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Abstract

We formulate an iterated proper forcing with side conditions. We start with a measurable cardinal. Then
we construct our iterated proper forcing along a sequence of increasing transitive models. The measurable
cardinal is turned into the second uncountable cardinal. This is a rendition of one of Neeman’s original
constructions with two types of models.

Introduction

Neeman introduced a new method of iterating proper forcing in {N]. The new method makes use of
models of set theory and is of finite in nature. This note is a rendition of a small fraction of [N]. We start
with a measurable cardinal x. We formulate an iterated forcing along a sequence of transitive models of set
theory that cofinally €-increase in H,. Hence it looks like an ordinary iterated forcing with small initial
segments. However in this new iteration projections are locally done. Each condition has limited initial
segments and so limited access to intermediate stages.

There is a similar construction that adds many reals by iterating a class of proper forcing in [AM]. Their
iteration takes notions of forcing stronger than just being proper and uses systems of countable elementary
substructures with markers so that the iteration is proper. Their conditions have every initial segment and
so access to every intermediate stage.

Since these new methods are of finite in nature, reals are to be added or even intended to add. Hence
it appears that preserving, say the Continuum Hypothesis, there remain roles of countable support iterated
proper forcing. The iterations in this note preserve w; and automatically collapse the cadinals trictly between
wy and k. And k is turned into new w,. Hence, the idea of forming iterated forcing along a sequence of
transitive models, as in this note, does not work in contexts of higher analogues of proper forcing, where
both w; and w, are intended to be preserved with new ws.

Preliminary

The items in this section are in use throughout this note without being metioned. Let x be a regular
uncountable cardinal. Let H, = {z | | TC(z)| < &}, where TC(z) denotes the transitive closure of x. Let
X < H, abbreviate that (X, €) is an elementary substructure of (Hy, €). Typically X is countable but not
restricted in general. Hence we may consider X = Hy < H,, where # would be a singular cardinal. Let P
be a preorder (i.e. reflexive and transitive) and P € X < H,. Then we denote X[G] = {rg | 7€ X is a
P-name}, where G is any P-generic filter over the ground model V.

Lemma A. Let P be a preorder and « be a regular uncountable cardinal with P € H,. Let P € X < H,.
Then

(1) For any P-name 7, there exists a P-name 7 € H, such that || p“if 7 € (H,)V[%!, then 7 = 7”.

(2) And so ||-p“H,[G] = (H,)VIG]".

(3) For any €-formula ¢(y, v) and any P-name 7 € X, there exists a P-name 7 € X such that |- p“H,[G] =
Yy (ey,7) — ¢(m,7))""

(4) And so [Fp“X U{G} C X|[G] < H.[G]".

The following contents may be improved but suffices for this note.

Lemma B. Let P be a preorder and k be a regular uncountable cardinal. Let 6 be a cardinal (may or
may not be regular). If 8 is singular, then think of Hy = (J{H, | x < 6, x is regular}. Let P € Ho € N < H,,,
P € N and N be countable. Then
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(1) Pe NN Hy < Hy.
(2) [p“Ho[G] € N[G] < Hi[G] = (H,)VIE).
(3) [P “NIGI N Hy[G] < Hp[G] = (Hg)V1OV.
(4) For any P-name 7 € N, there exists a P-name m € N N Hy such that |- p“if 7 € (Hy)V[%, then 7 = 7”
(5) And so [-p“N[G] N Hy[G] = (N N Hy)[G).
Furthermore, let Q € N N Hy and |- p“Q be a preorder”. Let 8 be singular such that Hy < H,. Then

(6) |-r“Q € N[G] < HL[G].
(7) |Fp“Q € (N N Hy)[G] = NG| N Hy[G] < Hy[G] < H,[G]”.

(8) I-p“q is (Q, N[G])-generic iff ¢ is (Q, (N N Hy)[G])-generic”.

In the following, we state it with two countable elementary substructures for simplification.

Lemma C. Let  be a regular uncountable cardinal and 8 be of uncountable cofinality. Let Hy € N € M,
N < H,, M < H,, and both N and M be countable. Then N ¢ M and NN Hyg € M N Hy € Hy holds.

The following is related to atomlessness of relevant preorders and hence adding Cohen reals.
Lemma D. Let « be a measurable cardinal. Let f : [Hc]<* — H,. Then

(1) There exists a regular uncountable cardinal § < & such that Hp is closed under f.

(2) For any X € H, and a € X, there are two countable sets M, My of H, such that M;, Ms are closed
under f,a € MiN My, MiNX =M>NX and M1 Nk # My N k.

§ 1. Contructions of Iterations
In the rest of this note, we assume that « is a strongly inaccessible cardinal and denote K = H,. Let

={H0€K‘Hg < K, [HQ]MCHG}

We also assume that {Hg € T | § is regular uncountable} is €-cofinal in K. We indicate when we further
assume that « is measurable. Let us denote

S ={N € K | N is countable, N < K'}.

The elements of 7" and S are called of transitive type (or rank type) and of small type (or countable type),
respectively. Hence we are concerned with the elementary substructures, of transitive or countable, of K.

We construct a preorder Py that is the direct limit of an iterated forcing (P; | 4 < ). This (P; | i < )
has associated sequences (K; | i < &) and (Q; | i < ). The sequence (K; | i < k) is €-increasing and
€-cofinal i 1n T and so in K. The sequence (Q; | i < &) lists names such that for each i < k, we have P, “Q;
is proper” and the associated two stage iteration P; * Q; is formed as a preorder in your favorite manner.
We have P; C K; and P, Q;, P, xQ; € K;y1 < K for all i < k. The finally constructed P, = | J{P; | i < &}
does not satisfy the x-chain condl‘mon We demand the continuity as in (2) below so that P, preserves x
to be a cardinal. By the properness of Py, the least uncontable cardinal w; is preserved and every cardinal
strictly between w; and « is collapsed. Hence, we have & = (wq)V!%+], where G, is any P.-generic filter over
the ground model V.

Lemma 1.1. We may construct sequences I = ((K;, P;, Q;, P; * Q;) | i < k) such that for each i <

(0) ITi = (K;, P;,Q;,P;xQ;) | j < i) € K, (K i | J < 14) is an €-increasing sequence of elements in T,
(Pj | j < 1) is a sequence of preorders and (Q; | j < %) is a sequence of names such that for each j < i,
we have || p, “QJ is a proper preorder” and the associated two stage iteration P; * QJ ={(p,7) |p € P;,
[P, “T € Q;”} is formed as a preorder in your favorite manner.
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(1) If 5 is 0, a successor ordinal or a limit ordinal with cf(¢) = w, then I[i € K; € T and §; is a regular
uncountable cardinal, where K; = Hy,.

(2) If i is a limit ordinal with cf(i) > wy, then K; = U{K; | j <i}.

(3) (Basic Closure) If m < 4, then I[(m+1) = (K, P;,Q;,P; xQ;) |  <m) € K;.
(4) P; is a preorder such that for each element p € P;, p is a pair and P; C K; holds.
(5)

5) For p = (fP,AP), p € P, iff
e AP is a finite €-chain, AP = TP U SP, T? C {K; |j < i} and SP C SN K;.
e (Basic Closure) If N € 5P and K; € N (note that we do not talk about j € N, because N may contain
J bigger than i and that K; may or may not be in T?), then I[(j + 1) € N.
e (Intersection Property) For all X,Y € AP, X NY € AP.
e fP is a finite function with dom(f?) = {j < i | K; € AP}.
e (Local Projection) For j €dom(f?), we have w(p, j) € P;, (w(p,j), fP(j)) € P; *Q; and |-p, “fP(j) €
;"> where w(p, j) = (f*[j, A* N K;).
e (Generic) For j edom(f?) and N € S? with K; € N, |l-p, “f?(j) is (Q;, N[G;])-generic”.
(6) For p,g€ P;, ¢ <pin P iff
e A7 D AP,
o For j edom(f?), w(q,j) |-p,“f(5) < f7(j) in Q;”.
7 Fr“Qie K [Gi] is proper” (whose exact choice depend on the purposes) and the associated two stage
iteration P; *x Q); € K formed.

Proof. Here is a recursive construction of K;, P, Ql and P; *Qi. Suppose i < k and we have constructed
ITi = ((K;, P, Q;, P x Q;) | § <)

To construct Kj;, pick any sufficiently large K; € T as in (1), unless ¢ = 0 or cf({) > w;. As far as K is
concerned, we are frec to choose any Ko = Hg, € T with a regular uncountable cardinal 6. To construct
P, let p = (f?, AP) € P, if either the following (I) or (II) holds.

(I) f7 =0 and AP is a finite €-chain such that

s APC SNK;.

¢ (Basic Closure) If N € A and K,,, € N, then I[(m +1) € N.
(II) There exist ¢ € P;, j <1, 7 and A such that

e (q,7) € P« Qj and |-p, “T € Qj”.

e A is a finite €-chain such that for all N € A, K; e Ne SN K.

o (Basic Closure) If N € A and K,,, € N, then I[(m + 1) € N.

o (Weak Intersection Property) For all N € A, K; NN € A9.

¢ (Weak Generic) For all N € A, |-p, “7 is (Q4, N[G;))-generic”.

o fP=flU{(4,7)} and AP = ATU{K,;}UA.

For q,p € P;, define ¢ < p in P;, if
e A% D AP,
o For all j edom(f?), w(q,j) < w(p,7) in P; and w(g, 5) [-p, “f9(j) < f7(§) in Q;”. Namely,

(w(g,5), £4(5)) < (wlp,3), 7))

in P; *QJ



To construct Q1 and P *Ql, let Q; and P;xQ; be any as in (7). This completes the recursive construction
of Ki, P;, Q; and P, xQ;. We have to show that they satisfy the induction hypotheses (0) through (7). Since
it is quite routine, we make remarks rather than putting details.

For (0),(1) and (2): Due to the assumption on x and 7, these are satisfied. Notice that there exists a
lot of freedom in choosing K; for ¢ = 0, successors or limits with countable cofinality. Also notice that 6;
has no choice other than specified and may not be regular, when cf(i) > w; but K; € T holds.

For (3): If ¢ is a limit with cf(z) > w; and m < 4, then I[(m + 1) € K,ny; € K; by induction.
For (4): We have to wait for (5). But P, C K; € K;4; € K. Hence the initial segements are all small.

For (5): Ttem (3) (Basic Closure) is a prerequisite to (Basic Closure) on N in (5). (Weak Intersection
Property) entails (Intersection Property) by induction. We liked to consider dom(fP) = {j < i | K; € Ar}
over dom(f?) = T? in our formulation. We demand dom(f?) = {j <i | K; € A} = {j < i | K;e T }, the
whole indices of transitive type in AP. We also demand |- p, “f?(j) is (Q;, N[G;])-generic” with the Boolean
value one. These two for simplification. The witness w(p,5) defined if and only if K ; €TP.

For (6): This equivalence is to be used to establish ¢ < p.
For (7): P € Hitc(py+ € Kiv1 < K and |p,“Qs € (Hpc(g, |+)Vi6'1 € Ki+1[Gi] < K[Gi]”. The
minimal spaces to talk about generic conditions are available as points in K;.; and K;[Gi], respectively.
a

Lemma 1.2. Let I = ((K;, P, Qi, P, * Q) | i < &) be as above. Then for cach i < &
(1) If j < 4, then P; is a suborder of P;.
(2) If cf(é) > wi, then P, = J{P; | j < i}.
(3) (Local Projection) Let p € P; and K; € AP. Then

defined by z — (w(z, 5), f* (7)) is a projection. Namely,

* (Order) Itz <y <pin B, then (w(z,7), f*(j)) < (w(y, ), f*(5)) < (w(p,4), f2(4)) in P; xQ;.

o (“Reduction”) If y < p in P; and (h,n) < (w(y,4), F¥(5)) in Pj % Q;, then there exists z < y in P,
such that ((w(,7), f*(5)) < (h, ).

Proof. For (1): Directly by the recursive definition. Let j < i < k and p € p;.

Case (I): p = (§, AP). Since A C SN K; C SN K;, we are done.

Case (II): p € P; is constructed from some r € P, I < j, 7 and A. Since | < j < i and so | < i, we
conclude p € P,.
Hence P; C P;. Let p,q € P;. It is straightforward to observe that ¢ < p in P;iffq<pin F;.

For (2): Let p € P; and cf(i) > w;. Assume we are in case (IT). Then p is constructed from some ¢ € P,
J <4, 7 and A. Since A is finite and SN K; = SNU{K; | j < i}, we conclude p € P,, for some m < i.

For (3): (Well-def) Let z < pin P;. Then K; € AP C A®. Hence w(z,j) € P;, (w(z, ), £2(4)) € P;+Q;
and [-p, “f7(5) € Q;”. We also have (w(z,7), f*(5)) < (w(p,5), f7(4)) in Pj * Q;.

(Order) Let 2 < y in P;{p. Then by definition, w(z, j) < w(y,j) in P; and w(z,j) I, “f*(5) < FY()
in Q;”. This means (w(z, ), /*(5)) < (w(y, ), () in P; * Q;.

(“Reduction”) Let (A, m) < (w(y,j), f(j)) in P; * Q] Then let 7* be a Pj-name such that [ p, “if

h € Gj, then m* = 7, else 7* = f¥(j)” and so |l-p, “1* € Q;”. Then for all M € (K;, K;) NS N AY, we have
IFp, “n* is (Q;, M[G;])-generic”. Let x = (f%, A%), where

o A% = Ahy Av.
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o f*=fFu{( )} U 1G9
Then we may confirm ¢ € P, and z < y in P by possible repeated uses of (II). We also have

(w(z,9), £2(5)) = (h,7*) < (h, 7).
O

Definition 1.8. Let I be as above. Let us write K, = K. Let P = |J{P: | i < &} and for p,q € P,
let ¢ < pin Py, if ¢ < p in some (all) P; with p,q € F;.

We may view P, constructed from I = I as in the recursive construction of I with i = . But Q',i is
not yet. We study the preorder P, in the next section.
§ 2. Amalgamations
In this section, whenever we write M < H,, we mean M is countable and x is a regular uncountable
cardinal. Given p € P;, we may add new N € S to SP.

Lemma 2.1. Let i < x and let I[4, K;, P, € M < H, so that M NK; € SN K; satisfies (Basic Closure).
Let p € M N P;. Then there exists ¢ € P; such that ¢ <p in P and M N K; € A9,

Proof. We define ¢ = (f9, A7) and A? = T?U 59, where
(1) T¢ = 7.
(2) S1=8PU{MNK, | K € T°PU{K;}}.

Let (I — 7, | K; € TP) satisfy
(3) |Fp “n < fP() in Q and 7 is (Q1, M[G}))-generic”

Let
4) f1={(,n)| K, € T?}.
Then it is routine to check that ¢ = (f?, A?) € P, ¢ < pin P, and M N K; € A%.

Given g € P;, we consider an appropriate copy of g in M N P; and possibly an extension r of it in M N F;,
where P, € M < H, and M N K; € §9. Then we may cook a common extension of ¢ and r in F;, which we
call an amalgamation. There are four cases depending on how M N K; is listed in A9.

Lemma (Amalgamation 00). Let ¢ < «x-and let I3, K;, P, € M < H, and let q € P; with MNK; =
N € A9. Let

(00) AINT =4.
(2) So=NNA%and S; = [N, K;) N A%
3y re MNP, and Sp C A".
Then r and ¢ are compatible in P;.
Proof. We define e = (f°, A®) with A® =T°U S5°. Let
o T =T".
¢ 5¢=85"U{NNK, | NeS5,K €eT"}US;.
Fix (I +— 7, | K; € T") such that
lp,“n < f7(1) in Q, and for all N € Sy, 7 is (@, N|Gi])-generic”.
fe={ln) | KieT}.
Then it is routine to check that e = (f¢, A®) € P, and that e <r,q in P;.



Lemma (Amalgamation 01). Let i < x and let I[i, K;, P, € M < H, and let ¢ € P, with M NK; =
N € A9, Let

(01) Kj» € A%, K;» NA'NT =0 and N € Kj» N A%,
(2) So = NN A? and S; = [N, Kjx-) N A9.
(38) re MNP, and S, C A",
Then r and ¢ are compatible in P;.

Proof. We may use (Amalgamation 00). Let us consider w(q,j*) and r. Apply (Amalgamation 00) to
get e € By with e < w(g, j*),r in P;. Since e < w(q,j*) in P}- holds, we may take ¢/ € P, with e’ < q in P
and w(e’, j*) = e. Then €’ < w(e’,5*) in P; and so ¢’ < ¢, 7 in P, holds.

Lemma (Amalgamation 10). Let ¢ < x and let I[i,K;,P, € M < H, and let ¢ € P, with M N K; =
N € A9, Let

(10) K; € A9, (K;, K)NA*NT = and N € (K;, K,).
(2) So=(K;,N)n A% and S; = [N, K;) N A9,
(3) re MNP and {K;}USy C A".
(4) (Head) (w(q,7), f%(4)) and (w(r,5), f"(j)) are compatible in P; x Q.
Then r and ¢ are compatible in P;.
Proof. We define e = (f¢, A®) with A® = T°U S¢. Let
o (hym) < (w(g,5), 9(5), (w(r,5), f7(5) in Py % Q;.
Let
o T¢=ThuU(T"\ K;).
° S¢=8"USTU{NNK, |NeS,K eT \({K;}UK;)} US,.
Let )
o |~p,“m* € Q; and 7 < fI(5)7.
o h-p“m* =7,
e And so for all N € §3, I-p, “m* is (Q;, N[G;])-generic”.
Fix =7 | K; € T"\ ({K;} U K;)) such that
o |Fp“n < f7(l) in Q; and for all N € Sy, 7 is (Q1, N[G)))-generic”.
o o= U{Gmu{n) | Kie T\ ({K;} UK,)}.
Then it is routine to check that e = (f¢, A®) € P; and that e < r,q in P;.

Lemma (Amalgamation 11). Let ¢ < « and let I[i, K;, P, € M < H, and let ¢ € P, with M N K; =
N € A9, Let
(11) Kj,Kjrc € Aq, (Kj,Kjw)ﬂAqﬂTZ(a and N € (Kj,Kjx)ﬂAq.
(2) So = (Kj,N)ﬂAq and S1‘= [N,Kj*)ﬂAq.
"(3) re MNP, and {K;}USy C A.
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(4) (Head) (w(q,4), f9(j)) and (w(r,j), f"(j)) are compatible in P; * Q;.
Then r and ¢q are compatible in P;.

Proof. We may use (Amalgamation 10). Let us consider w(g,j*) and r. Apply (Amalgamation 10) to

get e € P, with e < w(q,j*),r in P;. Since e < w(g,j*) in P;« holds, we may take e’ € P; withe’ < qin B
and w(e/,j*) = e. Then ¢’ < w(e,j*) in P; and so ¢’ < g,r in P; holds.

o

§ 3. Preservation of Properness

Let p € P,. Then the proper initial segments w(p, 1) defined in P; are (P;, M)-generic for right M € AP.

Lemma 3.1. Let [ <k, p € P, {K;,M} C AP and K; € M. Then w(p,1) is (P;, M)-generic and so
(w(p,3), fP(3)) is (P; * Q;, M)-generic.

Proof. By induction on I. Let D C P; be dense with D € M. We want to show that DN M is
predense below w(p,7). Let ¢ < w(p,i) in P;. We may assume that ¢ € D. We have four cases depending
on how M N K is listed in A%. Let us assume that there are K, K+ € A9 as in (Amalgamation 11). Other
cases are similar. Let G; * H; be a P; % Q,-generic filter over V with (w(q,4), f9(5)) € G; x H;. We have
M[G; * Hj] < Hi[G; * H;] = (H,)V65*Hil in V[G; » H}). Since i < I, g € P;, {K;, MNK;} C Aand K; €
M N K;, we may apply induction hypothesis to conclude w(g, j) is (P;, M)-generic. Hence (w(q, ), f9(j)) is
(Pj#Q;, M)-generic. Hence in V|G, * H;], M[G; * H;JNV = M holds. Therefore there exists r € DNM such
that {KJ}USO C A" and (w(r,]),f'(])) € Gj*Hj due to ¢. Since (w(Qij)w fq(J))v (w(r,y),f'(y)) € Gj*Hj’
they are compatible in P; x QJ Hence by (Amalgamation 11), we know that ¢ and r are compatible in P;.
Hence we are done.

0

We show (P; | i < &) is a sequence of proper preorders. Recall we set I = ((K;, P, Q',-,_Pi*Qi) | i< k). For
m < k, we write I[m to denote the initial segment of I by m. Namely, I[m = ((K;, P, Q;, P, *Q;) | i <m).

Lemma 3.2. Let i < « and I[%, K;, P, € M < H,. Then for all p € P, N M, there exists ¢ € P; such
that ¢ < pin P, and M N K; € A%. This q is (P;, M)-generic and P; is proper.

Proof. Given p, we construct ¢ by Lemma 2.1. We know that the proper initial segments w(q, ) and
(w(g,4), £9(j)) are (P;, N)-generic and (P; x Q;, N)-generic, respectively, for the right N € S by Lemma
3.1. We have to show q itself is (P;, M)-generic. To this end we repeat the same argument. Let D C P; be
dense and D € M. We want to show D N M is predense below g in P;. Let d < ¢ in P;. We assume that

d € D. Since M N K; € §%, we have four cases depending on how M N K; is listed in Ad. We assume that
there are K; and K. as in (Amalgamation 11). Other cases are similar. Since P; *x Q; € Kj;1 C K; and

(w(d, 5), £4(3)) is (P; * Qj, M N K;)-generic, it is also (P; * Q;, M)-generic. Let G; x H; be P; * Q;-generic
with (w(d, j), f%(j)) € G; * H;. We have

M[GJ *Hj]ﬁV=M.

We consider a suitable copy r of d in M N D. By (Amagamation 11), we know that r and d are compatible
in P, i
o

The cardinals strictly between w; and « are collapsed.
Lemma 3.3. (1) Let ¢ < x and let p € P,y with K; € T?. Then p |-p,,, “| Kiy1| = w1”.

(2) For all i < &, we have |-p,“| Ki| = w1”.



Proof. For any ¢ < pin P;;; and any a € K;1, there exists 7 € P;1; such that r < q in P4, and that
there exists N € S” with a € N. Hence K;11 =J{N | N € (Ki, Ki41)NS",r € G;41} holds, where G, is
any P;11-generic filter with p € Gy over the ground model V. But (N — N Nw; | N e (K, Kir1)NS, 1 €
Gi+1) is one-to-one. Hence | K;+1| = w; holds.

P, does not have the k-chain condition. To sce this, let (N, | 7 < ) be a sequence of different elements
in S such that N, Nw; are constant. Then this gives rise to an antichain of size x in P,.

. V(G
Lemma 3.4. P, preserves k to be a cardinal. Hence |-p_ “k = Wy (Gl

Proof. Let |Fp.“f : w; — k” and p € P.. Since for all J < &, | Pj| < K, we may choose i <
with cf(i) > wy such that p € P, = (J{P; | j < i} and that for all £ < wy, De={ye P |3v<k
ylFp “f(€) = v} are dense in P;. Let ¢ < p in P, with K; € T9. Since there are projections

Fifw(g,i) «— P+ Qil (w(g,9), f9(3)) — Pe[q

we have g|-p YV € < w; DN G; # 0”, where G; is the P;-generic filter constructed by upward-closing
{w(z,1) | z € Gy, K; € A"} in P;. Hence q|F-p, “f € V[G;]” and so ¢ {Fp. “f is bounded below &”.

§ 4. Reals and Souslin trees

We first observe that P, may add x-many Cohen reals based on [UY]. Let ¢ < &, we define a suborder
of PH—I in V[Gz * Hll,

Pit1/Gix Hi={y € Piy1 | K; € TY, (w(y,q), f¥()) € G; * H;},

where G; x H; is any P; Qi-generic filter over V.

Lemma 4.1. Let i < x. Let I]—(Z + 1),Ki+1,13i+1 e M < HX' Let p € P41 with {KI,M mKi-}—I} -
AP. Then pl-p,,“VD € V[G; * H;), D C M nN (Pig1/G; * H;) dense, D N Gy # #”. And so if
(w(p, i), f7(3)) - pvg, “M N (Pig1/Gs * H;) is atomless”, then p |-py, “3 a Cohen real over V[G; * H;)”.

Proof. Let p’ < p in P;1; and let D be a P, * Q;-name with p’ Pews “Dainrrs © M 0 (Pip1 /Gy ¢ Hy) is
dense in M N (P;41/Gi* H;)”. Weshow E={y € Py; | Iry<rin Piyrand ylbp,,“r € Dg,up,”} is
dense below p' in P;;;. Hence p' |- p,,, “Dg,rr, N Giy1 # 0.

Let ¢ < p' in Py;. Let G; x H; be P; x Q;-generic over V with (w(q,3), f%(3)) € Gi » H;. Since
(w(q, 1), f2(@)) is (P; * Qi, M)-generic, we have

MG« Hi]nV = M.

In V|[G; % H;], there exists ¢’ € P, N M such that {K}U(K;, MNK;41)NS? C AY and (w(q’,i),fq/(i)) €
G; * H;. This holds due to q. Since ¢/ € M N (Pit1/Gi * H;) and D = Dg, .y, is dense, we have r eDC
M N (Piy1/Gi x H;) with r < ¢/ in Piy1/G; * H; (in Piy1). Take (z,7) < (w(q,i),f"(i)) in P, x (); and
(z,7) € GixH; and (z,7) - pye0, 7 € D”. We may apply (Amalgamation 10) to conclude r and a condition
formed from g whose head is strengthened by (z,7) are compatible in P;;;. Hence we may take y < r,q in

Pii1 such that y |Fp,,, “r € Dg,.n,”.

i

To have that P,;1/G; » H; is atomless, we assume that » is a measurable cardinal.
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Lemma 4.2. Let x be measurable. Then we may assume that |- p .. “Pit1 /G; x H; is atomless”.

Proof. Given K;, we construct K, closed under an appropriate function so that the pair of M; and
M; as in Lemma D are found in K;;,. These M; and M> provide incompatible conditions p; and p2 in P;y
with the common head (w(p1, 1), f7*(i)) = (w(pz,i), fP*(4)) in Gi x H;.

Here is some details: Let (q,7) € P; * Q; and A C (K;, K)N S be such that

e |Fp.“r € Q;” and A is a finite €-chain.
o (Explicit Basic Closure) If N € A, m <i and Kmm € N, then I[(m +1) € N.
e For all N € A, K; € N and ||-p, “T is (Qi, N[G;))-generic”.
Then by Lemma D, there exist (h,7) € P; * Q,-, M, and Mj; such that
e h<qinF;.
o I[(i+1),(q,7), A€ MyN My and My, Mz € S.
And so
e (Explicit Basic Closure) If m < i and K € My, then I{(m +1) € M; (1 =1,2).
e MiNK;=MNK; € Ah,
o |Fp“m < 7in Q; and 7 is (Qi, My[G;))-generic” (I =1,2).
o MinNk# MNk.

Since & is measurable, there is a regular uncountable cardinal § < & such that

o I[(i+1) € Hy.

e HyeT.

e For any (¢,7) € P; * Q; and any A C (K;, Hg) N S as above, there exist (h,m), M; and M3 as above
with M, My € Hy.

Let K;y1 = Hy. Then for any p= (f9U {(i,7)}, A7U {K;} U A) € Piyy, there exist
= (fPu{G,m}, AP U{K}uAU{M}),

p2 = (fPU{(,m}, A" U{K:} UAU{Ma})

in P,;, such that p;,pz < p in P;41 and that p; and p, are incompatible in P;4;. Hence IFp,e0; “Pi+1/Gi*H;
is atomless”.
0

We show that Souslin trees may be preserved by Px.

Theorem 4.3. Let T be a Souslin tree. If for all i < k, |- p, “Q; preserves T, if T were Souslin”. Then
IFp, “T remains Souslin”.

Proof. Let T be a Souslin tree in V. By induction on i < &, we show that |- p, “T" remains Souslin”.
Let p|p,“X C T be a maximal antichain”. We want ¢ < p such that g |- p,“X is countable”.

Let p,T,X,I[i,K:;,P, € M < H,. Let ¢ < p be (P;, M)-generic. Let (sn, | n < w) enumerate the
elements of Tahrnw,, the (M N w)-th level of T. We show that for all n < w, qlFp“Ft <snt€ X” and so
q|Fp, “X is countable”. To this end let r < ¢ in P;. We find t < s, and y <7 withy[-p,“t € X”. We have
four cases depending on how M N K; is listed in A”. Assume we are as in (Amalgamation 11). Let G; x H;
be P; * Qj-generic over V with (w(r, ), f7(5)) € G; x H;. In V[G; * H;], T remains Souslin by induction.
Let us take a copy

e M[G] * H]] N (Pz/GJ * Hj) =MnN (Pi/Gj * HJ)

of r. We may assume r’ < p in P; and {K;}USp C A". Lt E={se€T|3t<sinT Iz <r' in P;/G;*H;
z|Fp,“ € X”}. Then this E is a dense subset of T and E € M[G; * H;]. Since sy, is (T, M[G; * H;])-generic,



we have s,t,z € M suchthat t <s < s, in T,z <7 in P,/G;+«H; and z |-p,“t € X7, By (Amalgamation
11), z and r are compatible in P;. Hence there exists y € P; such that y < r and y Fp“te X7,

There are two operations to form proper preorders. We want a new theory of iterated forcing with local
projections that puts forward these two operations together with the direct limit.

Note 4.4. (1) Let P be a proper preorder and let x be a sufficiently large regular uncountable cardinal.
We define an associated preorder @ such that (p, A) € Q, if A is a finite €-chain of countable elementary
substructures NV of H, with P € N and p € P is (P, N)-generic for all N € A. For (pa, A3), (p1, A1) € Q,
let (p2, A2) < (p1,41) in Q, if A2 D Ay and p, < p; in P. Then we may show that Q is proper and there
exists a natural projection P «— Q.

(2) Let (P, | n < w) be an iterated forcing such that all P, are proper. Then we may associate a proper
preorder @ that is in a similar situation as (1). However, projections from Q to P, are formed locally.
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