}, {\}], [0,0], q_{a}],$ (12) $[q_{5}, [1, {\}], [0,0], q_{r}]\}$

Fig. 5 shows the whole circuit of $M_{2^{m}}$ for the input 1^{2} . Giving a particle at the Begin
port in Fig. 5, the circuit starts to simulate $M_{2^{m}}$. The particle finally comes out from the
output port Accept since $1^{2}\in L_{2^{m}}$. If an input $1^{n}\not\in L_{2^{m}}$ is given, the particle will appear
from the Reject port.

References
[1] Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: Origins and directions. Theoret.

Comput. Sci. 412, 83-96 (2011)

[2] Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals determimstic space. J. Comput. Syst. Sci. 60, 354-367
(2000)

[3] Morita, K.: A simple reversible logic element and cellular automata for reversible computing. In: Proc. 3rd Int. Conf.
on Machines, Computations, and Universality, LNCS 2055. pp. 102-113. Springer-Verlag (2001)

[4] Morita, K.: Reversible computing and cellular automata – A survey. Theoret. Comput. Sci. 395, 101-131 (2008)

[5] Morita, K.. Constructing a reversible Turing machine by a rotary element, a reversible logic element with memory.
Hiroshima University Institutional Repository, http: $//ir.lib$ hiroshima-u.ac jp/00029224 (2010)

[6] Morita, K.: Two-way reversible multi-head finite automata. Fundamenta Informaticae 110, 241-254 (2011)

63

