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Construction of a single-peak solution of the
Liouville-Gel’fand equation on a two-dimensional
domain with a hole
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1 Introduction

We are concerned with the Liouville-Gel’fand equation

LG)

Au+Xe* =0 in €,
u=0 on O0Of..

Here A > 0 is a parameter and . C R? is a planar domain with a hole whose size is
g > 0. The precise definition of €2, will be introduced later. What we discuss in this article
is construction of a solution of (LG) caused by a hole in {,.

The equation (LG) has an interesting solution structure when a domain is non-simply
connected. The case where (2. is an annulus was investigated by S.-S. Lin [7] and Nagasaki
and Suzuki [8]. They independently showed that radially symmetric solutions make a branch
and it emanates from (), u) = (0, 0), bends back once and blows up at each point in 2 as
A J 0. Moreover, S.-S. Lin found that the branch has infinitely many secondary bifurca-
tion points from which non-radially symmetric solutions emanate. Nagasaki and Suzuki
also obtained non-radially symmetric solutions which have rotational symmetry of order k
(k € N) and is large in some sense. Additionally, Dancer [2] showed that the set of bifur-
cating non-radially symmetric solutions are unbounded in the bifurcation diagram. These
results indicate that bifurcating non-radially symmetric solutions connect to the large solu-
tions obtained by Nagasaki and Suzuki. In [5, 6], suggestive evidence of this expectation
was given provided that the inside radius of €2 is small.

For a general non-simply connected domain, Chen and C.-C. Lin [1] revealed the ex-
istence of a solution whose mass is not equal to 87k (k € N). Furthermore, del Pino,
Kowalczyk and Musso [3] proved that for each £ € N, (LG) has a solution blowing up at k
different points as A — 0.

Our motivation is to obtain more detailed information on the solution structure for general
non-simply connected domains by extending the results in [5, 6]. What we consider in
particular is a solution with one maximum point. In this article, only by a formal argument,
we explain how such a solution can be constructed.



2 Construction of a formal solution

We begin with the definition of the domain €2,. Let Q and D C R? be bounded domains
including the origin. Then, for small ¢ > 0, we define €2, by

Q. :=Q\(eD)={z € Q;e'z ¢ D}.

The following figure is an example of §2,.

Figure : Domain (2,

As will be seen below, an important factor to construct a formal solution is the regular
part of a Green’s function for Dirichlet Laplacian in (2. We denote it by H? = H%(z,y).
Then, through this section, we assume that

V.H%(0,0) # 0. 2.1)

This assumption leads to success of argument.

In what follows, we find a formal expansion of a solution (A\.u) = (., u.) by using the
method of matched asymptotic expansions. To do this we separate €2, into three parts. Two
of them are regions near the boundary (|z| ~ 1 and |z| ~ €) and the other is a region between
them. The latter region is supposed to be |z| ~ d., where &, has a property ¢ < 6, < 1
(¢ — 0) and is determined later. To obtain the expansion in this region, it is convenient to
perform the change of variables = = &,y and v.(y) = u.(z) + log(62)\.). Then we see that
V. satisfies

Ave+e* =0 in (37'Q)\ (e5.1D).

Assuming that v, can be expanded as v (y) = vo(y) + d.v1(y) + - - -, we have

vo __
Avy +e™ =0,

in R?\ {0}.
Avy + ey =0 \ 10}

Since a solution which we find has one peak, it is appropriate to choose v as

8(1—p?%
1—p%+ly — pw])?’

vo(y) = log (
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or, in polar coordinates y = (r cos 8, rsin#),

8(1 —p?) 22)

vo(y) = log r2{r +r—1 —2pcos(d — v)}?

Here p € (0,1) and y € R/27Z are parameters and w = (cos+, sin+y). Substituting this into
the equation for v;, we have

8(1-¢°)
r2{r + =1 — 2pcos(d — v)}?

Av, + v =0 in R?\{0}. (2.3)

To determine v;, boundary conditions at the origin and infinity is needed. They are
obtained as matching conditions, and therefore we consider the expansion near the boundary.
First we treat the region |z| ~ 1. We formally expand u.(z) = uo(z) + deur(x) + -+ - as
€ — 0. Then, for j = 0, 1, we have

{Auj=0 in )\ {0},

24
u; =0 on OQ. @4

Since the maximum principle implies that . is positive, uo must be nonnegative. Hence uo
is given by
uo(x) = coGi (). (2.5)

Here ¢, is a nonnegative constant and G} is a Green’s function for the Dirichlet Laplacian in
) with a singularity at the origin.

We substitute z = 55 Zin (25 andy = (55 Z in (2.2), and compare the asymptotic
behaviorase — 0. Ase — 0,

1 1.1 e IO . 5
~c0( ﬂlog6€+2ﬂlog — — Hy'(0) — 02 VHy (0) a:)

Co (%l (Sl+ilog{ — HEH(0) — 6§ufcos(§—'r)) ,
_1_ 8(1 —
’Uo((55 2.’1)) = lOg 1 1 ( p ) ~
(6 72 (6 27) + (6 7)1 — 2pcos(f — 7))?
~ log{8(1 — p?)é2} + 4logi + 62 w
1
= log{8(1 — p?)é2} +4log = z + 82 4;|>:B|2w,

where H(z) = H%(z,0), VH2(0) = (ucosT,usin7), # = (Fcosd,7sinf) and & =
(cos v, siny). By matching two expansions log 1/(82A¢) +vo(z) +6cv1(2) +- - - and ug(z) +



1
dcur(z) + - - - in the region |z| ~ 82, we have ¢y = 87 and
‘ 1
u(z) = 4px_w +o0 (—) as z—0. (2.6)
T
(2.4) and (2.6) give
x .

}Tw — 21V, H(x,0) -w) + c1G(z),

uﬂx)==@9(

where ¢; € Ris an undetermined constant. From this,

1 _1Z- 1 1
u(62Z) ~ 4p (55 2%3—‘; — 2mpw - 5)) + (—logT— - H(?(O))

d 2r 752z
~14pcos 6—r c 1 ¢ 1
= 6. 2——~—%—) + Z;;log 5 + 571; log i 8mpu cos(y — 7) — e  HY(0).

Thus it is appropriate to impose the condition
1
v1(y) = —copr cos(d — 7) + g;—r log ~tart o(l) as r — oo. (2.7)

Here a, is a constant determined later. Moreover,

C 1 c 1
21—79; log 5 coHSH0) + 2—;;(55 log 5 8 (8mppcos(y —7) + cngl(O))
1
= log . + log{8(1 — p?)62} — é.a,,

which gives
1

o 2.8)
+6 {a1 — 8mpp cos(y — 7) — ¢ HEH(0) -
Next we consider the expansion in |z| ~ £. Performing the change of variables z = ¢z
and putting w,(z) = u.(x), we have

e = 8(1 — p?)62 exp |coHHO) + -c—léglog
€ 0 o

Aw, +e’°Xe™ =0 in £71Q. = (e71Q)\ D,
we=0 on 9(c Q).

Hence the formal expansion w(z) = wo(2) + d.w1(2) + - - - gives

Aw; =0 in R?\ D,
wj =0 on 0D
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for j = 0, 1. To find a solution of the above equation, we perform the Kelvin transform

z
|2*

wi(z") = wj(2), 2t =

Then wj satisfies
Aw; =0 in D"\ {0},
w; =0 on 9D,

where D* = {z* = z/|z|*;z € D}. Since w; is nonnegative, we see that wy(2") =
doG?¥" (2*) for some constant do > 0. Thus

wo(2) = doGy (') = doGy (2/12[").

If dy > 0, this function has logarithmic growth at z = oo, while vg has no such a singularity
at y = 0. This implies that dy = 0, that is, wo = 0. Since w; satisfies the same equation as
wp and must be nonnegative, we have

wy(2) = diGY"(2*) = diGY’ (2/)2)%), (2.9)

where d; > 0 is some undetermined constant.
We compare the expansions in the region |z| ~ 82(55 . By putting z = ¢~ 265 Zin (2.9)

andy = €36, 2:v in (2.2), we have

2 1 1 * —1 T
wl(E_\%&éf}) =d; (% log |€—%6e2:f:| - H(I)) (5%55 2 kg:‘z))
by (= log(e™6.) + o log |e}o: ¥l — HY™(0)
1| 5 08L& 0c) T 5 108 E%0: X 0 :
g 8(1 — p?)
(467 372 {(36737) + (3o 7)1 — 2pcos(f — 1)}?
~ log{8(1 - p*)}.

Thus, assuming that two expansions log 1/(62);) + vo(y) + 8ev1(y) + -+ and wo(2) +

Scwy(2) + - - - give the same expansion in |z| ~ 5255 , we deduce
n(y) = g—; logr +as+o0(l) as r—0 (2.10)
and 8(1 - p?) 1 .
log o beay = dy 0, (-2; log(e™16,) — HY (0)) . (2.11)

Here a, € R is a constant determined later.



Now we solve (2.3) under the conditions (2.7) and (2.10). First we observe that the
functions

1

(Dp,'y,l (Z) - r+ r-1_ 2p COS(9 - ,Y),
2cos(0 —v) —p(r+r71)
(I) =
pm2(2) r+r71—2pcos(d —7)’
sin(8 — )
Dp3(2) = :

r47r1=2pcos(f — 7)

are bounded solutions of (2.3). Furthermore, every bounded solution of (2.3) is linear com-
bination of these solutions (see [4], [5]). We also observe what is necessary to solve the
equation. Suppose that (2.3), (2.10) and (2.7) has a solution. By a simple computation, we
“have

1+2pr~'cos(6 —v) + O(r72) =1 »
©p1i(2) =1 —p{1=2(p7" = p)rTcos(8 — 1)} +O(r?) (j=2) asr— oo,
r~tcos(d — ) +O(r™2) (7 =3)
— 14 2prcos(d — ) + O(r?) (=1
Somi(2) =9 —p{1=2(p7 = p)reos(@ =)} +O(®) (j=2) asr—0
rcos(6 — ) + O(r?) (7 =3)

Hence, as r — oo,

8w1 od Ysd
YT

[ — coprcos(6 = ) ~ 2 — deoppcos(d — ) cos(6 — ) +0(1) (j =1)
:<-—M—%mw%w—7%-%: '
+deo(p™t = p)ucos(6 — 7) cos(6 — )} + o(1) (1 =2)
| — 2copcos(8 — 7)sin(6 — v) + o(1) (=3
andasr — 0,
—dy/(27) +o(1 j=1
(G- 22t ) < - (pél(v()%) ; 2(1) Ej - 2; .

o(1) (G =3)

Thus multiplying both sides of (2.3) by ®,, , ; and integrating give

2 6w1 8<I>p,,,,j oo
0= [/0 " (EF‘I’W B ) ‘”J

53
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— ¢y — dmcgppcos(y — 7) + dy (j =1)
=q —p{—a+4mco(p = p)ucos(y - 1) —di} (j=2).
2ncopsin(y — 7) (j=3)

Note that 1 > 0 from (2.1) and d; > 0. Therefore the above relations yield

Y=,
2 ,u(l 2p) 16 2u(1 2p)
ey =2meop | = — =16r°p | = - ,
' p p
o2meo  16m2p
dy = - .
p p

Conversely, it can be checked that the function

1 1
V(y) = —cop { (; - p) ®,1(y)logr + ®,-1(y) logr — p + 7 cos(f — T)}

is a solution of (2.3), (2.10), (2.7) provided that v, ¢; and d, satisfy the above relations. Thus,
by setting a; = a3 = (cou)/p, we see that v; is given by

U1 (y) = V(y) + a(I)p,T,S(y)a

where a € R is an arbitrary constant.
From (2.8) and (2.11), it can be shown that

p loglog:
=L 2% 100
R o)

as € — 0. Hence setting 7. = 27 ud,/p, we have

loglog 1
= 1 1)),
= 2R +o(t)
40%(1 — p? 8 HS(0)
N = =PI a0 L o1)).
um

This indicates that u, appears through a saddle-node bifurcation when p ~ 1/ V2.
Finally we discuss how the constant « is determined. From the formal expansion ob-
tained above, the solution u. is expected to expand as

ue(z) = log +vo(y) + 6V (y) + @b:P,,r3(y) + (h.o.t.)

1
2h

provided that |y| ~ 1. This expansion is valid only in the region |y| ~ 1, and therefore we
add a correction term to obtain an approximation in the whole region of {2.. We define a
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correction function v, as a solution of
Av, =0 in 67'Q,
ve = —log gl)\: —v—46V on 9(67'Q).
Then one can show that
lve(y)| < C (er™ + 62r?)

forally € 671Q,, and
ve(y) = 62€(y) + 0(37)

locally uniformly for y € R\ {0} as € — 0. Here C > 0 is a constant independent of € and
¢ is a function determined by the regular part of a Green’s function in {2 (we omit the detail
of £). Consequently, we obtain the expansion

ue(z) = log + Ue(y) + ab: @, r,3(y) + 1(y),

32X

where U, = vp + 6.V + v, and r. is a remainder term. r. is expected to be small on whole
domain (2, in some appropriate topology.

We set 7. (y) = ad. P, 3(y) + r-(y) and substitute the above expansion into (LG). Then
the equation is rewritten as

E(ne) + F(ns) + Rs = 0,

where

L(n.) = An, + Y,
F(??e) = eUs(enE —-1- ne)a
R. = AU. + &Y.

To determine the constant o, we multiply the above equation by @, , 3 and integrate over
6-12. Then we have

/ £(T]5)‘I’pyr’3d$ ~ / ﬂeﬁ(q)p,r,g)dﬁl?
&0

610

~ a6€/ (¥ — e*)®2  dx
870

Na(SEz/ e”"V@f,,,,,;,da:
R2

_ 4n?y
P

/ F(ne)®pr3dz ~ / eUfnf@p,T,gdx
510, 510,

2
ad;,
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252 o3
~ o) /26 D, - 3dx
R

=0.
From the definition of U,, we see that

R, = e (e’ —1-6.V).

Hence
/ R.®,3dx ~ / e®{ve + (6:V + vc)} @, 7 3dx
6, 5.
~ 82 / e (€ + V), 1 gdz
R2
= (552/ Cvogq)p,ﬂ(;dl'.
R2
Thus «a is given by

p
o= = /122 €%€d, r3dz.

At the end, we summarize what we obtained.

Main Result 1. Assume (2.1). Then, for small € and p € (0, 1), we can construct a “formal”
solution (\c, u.) of (LG) with the following expansion :

4p2(1 — p2)e®™H3© (loglog 2
um log £ ’

Ae ~
as € — 0.

ue(z) ~ log + vo (87 ') + 0cv1 (67 ') + ve(6; 1)

1
52X,

Here constants.and functions are chosen suitably as discussed above.
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