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Asymptotic behavior of eigenvalues of the Laplacian
with the mixed boundary condition and its
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1 Introduction and Main Results

In this paper, based on a recent work [5], we present our study on an asymptotic
behavior of eigenvalues of the Laplacian on a thin domain under the mixed boundary
condition. Let @ C R"™ (n > 2) be a bounded domain with smooth boundary I' = 012.
For a sufficiently small ¢ > 0, define Qe) = {z € Q | d(z,T) < €}, T'(e) = {z €
Q| d(z,T') = €}. Consider the eigenvalue problem: |

0P
—A®=)X® in Q), =0 on I(e), 5 =0 on T (1)

where v(z) is the outward unit normal vector on T.
Let {\x(€)}f2; be the eigenvalues satisfying 0 < A;(€) < Aae) < As(e) < --- -
+00 and {®x(z)}2, be the associated eigenfunctions. We may assume ®;(z) >
0 (z € Q(e)) and P, can be obtained as the minimizer of A;(€) = inf{R.(®) | ® €

H'(Q(e)), @ =0 on I'(¢)}, where
_ Jogo V@ dz

R.(®) = :
: (@) fn(e) |®[? dz
In general k-th eigenvalue Ax(€) can be characterized by using the min-max principle.
(€)= sup inf{R.(®) | & € H'(Q(c)), ® = 0 on ['(c), LE}.

ECL?(9e)),dimE<k—1

Here E is a linear subspace of L?(Q(¢)) and ®LE means (®, ¥)z2(q¢) = 0 for every
¥ € E. We denote by H() the mean curvature of I' at £ € I'. Then we have the
following asymptotic behavior of Ax(¢) as € — 0.
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Theorem 1 Let k > 1. Then, as ¢ — 0, we have

e2x(€) = X1 — (max H(8)) e + O(¥?).

Here, \; = 1} and \; is the first eigenvalue of the eigenvalue problem.:

—¢"(s) = Ag(s), s € (0,1), ¢'(0)=0, ¢(1) =0.

Theorem 1 also suggests that the eigenfunctions ®x () concentrates on a certain point
¢* € I' which attains the maximum of the mean curvature H(¢).

Remark 1 A closely related result has been obtained by Krejcirik [6] for n = 2,3 with
a rough remainder order term o(e) instead of O(¢¥/?). The method is quite different
from ours. His result is motivated on a quantum wave guide problem, especially on
the work of Dittrich and Kriz [3], which studied ezxistence and non-ezistence of bound-
states on a bent strip under Dirichlet-Neumann boundary condition. For a quantum
wave guide problem, see [2], [7] and the references therein. Moreover, concentration
phenomena of eigenfunctions also have been studied by S.A Nazarov et. al. [1] on a
thin cylindrical domain with Neumann boundary condition on the lateral boundary and
Dirichlet boundary condition on other boundaries.

If we assume the maximum point £* € I' of H(§), i.e. H({*) = maxeer H(E), is
non-degenerate, we can obtain more precise asymptotic behavior of A (e).

Suppose there exists a unique maximum point £* € I' of H(£). We may assume £* is
the origin by a suitable transformation. Furthermore, we assume this maximum point
is non-degenerate, namely there exist positive constants y; > 0,7 =1,2,---,n—1, such
that H(§) can be written by

H(E) = H(0) — 3 1€l + O(leP)

by using a suitable normal local coordinate £ = (£1,&s, - - -, €n—1) near the origin O € I,
We denote by Z, = {0} UN ={0,1,2,-- -} and consider the set

(ADE, = (X @mu+ )V | (ma,ma, - may) € 2271
=1

with A; < Ay <+ Ag < Agy1 < ---. Then we have the following sharp asymptotics.

Theorem 2 Suppose that the mean curvature function H(E) has a unique mazimum
point £&* € T’ of H(E), which is non-degenerate. Let k > 1. Then we have

EXe(e) = A — (x?gg(H(E)) €+ Axe”’? +0(e¥?) ase— 0.



Remark 2 When Q= {z € R" | R—¢€ < |z| < R}, by using a direct computation we

have

n— n? — n—1)2
o) = (rf2p - ey (e w2 a o)

where Ay is the k-th eigenvalue of the Laplacian on S™*. When H(€) is constant near
its maximum point, then the following formula would hold in general:

EXe(€) = (1/2)* — cre + O(€?), ¢; = max H(E).

Although Theorem 1 and 2 has its own interest, our another motivation is to solve the
question raised by K. Umezu [8] in his study of a certain bifurcation problem arising in
population dynamics. As an application of Theorem 1 we give a partial result to that
question. Let © C R? be a bounded smooth domain with smooth boundary 9. Let
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m € L*(Q) be a sign changing function satisfying [, m dz < 0. Then it is well-known

‘that the problem:

Jo|Ve|* dx
fQ m(x)¢? dx
is attained by ¢(x;m) > 0 (z € Q) and \;(m) > 0. Then the question is the following:

find the condition on m(x) which implies the inequality:

Jop(z;m)3de Q]
Jan $(@;m)3ds = 109" (3)

Mww:mq |¢€H%Q%Am@M%M>O} )

We can give a sufficient condition for general domains 2.

Theorem 3 Letn =2, Q(e) = {z € Q| d(z,00) < €} and consider the function m(z)
satisfying m(z) = 1 on Q(e), m(z) = —s on Q\ Q(¢) for s > 0. Then there exist a
sufficiently small o > 0 and sufficiently large so > 0 such that the inequality (3) holds
for 0 < e < ey and s > sg.

Let us briefly explain the relation between the question above and the bifurcation
problem studied by K.Umezu. Consider the problem

—Au = A(m(z)u—u?), re€Q,

U _ o2, e o,
ov
where m(z) is a sign-changing function satisying [, m(z)dz < 0. If the inequality (3)

is satisfied, take b such that

Ja o(z;m)3 dz b < e
Joq $(z;m)3 dS 09|

Then Umezu proved that there exists a (subcritical) bifurcation curve (), u(x, A)) which
bifurcates at (A;(m),0) with 0 < A < A\;(m) and u(z,\) = +oo as A — 0. So the
inequality (3) is a sufficient condition to determine a structure of the bifurcation curve.



130

2 Outline of the Proof of Theorem 1 and 2

2.1 Preliminaries

First, using a local coordinate (&1,&s,-+,&,—1) for £ € I = 09, every point z € Q(¢)
in the neighborhood of I" can be expressed by ¢ = £ —tv(§) withz € L0 <t < e.

So let (&1,€2,+,&n-1,&n) = (&1,&2, "+, En-1,t) be a local coordinate of I' X (—¢,€)
and by (gi;) the metric tensor associated with this local coordinate. Then we have
Gin =9ni =0 (1 <i<n—1)and gnn = 1. Let (¢¥) = (g;;)"! and G = det (gi;)1<ij<n =
det(gij)1<ij<n—1. Then we can write the norm of the gradient and the Laplacian of @
by using this local coordinate as follows:

n b od "=l .. 9P 0d 0o,
2 _ 77
V=2l = 3 9" oe2g, = 2 9ok o, B )

i,j=1 i,J=1

s0= 5 T ("V05) + (Yo%)

1,j=1
Taking ®(£,t) = t, we have
1 0

—\/55(\/5) = At = div(Vt) = —div(D) = —H(£, 1),

where 7(€,t) is the extended unit normal such that (¢, 0) = v(€). Now, we obtain the
following formula:

V(e D) = /G, 01 - HE) +O0@),
as t — 0, where H(¢) is the mean curvature function of T' at ¢ € I. Note that,
when I' = B(0, R), then H(£) = 2zt for £ € T. Using a local coordinate and the
transformation ®(¢,7) = ®(£,er),6 € I,0 < 7 < 1, we can rewrite the Rayleigh
quotient as follows:

Jog |V:@?dz Jrx0,0(IVe®)* + (%)2)\/0(5, t) d€ dt

Re((b) =

fQ(e) $? dzr - fI‘x (0,¢) P2 V G(é’ t) dé dt
_ _1_f1“><(0,1)(52|v€{i)|2 + (?6%)2)\/ G er)ddr = —l—R (®) (4)
T Jreon ®/GEen) dedr “

Now, we recall the definition of the Hermite polynomials H,,(s): form € Z, and s € R
define

Hls) = (1) exp() 0 (exp(-3))
Let ¢m(t) = Hn(V/2t) exp(—%), t € R. Then one can see ¢, (t) satisfies

d2

— Sbm(t) + Em(t) = (2m+ 1) (0).
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Now for k£ > 0,¢ > 0 and m € Z,, we put

Prm,e(t) = ;1-5(—”3,-)-; $ “%(ft), (t €R).

Basic properties of the function pj m . are as follows:

Lemma 1 pg . satisfies the following:

/Rpk,m,e(t)f)k,l,e(t) dt =4(m,l), (m,l€Zik,e>0),

d2
—€aPhme(?) + k% ptm,e(t) = k(2m + 1)€2 pme(?), ¢ € R.

For the proof of Lemma 1 and other useful properties of pi m e, see [5].

We will explain how to choose a test function for the case k = 1. As a test function
we want to choose ®(,7) = 1, (€)1 (7), where ¢1(7) = V2 cos(57) and a suitably
chosen ¢, (§) € HY'). Now take any k; > 0 (j = 1,2,---,n — 1 and any p =
(my,mag, -+, mp_1) € Z% 1. Let 0 < a < b be small numbers and let n(t) € CP(R) is
a suitable cut-off function. Then we can take our test functions as follows:

Bpe(€) = 1(€1)ks ma c(€0)1(E2) kg e(€2) €1k s ()

by using a local normal coordinate. To construct a test function for £ > 1, we must
choose k different pair of p which assures the orthogonality condition.

2.2 Proof of Theorem 1(upper bound for k = 1):

For simplicity, we only explain the case k = 1. As a test function, using a notation
VYe(€) = tp ((€) for simplicity, we consider

8(6,7) = ¥O(r),  &i(7) = VEcos(57)

with normalization [v(£)?\/G(£,0)d¢ = 1. Then the rescaled Rayleigh quotient is

expressed by NL(©) 4 Ny(d)
1{€) + fVale€
M)

M= [ w600 - Hg)er +O(e) d dr
=1- [W2HEY/G(E 0)de x (5~ ) +0(),
N = [ BlO (VO 0) (1~ H(Qer +O(e)) de ar

R(®) =
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=% - /WH VG, 0)de x e+ O(e2),
Nofe) = ¢ /Fx V(&) P(61(r))*VG(E, 0)1 = H(E)er +O()) dedr
=& [ 190Gl 0 de + O(eh),

= 0(62),

since our test function 9,(£) satisfies the following estimate( see [5]):

[ IVe©)rVGE, 0) de = 0

Therefore, we obtain

R = (M- Tk + 2) [v2H©\GE 0 de x e+ 0(eh))
X{l—/lsz(é)mdﬁ X (% _ %)€+0(62)}—1

2 1 2
-G - 2) [vPHEoE 0 de x e+ ()

T

cle+/1j)2H (E)VG(E,0) dE x e + (e3),

where H(€) = ¢; — H(€) with ¢; = max H, H(€) > 0. These yields the desired upper
bound.

— 1
=M\ —/\1<('2—+
=\ —

2.3 Proof of Theorem 1(lower bound for k = 1):

Let ®.(¢,7) be the 1st eigenfunction. Then

Sexion (EIVEUE TP + (2:87) | [G(E er) de dr
62/\1(6) = =
fI‘x(O,l) Iq)ﬁ(€7 7—)]2 V G(éa 67') d€ dr

with normalization
, T ,0)d€dr =1.
/Mm (6,7)1P\/G(€,0) de dr

Let ¢1(7) = v2cos((l — 3)mr), (1 > 1), Xy = (I — 3)?n? and

1.
at(g,e) = [ Bule, )ou(s) ds
By using the Fourier expansion, we can decompose as follows:

(€, 7) = 2V (€, 7) + 2D (€,7),
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where

<i>“><f, 7) = oW (g, €)¢u(7),

o2 Za“ (&, e)u(7).

Our normalization implies

i/ra(l) (€,€))2/G(€,0) de = 1.
=1

Moreover, we have

/r (o1)(876)6)2\/5(?’?)‘1§ dr = i/rxl(a(l)(f,e))2\/6(§,0) d¢
e =1

=%+ (=X [0, ) /G(E 0) de.
=1

Note that there exists a constant §; = &;(e) = O(e) such that

1- 61(6) S

§ 1+ 51(6).

This yields

e (e) > frx(on(aé)z\/ (€, eT) dE dr
 fex 01( )/ G(& eT) dEdr

N 1—04(e€) frx(o,l)(afq)e) \ G(,0) ds dr

T LH0u(6) [ 00)(B)2/G(E,0) de dr

i 1—51(6) / -
T 1+61(e) /1‘><(01)(a 2.)? G(€,0) dE dr.

Now, first we will establish a rough estimate. Thus we obtain

i ;?8 (h+ Z %@, )%/, 0) de
< M) <N — e+ O(E/2).

/ Nu(a(€,9)*/G(€,0)dE = O).

By this estimate, we can get

. -
L o 02 G(E 0 dedr =1 + 0,

Then we have
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Joyo @ 8PVG(E,0) dedr = O(0),
/Fx(o,l)(‘i)(l))z\/G(f, 0)dé dr =1+ O(e),
/Fx(o 1)(&’(2))2Md§ dr = O(e).

/F x(m)(é)%/c:(g,n) dé dr

— 1 _ 7, (1) 5(2)\2 2
=1 /rx(m(‘l’ + 3@)2,/G(€, 0)H(€)r dE dr x € + O(e?)

Now,

=1 (G~ 2) [(a)/GEOHE de x e+ Qu(e), Q€)= O,

Similarly, we obtain
,/r (875))2\/G(£, €T) d€ dr
- )\1)/ (a® )?\/G(£,0) dE

5+ )% /F (@ H(E)/GE,0)de x ¢+ Qa(e

with Qs(¢) = O(e?). Combining these estimates, we obtain

pay
9

Il
>l
Mg

N

A — e+ O(e%) > €2\ ()

R =R (G + )~ G = ) [(@OPHE G 0 de x

m =)
+§(X1—X1)/(a<’>)2md§
/r x(0,1) V&*\/G(€,er) de dr(1+ O(e)) + O(e?).
=% - [ (@O (er - H(E)G(E0)de x e
+°° - A)/(au) 12,/G(E, 0) de

=

/MO )|v<1>e| 2, [G(€, er) de dr(1 + O(e)) + Ofe
S (=) [ (@)2/GlE ) = ofc)

=2

v

mm

)-

Now we have

~

and this improves the estimate of Q;(£),j = 1,2 as follows: Q;(€) = o(e%). Therefore,

we can conclude
—C1 + 0261/2 Z (62)\1 (6) - Xl)e'l



> {_q(l +0() + [(aWPH(©)/G(, 0) de
F = X) [ (00)2\/Gle,0) de
=2
te /F o V&[*\/G(E, e7) dE dr + (Qa(€) — M Qs (»:))e'l} x (1+0(e)™

Now, we are ready to obtain an improved estimate. Thus we obtain

| (@Oyi€)/Gle,0)de = O(eh),

[ M

o0

> (%= %) [(a®)/G(e, 0)de = O(ed),

=2

2 5 |2 _ 3
€ /rx(0,1) VO |“\/G(&, eT) dE dT = O(e2),

and hence we get the desired lower bound:

L] L

(EM(e) = N)e ! > —c; + O(e2).

2.4 Comments on the proof of Theorem 2

To obtain a sharp upper bound, we choose the precise vector p and {k;} for the test
functions to match the coefficients appear in the Tayldr expansion of the mean curvature
function. Once we obtain the desired sharp upper bound, noting the concentration of
L? norm near the unique maximum point of H (€), we can arrive at the desired lower
bound. For the details, see [5].

3 Proof of Theorem 3

3.1 limiting problem and an interpolation inequality

First, the following proposition connects the problem of Umezu and our problem.
Take any sequence {s;} such that s; — +o00 (j = +00). Then let m;(x) be a function
satisfying m;(z) = 1 on Q(e), m;j(z) = —s; on 2\ Q(¢) and let A\(m;(z) and ¢ (z) =
#(z;m;) be the associated eigenvalue and eigenfunction, respectively.

Proposition 1 ¢U) converges weakly to @, in H () and A\(m;(z)) — Ai(e) as j —

+00. Here @, () is the zero extention to Q and can be seen as an element of H*(().
Moreover, when n = 2, we have

Jo(¢Y)(2))? da . Joge) (P1e(2))? da
Joa(@D(2))3dS "~ [oq(P1,e(x))3 dS

as j — +oo.
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We can prove Proposition 1 easily by using a standard argument. We also need the
following interpolation inequality.

Proposition 2 Let n = 2 and ¢ € HYT x (0,1)) with ¢(§,1) =0 (6 € T). Then
there exists constants C; > 0 and Cy > 0 such that the following inequalities hold: as
U=Tx(0,1),

sup, [ 1¢(6,9)°V/G(E,0)de < ([ o6, nI*V/G(E,0) de)

([ 2 e rpyatg oydgar)
/UI¢(§’T)|4\/_G—(—§,T))d§dT < CZ(/(JI¢(§’T)|2\/md§dT)I/2

([ (96, T + 1960670 + I9(E,IPIGTE 0T

For the proof of Proposition 2, see [5].

1/2

3.2 Outline of the proof of Theorem 3

First by ®(€,7) = ®(€, eT) we have

fn(e)(‘pl,e(-’c))s dz _ E(f[‘x(o,l) &)(fa 7')3\/ G(€,eT)dE dT)
Jo(®rc(2))? dS I ®(6,00%,/G(6,00de  /

Since \/ G(&,eT) = ﬁ& ,0) + O(e), it is enough to estimate the quantity:

frx(o,l) &)(fa 7)3\/ G(€,0) d€ dr
Jr®(€,03/G(€,0)dE

Now we use the Fourier decomposition used in the proof of Theorem 1:

B¢, ) = 3N (¢,7) + 2P, 7), 8V (€, 7) = (€, €)u(7),

where

ar(6,6) = [ B(E )n(s)ds >0

with ¢;(s) = V2 cos(%s). On the other hand, from Theorem 1 and its proof, we note

that
/r o) |V5<I>| VG er)dédr =0

holds. By using this key estimate and Proposition 2, we can obtain the desired estimate.
For the details, see [5].
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4 Future problems

~ We give several comments on open questions in this field.

(1) The computation of the coefficient of the fourth order term O(e?) would be rather
difficult.

(2) Dirichlet-Robin or Robin-Neumann mixed boundary condition would be interesting.
(3) Similar asymptotics would hold for an eigenvalue problem with Dirichlet boundary
condition with Neumann window (cf. [4]).

(4) Asymptotic behavior of the least energy of a nonlinear eigenvalue problem —Au = u?
in Q,u=0o0n 0N for p> 1, for example, on a thin domain would be interesting.
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