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THE PHRAGMEN-LINDELOF THEOREM FOR FULLY NONLINEAR
ELLIPTIC SYSTEMS WITH UNBOUNDED INGREDIENTS

KAZUSHIGE NAKAGAWA

ABSTRACT. The Phragmén-Lindeldf theorem is established for LP-viscosity solutions of fully
nonlinear second order elliptic partial differential weak coupled systems with unbounded coef-

ficients and inhomogeneous terms.

1. INTRODUCTION

In this paper, we study fully nonlinear second order uniformly elliptic partial differential

systems;
(1.1) Fi(w,u1, ..., um, Dug, D*ug) = fi(x) inQ, ke{l,.. .,m}

where Fi : @ X R™ x R* x §” — R and fi, € LP(Q) (k = 1,...,m) are given functions. Here Q
denotes a bounded open domain in R™ and S™ is the set of n x n symmetric matrics with the
standard ordering. We want prove the Aleksandrov-Bakleman-Pucci (ABP for short) maximum
principle for LP-viscosity subsolutions of (1.1).

We make the following hypothesis about Fi.. We first assume that Fj, is uniformly elliptic, i.

e.
(1.2) P (X -Y)< Fr(z,ry,...,tm, &, X) — Fr(z, 71, ,mm, &, Y) < PH(X - Y)

forzeQ, (r,...,rm) €R™, £ € R" and X,Y € S™, where P%(-) the Pucci extremal operator
defined as

(1.3) P~ (X) = min{—trace(AX) : A < A< AI, Ac S™}

for fixed uniform ellipticity constants 0 < A < A. The other Pucci extremal operator PH(X) is
defined by P*(X) = —P~(-X). Without loss of generality, we may assume that

(1.4) Fi(x,0,...,0,0,0)=0 inQ, fork=1,...,m

by taking Fy(z,r1,...,7m, &, X) — Fi(z,0,...,0,0,0) and fi(z) — Fi(z,0,. .. ,0,0,0) in place
of Fi and fi. Finally, we assume that there exist functions px € LI(Q), and ck(z, 1,0 Tm)
for k=1,...,m such that

(15) ,Fk(.’l), Tl Tm, 5,0)’ .<.. ,Uk(x)lél + Ck(.’II, T1,... :Tm)

forz € Q,(r1,...,7m) € R™ and £ € R™. Here, functions cx(z,71,...,7m) are Lipshitz contin-
uous in (r1,...,r,) € R™ and uniformly in x € Q\W for some Lebesgue null set N C 2 with
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Lipshitz constant v in the sense of £!-norms of D,cx (r = (71,...,7n)). Under these assumption,
it is essential to consider Pucci extremal systems having the form; .

(1.6) P~ (D*ux) — pr(z)|Duk| — ek (2, w1, ..., um) = fr(z) inQ,

for subsolutions of (1.1), and

(1.7) PH(D%ug) + pr(x)|Dug| + ci(z, w1, . . ., um) = fi(z) in Q,

for supersolutions of (1.1). Therefore, it is enough to show several properties for subsolutions of
(1.8) P~ (D%*ur) — pi(2)|Dug| — ck(z,u1,- .., um) = fi(z) inQ, k=1,...,m

This paper is organized as follows. In Section 2, we introduce the notation and some prelim-
inary results. In Section 3, we establish the ABP maximum principle in bounded domain and
weak Hrnack inequality. In Section 4, we establish the Phragmén-Lindel6f theorem for nonlinear
weak coupled elliptic systems with unbounded coeflicients. Finally, Section 5 and 6 , we give a
proof of Phragmén—LihdelESf theorem and ABP type estimates for unbounded domains.

2. PRELIMINARIES

For measurable sets U C R, we denote by Lﬂ(U ) the set of all nonnegative functions in
LP(U) for 1 < p < co. We will often write || - ||, (1 < p < 00) instead of || - || »(vy if there is no
confusion. We will use the standard notations from {15].

First of all, we recall the definition of LP-viscosity solutions of
(2.1) G(z,u(x), D¢(x), D*P(x)) =0 in Q.
DEFINITION 2.1. We call u € C(Q2) an LP-viscosity subsolution (resp., supersolution) of (2.1)
if
essliIrr_l'ixI;f{G(x,u(a:),ch(x),D2¢(x))} <0

T—To

(resp.7 esslim sup{G(z, u(z), Dé(z), D p(x))} > 0)

whenever ¢ € Wli’f (Q) and 7o € Q is a local maximum (resp., minimum) point of u — ¢.

A function u € C(Q) is called an LP-viscosity solution of (2.1) if it is both an LP-viscosity

subsolution and an LP-viscosity supersolution of (2.1).

We will say LP-subsolution (resp., -supersolution) for LP-viscosity subsolution (resp., super-

solution) for simplicity. We will also say that u is an LP-solution of
G(z,u, Du, D%u) <0,
(resp., G(z,u, Du, D*u) > 0),

if it is an LP-subsolution (resp., -supersolution) of (2.1).
We will use this abbreviation also for LP-strong sub- and supersolutions below.
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DEFINITION 2.2. We call u € C(2) NW2P(Q2) an LP-strong subsolution (resp., supersolution)
of (2.1) if u satisfies

G(z,u(z), Du(z), D*u(z)) <0 a.e. in Q,
(resp., G(x,u(x), Du(z), D®u(z)) >0 ae in Q).

REMARK 2.3. If u is an LP-subsolution (resp., LP-supersolution) of (2.1), then it is also
an L?-subsolution (resp., Li-supersolution) of (2.1) provided ¢ > p. However, if u is an LP-
strong subsolution (resp., supersolution) of (2.1), then it is also an Li-strong subsolution (resp.,

supersolution) of (2.1) provided p > g¢.

It is known ( e.g. [5, 14]) that there exists po = po(n, A, A) satisfying n/2 < py < n such that
for p > po, there is a constant C = C(n, p, A, A) such that if for f € LP(Q), u € c@)n W'licp(ﬂ)

is an LP-strong subsolution of
(2.2) P~(D*u) < f(z) inQ
such that u = 0 on 89, and
=Cllf llp <u<Clffll, inQ.
Moreover, for each @' € Q, there is C' = C'(n, p, A, A, dist(¢?, 09)) > 0 such that
lullwzr@ry < C'll £ llp-
Throughout this paper we suume
(2.3) Po<p<g, n<g

DEFINITION 2.4 (viscosity solution for systems). We call the function u = (u1,...,um) €
C(Q2,R™) is an LP-viscosity subsolution of (1.1) provided the equation

P~ (D%u) — g ()| Duk| < cx(z,u) + fulz)

is satisfied in the viscosity sense for each k € {1,...,m}.

3. ABP MAXIMUM PRINCIPLE AND WEAK HARNACK INEQUALITY

We assume that system (1.1) is quasi-monotone (or cooperative) in the following sense; for

any u,v € R™ with u > v component-wise and any k = 1,...,m, we have
(3.1) ce(x,u) > cp(z,v) for a.e.xz € Q.

when uy = v.
To consider the this problem, we assume also the one of following condition. For each j €

{1,...,n},

(3.2) I; %(w,u) <0 a e inQxR™
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or
(3.3) (M¢,€6) <0 for all £ € R™,

where the matrix M = (M)}, is defind by

dc;j —
(3.4) Mk := €ss.Sup —Ez—(x,u) (Mjx < v < 00).
axrm Ouk

LEMMA 3.1 (c.f Busca-Sirakov). Assume (3.1) and either (3.2) or (3.3). Then, there is a
matriz M = (mjx) € L®(Q x R™, Mm(R)) such that

c(z,u) = M(x,u)u
satisfying
mre(z,u) >0 fork # £,a.e. € Q,u€R™.

In addition,

m
ka,(x,u)go forallk=1,...,m
=1

in case (3.2), and
mjk(z,u) <mjx  foralljk=1,...,m
in case (3.3) holds.

THEOREM 3.2 (c.f. [2]). Assume (1.4)~(1.5) and (3.1). Letu € C(QY,R™) be an LP-viscosity
subsolutions of (1.1). Assume also one of (3.2)~(3.3). Then the following ABP type inequality
holds,

m m m
(35) sup v ux < C(sup vV we+ IV, fellee o)
for some positive constant C = C(n,p, q, A, A, [|ullg, diam Q).

Fix R > 0 and z € R*. Let T, T' C Bgr(z) be domains such that

= T
TcT, and 00_<_|17,,—||§1 for some 6y > 0.

When we apply our weak Harnack inequality below, our choice of T and T always satisfies the

above condition.
For a given domain A C R" and a function v € C(A), we define vz, 4 on T UAby

vp 4(T) =

min{v(z),m} ifz€A,
m ifzeT\A,
where

m = liminf v(z).
z—T'NJA
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Next, we recall the boundary weak Harnack inequality when systems have unbounded coeffi-

cients and inhomogeneous terms.

LEMMA 3.3 (c.f. [18, Theorem 6.1]). Assume either (3.2) or (3.3). Let T, T', A be as above.
Assume that TN A # 0 and T'\ A # 0. Then, there exist constants €g = €o(n, A\, A) > 0,
r=r(nAAp,q) > 0 and Co = Co(n,A\,A,p,q) > 0 satisfying the following property: if
fr € LE(T' N A) (k=1,...,m), a nonnegative LP-viscosity solution w € C(T' N A;R™) of

P+(D2wk) + pr ()| Dwg| + ck(z,w) > —fr(z) mT'NA (k=1,...,m),
and
(3.6) el L (17nay < €0,
then it follows that
1 oy 1/r L
(m _/1"(wT”A) dl‘) S C(j(ll%f wT,YA + R”f“Ln(TrnA))

provided that g > n and ¢ > p > n, and

1/r _n
(7 [ @r,2rae)"" < coligt o, 4 + Bl ZR“ LR
provided that ¢ > n > p > po, where W = Viwy and M = M(n,p,q) is an positive integer.

4. PHRAGMEN-LINDELOF THEOREM

In this section, first we establish the local and global ABP type estimates on LP-viscosity
subsolutions for (1.1). To this end, we recall the notations concerning the shape of domains
from [9].

DEFINITION 4.1 (Local geometric condition). Let 0,7 € (0,1). We call y € Q a local weakG
point in € if there exist R = Ry > 0 and z = z, € R™ such that

(4.1) y € Br(2), and |Bg(2)\Qy| > o|Br(2)],

where €y, is the connected component of Bg,,(z) N () containing y.
For 0,7 € (0,1), and Rp > 0, 7 > 0, we call y € 2 a weakG point in Q if y is a G, , point in
Q with R = R, > 0 and 2z = z, satisfying

(4.2) R < Ry +1lyl.

REMARK 4.2. We will write B, for Br, (), where R, > 0 and 2z, € R” are from Definition
4.1. i

DEFINITION 4.3 (Global geometric condition). We call Q a weakG domain if all point y €
is a weakG point in Q.
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We refer the reader to [24] and [9] for examples of domains (2 satisfying weakG. We also refer
to [1] for a generalization.

We first present pointwise estimate on LP-viscosity subsolutions of (1.1), which is often refered
as the Krylov-Safonov growth lemma.

Let y € Q be a weakG point. It is possible to apply the boundary weak Harnack inequality
in By if ||ullz~(B,na) < €0 where g9 > 0 be a constant from Lemma 3.3.

On the other hand, if ||| ~(B,nn) > €0, we divide By into small pieces such that we can apply
the boundary weak Harnack inequality for each pieces which called Cabré’s covering arguments.

But, this argument does not work immediately because of unboundedness of radius { Ry }yecn
when 7 > 0 since we need the uniform estimates in y € Q.

To avoid this difficulty, we assume a uniform integrability of u; for any € > 0, there exists
6 > 0 such that

(4.3) sup/ Ry (Rz)"dr < ¢ for E C A, |E| < 4.
R>1

where Aoy = {0 < a < |z| < b < 00}.
REMARK 4.4. Of cause, if Ry < Rp then we can apply Cabré’s cvering argument.
LEMMA 4.5. Assume that
(4.4) Fi(z,r,&, X) < Fi(z,7,£,Y) (k=1,...,m)
for (z,7,£,X,Y) € 2 x R™ x R™® x S™ x 8™ provided X <Y, there is ux € LI(S) such that
) Fr(z,r,£6,X) > P (X) — pr(2)|€] — ck(z,7) (k=1,...,m)

for (z,r, &, X) € QxR™xR"x S™. Assume also forn > 0 and y € Q be a weakG point with radius
R =Ry, >0 and center z = z, € R™. Let w € C(§;R™) be an LP-viscosity subsolution of (1.1)
with fi € LP(Q) for k = 1,...,m. There exist a positive constant k = k(n,\,A,0,7,7m, Ro) €
(0,1) and € = e(n,0,n) > 0 satisfies following properties:

(i) Asuume that Ry < Ry and (3.2). If p > n, then

(4.5

(4.6) w(y) < n;up @t 4+ (1 - k) limsup ot + Ro| fll~(B,n0)s

z— B,NoN
and if po <p<n,
Moy .
2—n 1-
(47) @(y) < & sup & + (1~ x) limsup B+ By 7| flzns,n0 D RS liliacs,n0)
BynQ z—ByN3d k=0
(ii) Asuume that Ry < Ry and (3.3). Ifp > n, then

(4.8) w(y) < & sup B + (1 - k) llmsup @ + Ro| fll»(B,n0)
BynQ z—ByNoN

and if po < p < n,

Mo
~ ~ . ~ 2— 1- k
(4.9) (y) < % sup B* + (1 - k) limsup @+ + B3P fll iz, RS P Flillie(,n0)-

BynQ z—ByNaN k=0
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(iii) Asuume that (4.3), Ry > Ry and (3.2). If p > n, then

(4.10) w(y) <k sup W' + (1 — &) limsup wt + R\ fll Lr(B,ne\B. r(0))s
BynQ z— B,non

and if pp<p<mn,

(4.11)

. Mo
w(y) <k sup @ + (1 k) limsup @ + R*™P| £l 1n(B,n0) B.a(0)) ZR(l_"/q)kH#“fq(synn\sm(o»»

BynQ z—ByNoN k=0

where W(z) := Vywy(z), w(z) := Vi(wy /Ckp) (G and ¢ are bounded function apper in the
proof) and My is the positive integer in Lemma 3.3.

When (2 be a weakG domain, we derive the following ABP maximum principle for LP-viscosity

subsolutions bounded from abobe of (L.1).

THEOREM 4.6 (ABP maximum principle in unbounded domains). Assume (4.4), (4:5) and O

be a weakG domain. Assume also

(4.12) sup Ryl flln(a,ne) < oo ifp>n,
YEQ|y|>Ro
(4.13) sup  RZP/™| fllpnia,nn) <00 ifpo <p <n,
YeQ,Jy|>Ro

and 0 < ¢ < min{1/(1+n), (c/4)/"}. Let w € C(Q;R™) be an LP-viscosity subsolution bounded
from above of (1.1) with fi, € LP(Q) for k = 1,...,m. Then, there exists positive constants

C=C(n7A7A’m)p)q7E7U)T’177RO) > O

satisfying the following properties:
(i)Assume (3.2), if p=>n

supw < limsupw + C’(Ro sup “f”L"(ByﬂQ) + sup R”f“L"(ByﬂQ))
Q z—80 yeQ|y|<Ro YeQ,|yl<Ro

and, ifpo <p<n

| .
_ . _ 2— 1- k
supw < limsup@ +C (B 7™ sup | flincaynm 3RS ¥ ullaa,mmy
Q z—0f yeQ,|y[<Ro k=0

Mo
+ sup  R|fllprca,nn 3 ROTVOR| |k :
yeR,ly|<Ro s ),;0 Lq(AynQ))

(ii)Assume (3.3) and n =0, ifp>n

supw < C ( limsupw+Ro  sup || fllie(s,ne)+  sup Rllflan(Bymm)
Q z—0Q yeQly|<Ro yeQ,|y|<Ro

121
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and, if pp <p<n

Mo

_ . _ 2— 1-n/q)k

supw < C(hm sup @ + Ry p/n sup || fllzr(ayne) ZR(() ™9 ”H”IZq(AynQ)
Q 799 YER|y|<Ro k=0

Mo
+ sup  Rlflznaynn) D RO ik 40y ).
YeQ,|y|<Ro Ay )g Letawn ))

where Ay = By\Bcg,(0).

PROOF. Taking the supremum over y €  with the estimates in Lemma 4.5, we conclude the
proof. O

THEOREM 4.7. Assume (4.4) and (4.5).Let w € C(Q : R™) is an LP-viscosity subsolution of
(4.14) Fi(z,w, Dwg, D*wy) <0 inQk=1,....,m
such that
lim sup(Viewg) < 0.
z—

There ezist a positive constant 8 > 0 such that
(case 1) if Q be a G domain , either (3.2) or (3.3) holds and

(4.15) (VI we)t = o(eP2l)  as |2| = oo,
(case 2) if Q be a weakG domain, (3.2) and (3.1) holds and
(4.16) (Vitywe)t = o(jel’)  as |a| — oo,

then VIL wi <0 in Q.

5. PROOF OF PHRAGMEN-LINDELOF THEOREM

We will only consider G domain. Let ¢ : [0,00) — R be a non-decreasing function. Setting
®(z) = ¢(|z|), if we define u(z) = w(z)/P®(x), then w is bounded from above. Since ¢r is a

positive non-decreasing function of r, we have

P (D*®(z)) = —(","Tll)%' VS

Therefore, u is an LP-viscosity subsolution of

P~ (D%u) = (@) Duel = Sen(z, dur) < g(auf (2) k=1,...,m

where
1@ i= 205 + (o)

and
a2 arml o an?
g(a:).—,\¢+(A 2] + p( ))¢.
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By Lemma 3.1, we linialized the zero order term c; in this system. Then u is an LP-viscosity

subsolutions of

(5.1) P™(D*ur) = ¥(@)| Dl = 5 Y- maala, du)ue < o)u (),
£

forany k=1,...,m.
Since mie(z, pu(x))ue < mue(z, pu(z))uf for (k # £) from (??), the functions v = uy, 0 are

LP-viscosity solutions of

(5.2) P“(Dzuk) — ¥(z)|Dug| — %mkk(x, ou(z))v < g(x)u;:(x) + %kag(l‘, ¢u(x))uj.
k#L

So maximum of two functions u; = max{ug, 0} be an LP-viscosity solutions of
- 1 &

(5.3) P~ (D?ui) = y(z)| Dug| - " > M, gu(@))uf < g(z)uf ().
[}

fork=1,...,m.
Set ¢(r) = BA+T2 ieh B € [0,Bo] to be chosen in sequal. Applying the ABP maximum
principle to (6.1), if p > n,

sup@ < CRysup (g™ || 1n(B,ne) < CRoBKosupa*t
Q yeQ Q

for some positive constant Ky. Here % = Viug. Taking 8o > 0 small enough, we have % < 0 in

§2, which implies Vywy < 0, which conclude the proof.

6. PROOF OF ABP ESTIMATE IN UNBOUNDED DOMAIN

In this paper, we will only consider (3.2). Using the same arguments of proof of Phragmén-

Lindelof theorem, we can check that the function u = (uy, ..., um) is an LP-viscosity subsolution
of
m
(6.1) P™(D*wy) — u(@)|Duk| = Y mye(z, u(@))uf < ff(z) inQ
)
fork=1,...,m.

Idea of proof is the function v(z) = VI, u(z) satisfying a fully nonlinear elliptic equation.
k=1

Claim Under (3.2), the function @ is an LP-viscosity subsolution of
P~ (D*@) - p(z)|Dw| < (ViLife(z)) = f(z) in .

Proof of Claim. Assume contrary, there exists § > 0, open ball Bs(zp) C R™ with radius
S >0 and a test function ¢ € W2P(Byg(zo)) with 0 = (@ — ) (o) > (@ — ¥)(z) (z € Bs(zo))
such that

(6.2) P~ (D*uw) — p(x)|Dug) > f(x) +26 > 0 in Bg(zo).
Fixed k with ujf (zo) = v(zo), then we see that

0= (uf —¥)(@) > (uf ~¥)(z) (c € Bs(ao))-
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If 9(z0) =0,

0, then the point zg is a local minimum point of . By strong maximum principle of
Pucci extremal equation, we obtain 4 = 0 in Bg(zo). Which contradicts (6.2).

If not ¥(xo) =0, i.e. up(zo) = ¥(xo) > 0, then there exists radius » > 0 such that

0

ug >0 and up > u; — — in By(xo).

P~ (D*) - u(z)|DY| > f +26

> fif+26

(kae) uk + fif +26
=

m
kagu? + f,:- +0,
=1

v

o=

Y

o~

where we use following estimates;

gm”(zu Z/ —(z su) ds</ Z
i#j

(z, su)
8u]
i£]

On the other hand, function uy is also an LP-viscosity subsolution of (6.1), which is contradiction

Yds<v fori=1

. Y
Here we prove the point wise estimates. It is enough to show the assertion when 0 = C
y , .

limsupg s W' (z). In fact, after having established the assertion when C =0, we may apply
the result to w — C to prove the assertion in general case

Case 1: R, < (14+1n)Rp or |y| < Ro

In this case, By = Bg,/-(2y) is bounded. The functions w and w satisfies
P~ (D*w) — p(z)|Dw| < f*(z) in By,
in case (3.2) and

P~(D*@) — (v + u(z))|Dw| < f*(z) in By,

in case (3.3) in the LP-viscosity sense for some positive constant v. We can use the standard
covering arguement by Cabré. Setting T = Bg,(zy),T' = By and A = Q, we have

IT\A| = |Br, (2,)\ | = 0|Br, (2,)| = ZIT|

We shall only give a proofs when ||u|zn(7/n4) < €0 in case (3.2), or [|v + pllLr(1/n4a) < €0 in case
(3.3). Let w = w or w. For any r > 0, we see that

(%)%cw < (E\—ﬂ)%cw

|T}

1

< 1 m’ dx '
IT| J\a
. 1
(7 fomares)”

IA
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where m = liminf, ,7ng4 v(v).

Since y € A, we have
iI%fU;,yA <u(y) = Cyp — w(y).
Hence, taking r > 0 for the constant from weak Harnack inequarity, we have
on L
() cuzco (irjl‘f’v;,’A +R]| f||Ln(T,mA)>
< Co (Cw —w(y) + Rl flltarnny) -

Therefore, we conclude that the case (i) holds for k = 1 — (o/ 2)% min{C;',1}.
Case 2: Ry, > (14 n)Ro and |y| > Ro

Under the assumption (4.3), we can show it as the same argument case (i) similarly.
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