# A MODEL THEORETIC REFLECTION PRINCIPLE REVISITED

### MASAHIRO SHIOYA 塩谷真弘 筑波大学大学院数理物資系

ABSTRACT. We sketch a simplified construction of a model in which Chang's conjecture for triples  $(\omega_3, \omega_2, \omega_1) \twoheadrightarrow (\omega_2, \omega_1, \omega)$  holds.

#### 1. Introduction

Suppose that  $\mathcal{N}=(N;R,\cdots)$  is a structure for a countable first-order language with a distinguished unary relation symbol interpreted by  $R\subset N$ . For a pair of cardinals  $\nu>\nu'$  we say that  $\mathcal{N}$  is of type  $(\nu,\nu')$  if  $|N|=\nu$  and  $|R|=\nu'$ . For such pairs  $(\nu,\nu')$  and  $(\mu,\mu')$  with  $\nu>\mu$  and  $\nu'>\mu'$  define

$$(\nu, \nu') \twoheadrightarrow (\mu, \mu')$$
 holds iff for every  $\mathcal{N}$  of type  $(\nu, \nu')$   
there is  $\mathcal{M} \prec \mathcal{N}$  of type  $(\mu, \mu')$ .

Clearly the statement strengthens the downward Löwenheim-Skolem theorem. Following [11], the statement  $(\omega_2, \omega_1) \twoheadrightarrow (\omega_1, \omega)$  is now called Chang's conjecture.

In [10] Silver introduced a variation of the Levy collapse (now called the Silver collapse) and established the consistency of Chang's conjecture:

**Theorem (Silver).** If an  $\omega_1$ -Erdős cardinal exists, then there is a forcing extension in which  $(\omega_2, \omega_1) \twoheadrightarrow (\omega_1, \omega)$  holds.

Silver's argument (see [5]) required Martin's Axiom to hold in some intermediate model. This was later removed by Shelah [7], who proved further that the Levy collapse forces Chang's conjecture to hold.

What about  $(\omega_3, \omega_2, \omega_1) \rightarrow (\omega_2, \omega_1, \omega)$ ? The meaning of the statement should be evident: This time we consider structures with two distinguished unary relations. It is easy to see that  $(\omega_3, \omega_2, \omega_1) \rightarrow (\omega_2, \omega_1, \omega)$  implies  $(\omega_3, \omega_2) \rightarrow (\omega_2, \omega_1)$ . Foreman and Magidor [3] showed that under PFA the analogue of Shelah's result fails for  $(\omega_3, \omega_2) \rightarrow (\omega_2, \omega_1)$ .

The consistency of  $(\omega_3, \omega_2) \rightarrow (\omega_2, \omega_1)$  was established in effect by Kunen [6]:

**Theorem (Kunen).** Let  $\mu < \kappa$  be regular cardinals with  $\kappa$  huge. Then there is a forcing extension in which  $\kappa = \mu^+$  and  $(\mu^{++}, \mu^+) \rightarrow (\mu^+, \mu)$  holds.

We refer the reader to [2] for a comprehensive survey of Kunen's method. Extending the method, Foreman [1] established the consistency of Chang's conjecture for triples:

**Theorem (Foreman).** If a 2-huge cardinal exists, then there is a forcing extension in which  $(\omega_3, \omega_2, \omega_1) \twoheadrightarrow (\omega_2, \omega_1, \omega)$  holds.

Partially supported by JSPS Grant-in-Aid for Scientific Research No.23540119.

<sup>1991</sup> Mathematics Subject Classification. 03E05, 03E35, 03E55.

It is still unknown whether  $(\omega_4, \omega_3, \omega_2, \omega_1) \rightarrow (\omega_3, \omega_2, \omega_1, \omega)$  is consistent.

In this paper we sketch a new proof of Foreman's theorem that is simpler than the original one. A novel element of our proof, which can be found in §3, is that we can identify the term forcing of a slight modification of the Silver collapse. §4 illustrates our approach with a new model of Chang's conjecture (for pairs). In §5 we construct the first two stages of iterated forcing toward a model of Chang's conjecture for triples. §6 is devoted to getting a master condition for this forcing. Finally in §7 we prove that the forcing followed by the modified Silver collapse gives the desired model.

#### 2. Preliminaries

Our notation should be standard. We refer the reader to [4] for background material. Throughout the paper  $\kappa$  denotes a regular cardinal, and R the class of regular cardinals.

Note that  $(\nu, \nu') \rightarrow (\mu, \mu')$  holds iff for every  $f : {}^{<\omega}\nu \rightarrow \nu$  there is  $x \in [\nu]^{\mu}$  closed under f such that  $|x \cap \nu'| = \mu'$ . Similarly  $(\nu, \nu', \nu'') \rightarrow (\mu, \mu', \mu'')$  holds iff for every  $f : {}^{<\omega}\nu \rightarrow \nu$  there is  $x \in [\nu]^{\mu}$  closed under f such that  $|x \cap \nu'| = \mu'$  and  $|x \cap \nu''| = \mu''$ .

Let P and R be posets. We say that a map  $\pi: P \to R$  is a projection if

- (1)  $\pi$  is order-preserving, i.e.  $p' \leq_P p$  implies  $\pi(p') \leq_R \pi(p)$ ,
- (2)  $\pi(1_P) = 1_R$  and
- (3)  $r' \leq_R \pi(p)$  implies that there is  $p^* \leq_P p$  with  $\pi(p^*) \leq_R r'$ .

Suppose  $\pi: P \to R$  is a projection. Then if D is dense open in R,  $\pi^{-1}(D)$  is dense in P. So if  $\bar{G} \subset P$  is generic,  $\pi$  " $\bar{G}$  generates a generic filter over R, which we denote by  $\pi[\bar{G}]$ . Furthermore ran  $\pi$  is dense in R and the map  $r \mapsto \sum \{p \in P : \pi(p) \le r\}$  is a complete embedding of R into the completion of P (without the least element). Finally note that the class of projections is closed under taking the composite and the product.

Suppose further S is an R-name for a poset. The term forcing  $T(R, \dot{S})$  is the set (of representatives under the canonical identification from)

$$\{\dot{s} \in V^R : \Vdash_R \dot{s} \in \dot{S}\}$$

ordered by  $\dot{s}' \leq \dot{s}$  iff  $\Vdash_R \dot{s}' \leq \dot{s}$ . By

$$P \star_{\pi} \dot{S}$$
 or  $P \star \dot{S}$ 

we mean the set  $P \times T(R, \dot{S})$  ordered by:  $(p', \dot{s}') \leq (p, \dot{s})$  iff

$$p' \leq_P p \text{ and } \pi(p') \Vdash_R \dot{s}' \stackrel{.}{\leq} \dot{s}.$$

Note that the canonical map  $\operatorname{pr}: P \star_{\pi} \dot{S} \to P$  is a projection and hence  $P \star_{\pi} \dot{S}$  can be identified with an iteration of the form  $P * \dot{Q}$ . In particular  $P \star_{\pi} \dot{S} = P * \dot{S}$  if P = R and  $\pi = \operatorname{id}$ .

The following lemma is essentially due to Laver:

**Lemma (Laver).** Suppose that  $\pi: P \to R$  is a projection and  $\dot{S}$  is an R-name for a poset. Then  $\mathrm{id}: P \times T(R, \dot{S}) \to P \star_{\pi} \dot{S}$  is a projection.

Note also that under the hypothesis of Laver's lemma  $\pi \times \mathrm{id} : P \star_{\pi} \dot{S} \to R * \dot{S}$  is a projection.

Let I and J be sets of ordinals. First we fix our notation for products. Suppose that  $S_{\xi}$  is a poset for  $\xi \in I \cup J$ . By

$$\prod_{\xi\in I}^{\kappa} S_{\xi} \times \prod_{\xi\in J}^{\mathbf{E}} S_{\xi}$$

we denote the set of sequences q such that

- dom  $q \subset I \cup J$ ,  $|\operatorname{dom} q \cap I| < \kappa$ , dom  $q \cap J$  is Easton and
- $q(\xi) \in S_{\xi}$  for every  $\xi \in \text{dom } q$

ordered by:  $q' \leq q$  iff

 $\operatorname{dom} q' \supset \operatorname{dom} q \text{ and } q'(\xi) \leq_{\xi} q(\xi) \text{ for every } \xi \in \operatorname{dom} q.$ 

Here a set d is Easton if  $d \subset \mathbb{R}$  and  $\sup(d \cap \gamma) < \gamma$  for every  $\gamma \in \mathbb{R}$ . It is understood that  $q(\xi) = 1_{\xi}$  unless  $\xi \in \text{dom } q$ .

Next we introduce a generalization of  $P \star \dot{S}$  to which Laver's lemma can be generalized. Suppose that  $\pi_{\xi}: P \to R_{\xi}$  is a projection and  $\dot{S}_{\xi}$  is an  $R_{\xi}$ -name for a poset for  $\xi \in I \cup J$ . By

$$P \star \left( \prod_{\xi \in I}^{\kappa} \dot{S}_{\xi} \times \prod_{\xi \in J}^{\mathrm{E}} \dot{S}_{\xi} \right)$$

we mean the set of pairs of  $p \in P$  and a sequence q such that

- dom  $q \subset I \cup J$ ,  $|\operatorname{dom} q \cap I| < \kappa$ , dom  $q \cap J$  is Easton and
- $q(\xi)$  is an  $R_{\xi}$ -name and  $\Vdash_{\xi} q(\xi) \in \dot{S}_{\xi}$  for every  $\xi \in \text{dom } q$

ordered by:  $(p', q') \leq (p, q)$  iff

 $p' \leq_P p$ , dom  $q' \supset \text{dom } q$  and  $\pi_{\xi}(p') \Vdash_{\xi} q'(\xi) \leq_{\xi} q(\xi)$  for every  $\xi \in \text{dom } q$ .

Here  $\Vdash_{\xi}$  denotes the forcing relation associated with  $R_{\xi}$ . Note that as sets

$$P \star \left( \prod_{\xi \in I}^{\kappa} \dot{S}_{\xi} \times \prod_{\xi \in J}^{E} \dot{S}_{\xi} \right) = P \times \left( \prod_{\xi \in I}^{\kappa} T(R_{\xi}, \dot{S}_{\xi}) \times \prod_{\xi \in J}^{E} T(R_{\xi}, \dot{S}_{\xi}) \right).$$

Here is the generalization of Laver's lemma:

**Lemma 1.** Let I and J be sets of ordinals. Suppose that  $\pi_{\xi}: P \to R_{\xi}$  is a projection and  $\dot{S}_{\xi}$  is an  $R_{\xi}$ -name for a poset for  $\xi \in I \cup J$ . Then

$$\mathrm{id}: P \times \left(\prod_{\xi \in I}^{\kappa} T(R_{\xi}, \dot{S}_{\xi}) \times \prod_{\xi \in J}^{\mathrm{E}} T(R_{\xi}, \dot{S}_{\xi})\right) \to P \star \left(\prod_{\xi \in I}^{\kappa} \dot{S}_{\xi} \times \prod_{\xi \in J}^{\mathrm{E}} \dot{S}_{\xi}\right)$$

is a projection.

Under the hypothesis of Lemma 1 the canonical map from  $P \star \left( \prod_{\xi \in I}^{\kappa} \dot{S}_{\xi} \times \prod_{\xi \in J}^{E} \dot{S}_{\xi} \right)$ 

to P is a projection. Suppose further  $I' \subset I$ ,  $J' \subset J$  and  $\Vdash_{\xi} \dot{\varphi}_{\xi} : \dot{S}_{\xi} \to \dot{S}'_{\xi}$  is a projection for  $\xi \in I' \cup J'$ . Then we can define a projection

$$\dot{\varphi}_{\xi}: T(R_{\xi}, \dot{S}_{\xi}) \to T(R_{\xi}, \dot{S}'_{\xi})$$

(by abuse of notation) naturally, and the map

$$\operatorname{id} \times \prod_{\xi \in I'} \dot{\varphi}_{\xi} \times \prod_{\xi \in J'} \dot{\varphi}_{\xi} : P \star \left( \prod_{\xi \in I}^{\kappa} \dot{S}_{\xi} \times \prod_{\xi \in J}^{\operatorname{E}} \dot{S}_{\xi} \right) \to P \star \left( \prod_{\xi \in I'}^{\kappa} \dot{S}_{\xi}' \times \prod_{\xi \in J'}^{\operatorname{E}} \dot{S}_{\xi}' \right)$$

is a projection.

Suppose that  $j:V\to M$  is an elementary embedding. Let  $\rho:j(P)\to P$  be a projection. We say that  $p^*\in j(P)$  is a master condition for j and  $\rho$  if  $\bar p\le j(\rho(\bar p))$  for every  $\bar p\le p^*$ . In what follows we suppress the mention of j, which should be clear from the context. If  $\bar G\subset j(P)$  is generic and contains a master condition for  $\rho$ , then  $(j\circ\rho)$ " $\bar G\subset \bar G$  and hence j" $\rho[\bar G]\subset \bar G$ , which allows us to extend j to  $j:V[\rho[\bar G]]\to M[\bar G]$  in  $V[\bar G]$ .

Suppose further  $\pi: P \to R$  is a projection and  $\dot{S}$  is an R-name for a poset. Let  $\varphi: j(P) \to P \star \dot{S}$  be a projection. Then we can define projections

$$\varphi^+: j(P\star\dot{S})\to P\star\dot{S} \text{ and } \varphi^-: j(P)\to P$$

by composing the projections from

$$j(P \star \dot{S}) \xrightarrow{j(\text{pr})} j(P) \xrightarrow{\varphi} P \star \dot{S} \xrightarrow{\text{pr}} P$$

Note that  $(1_{j(P)}, \dot{s}^*)$  is a master condition for  $\varphi^+: j(P\star\dot{S})\to P\star\dot{S}$  iff  $(\bar{p}, \dot{s}^*)\leq j(\varphi(\bar{p}))$  for every  $\bar{p}\in j(P)$ .

Foreman [1] proved a lemma that enables us to transfer a master condition for a projection

$$j(R*\dot{S}) \rightarrow R*\dot{S}$$

to a master condition for a projection

$$j(P\star\dot{S})\to P\star\dot{S}.$$

Let us restate Foreman's lemma in terms of projections:

Lemma (Foreman). Suppose

- $j: V \to M$ ,  $\pi: P \to R$  is a projection and S is an R-name for a poset,
- the following diagram of projections commutes:

$$j(P) \xrightarrow{j(\pi)} j(R)$$

$$\varphi_{\star} \downarrow \qquad \qquad \downarrow \varphi_{\star}$$

$$P \star \dot{S} \xrightarrow{\pi \times \mathrm{id}} R \star \dot{S},$$

- $1_{j(P)}$  is a master condition for  $\varphi_{\star}^{-}: j(P) \to P$ ,
- $(1_{j(R)}, \dot{s}^*)$  is a master condition for  $\varphi_*^+: j(R*\dot{S}) \to R*\dot{S}$ .

Then  $(1_{j(P)}, \dot{s}^*)$  is a master condition for  $\varphi_*^+: j(P \star \dot{S}) \to P \star \dot{S}$ .

#### 3. The main Lemmas

In this section we introduce a slight modification of the Silver collapse. Results of this section should be valid for other canonical collapses if they are suitably modified (see [9]).

Throughout the section let  $\kappa < \lambda$  be regular cardinals with  $\lambda$  inaccessible. Define  $S(\kappa, \lambda)$  to be the set of functions  $s : \delta \times d \to \lambda$  such that

•  $\delta < \kappa$ ,  $d \subset [\kappa, \lambda)$  is a set of  $\kappa$ -closed cardinals of size  $\leq \kappa$  and

•  $s(\alpha, \gamma) < \gamma$  for every  $(\alpha, \gamma) \in \delta \times d$ .

Here a cardinal  $\gamma$  is  $\kappa$ -closed if  $\gamma^{<\kappa} = \gamma$ .  $S(\kappa, \lambda)$  is ordered by reverse inclusion:  $s' \leq s$  iff  $s' \supset s$ .

 $S(\kappa, \lambda)$  shares nice properties of the original Silver collapse: It is  $\kappa$ -directed closed and a subset of  $V_{\lambda}$ , has the  $\lambda$ -cc and forces  $\lambda = \kappa^{+}$ . Furthermore we can identify the term forcing of  $S(\kappa, \lambda)$  defined in the extensions by a small poset.

Suppose that R has the  $\kappa$ -cc. Then it is easy to check that

$$D\left(R, \dot{S}(\kappa, \lambda)\right) = \left\{\dot{s} \in T\left(R, \dot{S}(\kappa, \lambda)\right) : \exists \delta < \kappa \exists d \subset [\kappa, \lambda) \Vdash \operatorname{dom} \dot{s} = \delta \times d\right\}$$

is dense in  $T(R, \dot{S}(\kappa, \lambda))$ .

**Lemma 2.** Suppose that R has the  $\kappa$ -cc and size  $\leq \kappa$ . Then  $S(\kappa, \lambda)$  is isomorphic to  $D(R, \dot{S}(\kappa, \lambda))$ .

In what follows we say that

the isomorphism 
$$i:S(\kappa,\lambda)\to D\left(R,\dot{S}(\kappa,\lambda)\right)$$
 or the dense embedding  $i:S(\kappa,\lambda)\to T\left(R,\dot{S}(\kappa,\lambda)\right)$ 

of Lemma 2 are based on the list  $\sigma$  of R-names. Note that the construction of i from  $\sigma$  is canonical in the following sense: Suppose  $\lambda' > \lambda$  is inaccessible and

$$i':S(\kappa,\lambda') o T\left(R,\dot{S}(\kappa,\lambda')
ight)$$

is a dense embedding based on a list that end-extends  $\sigma$ . Then for  $s \in S(\kappa, \lambda')$  we have

$$\Vdash_R i'(s)|(\kappa \times \lambda) = i(s|(\kappa \times \lambda)).$$

Suppose that  $\pi: P \to R$  is a projection. Then we can form the poset  $P \star \dot{S}(\kappa, \lambda)^R$ , where  $\dot{S}(\kappa, \lambda)^R$  is an R-name for the modified Silver collapse. By Laver's lemma and Lemma 2 we have

**Proposition 3.** Suppose that  $\pi: P \to R$  is a projection and R has the  $\kappa$ -cc and size  $\leq \kappa$ . Then there is a dense embedding  $i: S(\kappa, \lambda) \to T(R, \dot{S}(\kappa, \lambda))$ , which induces a projection  $\mathrm{id} \times i: P \times S(\kappa, \lambda) \to P \star \dot{S}(\kappa, \lambda)^R$ .

The following corollary of Proposition 3, which was proved in [8], suffices for the application in §4: Suppose that P has the  $\kappa$ -cc and size  $\leq \kappa$ . Then there is a projection of the form  $\mathrm{id} \times i : P \times S(\kappa, \lambda) \to P * \dot{S}(\kappa, \lambda)$ .

By Lemmas 1 and 2 we have

**Proposition 4.** Let I and J be sets of ordinals. Suppose that  $\kappa_{\xi} \in [\kappa, \lambda) \cap R$ ,  $\pi_{\xi} : P \to R_{\xi}$  is a projection and  $R_{\xi}$  has the  $\kappa$ -cc and size  $\leq \kappa$  for  $\xi \in I \cup J$ . Then there is a dense embedding  $i_{\xi} : S(\kappa_{\xi}, \lambda) \to T\left(R_{\xi}, \dot{S}(\kappa_{\xi}, \lambda)\right)$  for  $\xi \in I \cup J$ , which

induces a projection

$$\operatorname{id} \times \prod_{\xi \in I} i_{\xi} \times \prod_{\xi \in J} i_{\xi} : P \times \left( \prod_{\xi \in I}^{\kappa} S(\kappa_{\xi}, \lambda) \times \prod_{\xi \in J}^{\operatorname{E}} S(\kappa_{\xi}, \lambda) \right)$$

$$\to P \star \left( \prod_{\xi \in I}^{\kappa} \dot{S}(\kappa_{\xi}, \lambda)^{R_{\xi}} \times \prod_{\xi \in J}^{\operatorname{E}} \dot{S}(\kappa_{\xi}, \lambda)^{R_{\xi}} \right).$$

In what follows we write  $\dot{S}(\kappa_{\xi}, \lambda)$  for  $\dot{S}(\kappa_{\xi}, \lambda)^{P}$  in case  $R_{\xi} = P$  and  $\pi_{\xi} = \mathrm{id}$ . In §5 we need a commutative diagram of projections of the following form:

$$(P \star \dot{S}) \times S(\kappa, \lambda) \xrightarrow{\operatorname{id} \times i} (P \star \dot{S}) \star \dot{S}(\kappa, \lambda)^{P}$$

$$\downarrow \operatorname{id} \times k$$

$$(P \star \dot{S}) \times S(\kappa, \lambda) \xrightarrow{\operatorname{id} \times i^{*}} (P \star \dot{S}) \star \dot{S}(\kappa, \lambda),$$

where

$$\dot{S} = \prod_{\xi \in I}^{\kappa} \dot{S}(\kappa_{\xi}, \lambda)^{R_{\xi}} imes \prod_{\xi \in J}^{\mathrm{E}} \dot{S}(\kappa_{\xi}, \lambda)^{R_{\xi}}.$$

Since  $P \star \dot{S}$  can be identified with an iteration of the form  $P * \dot{Q}$ , the following lemma should suffice:

**Lemma 5.** Suppose that  $P * \dot{Q}$  has the  $\kappa$ -cc and size  $\leq \kappa$ . Let

$$i:S(\kappa,\lambda)\to D\left(P,\dot{S}(\kappa,\lambda)\right)$$

be an isomorphism based on a list  $\sigma$  of P-names. Then there are an isomorphism

$$i^*: S(\kappa,\lambda) o D\left(P*\dot{Q},\dot{S}(\kappa,\lambda)
ight)$$

based on a list of  $P * \dot{Q}$ -names and an isomorphism

$$k:D\left(P,\dot{S}(\kappa,\lambda)
ight)
ightarrow D\left(P*\dot{Q},\dot{S}(\kappa,\lambda)
ight)$$

such that the following diagram of projections commutes:

$$\begin{array}{ccc} (P * \dot{Q}) \times S(\kappa, \lambda) & \xrightarrow{\operatorname{id} \times i} & (P * \dot{Q}) \star \dot{S}(\kappa, \lambda)^{P} \\ & \operatorname{id} \downarrow & & \downarrow \operatorname{id} \times k \\ (P * \dot{Q}) \times S(\kappa, \lambda) & \xrightarrow{\operatorname{id} \times i^{*}} & (P * \dot{Q}) * \dot{S}(\kappa, \lambda). \end{array}$$

## 4. A NEW MODEL OF CHANG'S CONJECTURE

This section presents a forcing notion for Chang's conjecture (for pairs) that is simpler than Kunen's:

**Theorem 6.** Let  $\mu < \kappa < \lambda$  be regular cardinals with  $\kappa$  huge and  $\lambda$  its target. Then

$$\left(\prod_{\gamma\in[\mu,\kappa)\cap\mathsf{R}}^{\mu}S(\gamma,\kappa)
ight)st\dot{S}(\kappa,\lambda)$$

forces that  $\kappa = \mu^+$ ,  $\lambda = \mu^{++}$  and  $(\mu^{++}, \mu^+) \twoheadrightarrow (\mu^+, \mu)$  holds.

From Kunen's argument [6] Foreman [1] isolated a sufficient condition for getting a master condition for a projection

$$j\left(P*\dot{S}(\kappa,\lambda)\right) \to P*\dot{S}(\kappa,\lambda).$$

Let us restate Kunen's lemma in terms of projections:

Lemma (Kunen). Suppose

- $j: V \to M$  witnesses that  $\kappa$  is huge with target  $\lambda$  and  $P \subset V_{\kappa}$  has the  $\kappa$ -cc,
- $\varphi: j(P) \to P * \dot{S}(\kappa, \lambda)$  is a projection,
- $1_{j(P)}$  is a master condition for  $\varphi^-: j(P) \to P$ .

Then there is a master condition  $(1_{j(P)}, \dot{s}^*)$  for  $\varphi^+: j\left(P*\dot{S}(\kappa,\lambda)\right) \to P*\dot{S}(\kappa,\lambda)$ .

*Proof of Theorem 6.* Let  $j: V \to M$  witness that  $\kappa$  is huge with target  $\lambda$ . Let

$$P = \prod_{\gamma \in [\mu,\kappa) \cap \mathsf{R}}^{\mu} S(\gamma,\kappa).$$

It is easy to see that  $P \subset V_{\kappa}$  is  $\mu$ -closed. By standard arguments (or see [8]) P has the  $\kappa$ -cc. Having  $S(\mu, \kappa)$  as a complete suborder, P forces  $\kappa = \mu^+$ . Thus  $P * \dot{S}(\kappa, \lambda)$  forces  $\kappa = \mu^+$  and  $\lambda = \mu^{++}$ .

It remains to prove that  $P*\dot{S}(\kappa,\lambda)$  forces  $(\lambda,\kappa) \to (\kappa,\mu)$  to hold. Since  ${}^{\lambda}M \subset M$ , we have

$$j(P) = \prod_{\gamma \in [\mu,\lambda) \cap \mathsf{R}}^{\mu} S(\gamma,\lambda),$$

which can be identified with

$$\prod_{\gamma \in [\mu,\kappa) \cap \mathsf{R}}^{\mu} S(\gamma,\lambda) \times \prod_{\gamma \in [\kappa,\lambda) \cap \mathsf{R}}^{\mu} S(\gamma,\lambda).$$

Let  $\varphi: j(P) \to P * \dot{S}(\kappa, \lambda)$  be the projection identified with the composite of the following:

$$\begin{split} &\prod_{\gamma \in [\mu,\kappa) \cap \mathsf{R}}^{\mu} S(\gamma,\lambda) \times \prod_{\gamma \in [\kappa,\lambda) \cap \mathsf{R}}^{\mu} S(\gamma,\lambda) \\ &\left(\prod_{\gamma \in [\mu,\kappa) \cap \mathsf{R}} \mathrm{rs}_{\kappa}^{\gamma}\right) \times \mathrm{pr}_{\kappa} \downarrow \\ &\left(\prod_{\gamma \in [\mu,\kappa) \cap \mathsf{R}} S(\gamma,\kappa)\right) \times S(\kappa,\lambda) & \xrightarrow{\mathrm{id} \times i} \left(\prod_{\gamma \in [\mu,\kappa) \cap \mathsf{R}}^{\mu} S(\gamma,\kappa)\right) * \dot{S}(\kappa,\lambda). \end{split}$$

Here

$$\operatorname{rs}_{\kappa}^{\gamma}: S(\gamma, \lambda) \to S(\gamma, \kappa)$$
  $s \mapsto s | (\gamma \times \kappa)$ 

$$\operatorname{pr}_{\kappa}: \prod_{\gamma \in [\kappa, \lambda) \cap \mathsf{R}}^{\mu} S(\gamma, \lambda) \to S(\kappa, \lambda) \qquad q \mapsto q(\kappa)$$

and id  $\times$  *i* is as in Proposition 3.

Note that  $1_{j(P)}$  is a master condition for  $\varphi^-: j(P) \to P$ . To see this, let  $\bar{p} \in j(P)$  and  $\varphi(\bar{p}) = (p, \dot{s})$ . Since  $p \in V_{\kappa}$ , we have  $\bar{p} \leq p = j(p)$ , as desired. By Kunen's lemma we get a master condition  $(1_{j(P)}, \dot{s}^*)$  for  $\varphi^+: j\left(P * \dot{S}(\kappa, \lambda)\right) \to P * \dot{S}(\kappa, \lambda)$ .

Let  $\bar{G} \subset j\left(P*\dot{S}(\kappa,\lambda)\right)$  be V-generic with  $(1_{j(P)},\dot{s}^*) \in \bar{G}$ . Then  $G = \varphi^+[\bar{G}]$  is V-generic over  $P*\dot{S}(\kappa,\lambda)$  and we can extend j to  $j:V[G] \to M[\bar{G}]$  in  $V[\bar{G}]$ . We claim that  $(\lambda,\kappa) \twoheadrightarrow (\kappa,\mu)$  holds in  $V[\bar{G}]$ . Fix  $f:{}^{<\omega}\lambda \to \lambda$  in V[G]. Then j " $\lambda$  witnesses that in  $M[\bar{G}]$  there is  $x \in [j(\lambda)]^{j(\kappa)}$  closed under j(f) such that  $|x \cap j(\kappa)| = |\kappa| = \mu = j(\mu)$ . By elementarity there is  $x \in [\lambda]^{\kappa}$  closed under f such that  $|x \cap \kappa| = \mu$  in V[G], as desired.

**Remark 1.** Just like Kunen's forcing, the poset of Theorem 6 forces that  $\kappa$  carries a  $\kappa^+$ -saturated filter. See [8] for a proof.

In [9] we introduced a poset  $E(\mu, \kappa)$  that collapses a Mahlo cardinal  $\kappa$  to  $\mu^+$ , and proved that under the hypothesis of Theorem 6 the iteration  $E(\mu, \kappa) * \dot{E}(\kappa, \lambda)$  forces  $\kappa$  to carry a  $\kappa^+$ -saturated filter. We do not know, however, whether  $(\mu^{++}, \mu^+) \rightarrow (\mu^+, \mu)$  holds in the model.

### 5. The main forcing

Throughout this section we fix a regular cardinal  $\mu$ . Let M denote the class of Mahlo cardinals  $> \mu$  together with  $\mu$ . For  $\gamma \in M$  we define a poset  $P(\gamma)$  as follows: First let  $P(\mu)$  be the trivial poset. If  $\mu < \gamma \in M$ , define

$$P(\gamma) = \prod_{\xi \in [\mu,\gamma) \cap \mathsf{M}}^{\mathrm{E}} \prod_{\zeta \in [\mu,\xi] \cap \mathsf{M}}^{\xi} S(\xi,\gamma).$$

It is easy to see that  $P(\gamma) \subset V_{\gamma}$  is  $\mu$ -closed. The following lemma should also be standard.

**Lemma 7.**  $P(\gamma)$  has the  $\gamma$ -cc for every  $\gamma \in M$ .

For the rest of this section we further fix a huge cardinal  $\kappa > \mu$ . By recursion on  $\gamma$  we define for each pair of  $\alpha \leq \gamma$  from  $[\mu, \kappa] \cap M$ 

a poset 
$$R(\alpha, \gamma) \subset V_{\gamma}$$
 and a projection  $\pi_{\alpha\gamma} : P(\gamma) \to R(\alpha, \gamma)$ .

First we fix a list of  $P(\gamma)$ -names for ordinals for each  $\gamma \in (\mu, \kappa] \cap M$ . Unless otherwise stated, dense embeddings are based on these lists.

If  $\alpha \in \{\mu, \gamma\}$ , let  $R(\alpha, \gamma) = P(\gamma)$  and  $\pi_{\alpha\gamma} = \text{id}$ . Suppose next  $\alpha \in (\mu, \gamma) \cap M$ . First define

$$R(lpha,\gamma) = P(lpha) \star \left(\prod_{\zeta \in [\mu,lpha] \cap \mathsf{M}}^{lpha} \dot{S}(lpha,\gamma)^{R(\zeta,lpha)} imes \prod_{\xi \in (lpha,\gamma) \cap \mathsf{M}}^{\mathrm{E}} \dot{S}(\xi,\gamma)
ight).$$

Next we define  $\pi_{\alpha\gamma}: P(\gamma) \to R(\alpha, \gamma)$ . We may assume  $\pi_{\zeta\gamma}: P(\gamma) \to R(\zeta, \gamma)$  has been defined for  $\zeta \in [\mu, \alpha) \cap M$  as well. In the course of defining  $\pi_{\alpha\gamma}$  we define dense embeddings

$$\begin{split} i^{\zeta}_{\alpha\gamma}:S(\alpha,\gamma) &\to T\left(R(\zeta,\alpha),\dot{S}(\alpha,\gamma)\right) & \text{for } \zeta \in [\mu,\alpha] \cap \mathsf{M} \\ i^{\xi}_{\alpha\gamma}:S(\xi,\gamma) &\to T\left(P(\alpha),\dot{S}(\xi,\gamma)\right) & \text{for } \xi \in (\alpha,\gamma) \cap \mathsf{M} \\ k^{\zeta}_{\alpha\gamma}:D\left(P(\zeta),\dot{S}(\alpha,\gamma)\right) &\to T\left(R(\zeta,\alpha),\dot{S}(\alpha,\gamma)\right) & \text{for } \zeta \in (\mu,\alpha) \cap \mathsf{M} \,. \end{split}$$

Define  $\pi_{\alpha\gamma}$  by composing the following projections:

$$P(\gamma) \xrightarrow{\psi_{\alpha\gamma}} P(\alpha) \times \left( \prod_{\zeta \in [\mu,\alpha] \cap \mathsf{M}}^{\alpha} S(\alpha,\gamma) \times \prod_{\xi \in (\alpha,\gamma) \cap \mathsf{M}}^{\mathbf{E}} S(\xi,\gamma) \right)$$

$$\downarrow^{\varphi_{\alpha\gamma}}$$

$$P(\alpha) \star \left( \prod_{\zeta \in [\mu,\alpha] \cap \mathsf{M}}^{\alpha} \dot{S}(\alpha,\gamma)^{R(\zeta,\alpha)} \times \prod_{\xi \in (\alpha,\gamma) \cap \mathsf{M}}^{\mathbf{E}} \dot{S}(\xi,\gamma) \right).$$

Here  $\psi_{\alpha\gamma}$  is defined as follows: First we identify

$$P(\gamma) = \prod_{\xi \in [\mu,\gamma) \cap \mathsf{M}}^{\mathbf{E}^{\cdot}} \prod_{\zeta \in [\mu,\xi] \cap \mathsf{M}}^{\xi} S(\xi,\gamma)$$

with

$$\left(\prod_{\xi\in[\mu,\alpha)\cap\mathsf{M}}^{\mathsf{E}}\prod_{\zeta\in[\mu,\xi]\cap\mathsf{M}}^{\mathsf{f}}S(\xi,\gamma)\right)\times\left(\prod_{\zeta\in[\mu,\alpha]\cap\mathsf{M}}^{\alpha}S(\alpha,\gamma)\right)\times\left(\prod_{\xi\in(\alpha,\gamma)\cap\mathsf{M}}^{\mathsf{E}}\prod_{\zeta\in[\mu,\xi]\cap\mathsf{M}}^{\xi}S(\xi,\gamma)\right).$$

Let  $\psi_{\alpha\gamma}$  be the projection identified with

$$\left(\prod_{\xi\in[\mu,\alpha)\cap\mathsf{M}}\prod_{\zeta\in[\mu,\xi]\cap\mathsf{M}}\mathrm{rs}_\alpha^\xi\right)\times\mathrm{id}\times\left(\prod_{\xi\in(\alpha,\gamma)\cap\mathsf{M}}\mathrm{pr}_\alpha^\xi\right),$$

where

$$\operatorname{rs}_{\alpha}^{\xi}: S(\xi, \gamma) \to S(\xi, \alpha)$$
  $s \mapsto s | (\xi \times \alpha)$ 

$$\operatorname{pr}_{\alpha}^{\xi}: \prod_{\xi \in [\mu, \xi] \cap M} S(\xi, \gamma) \to S(\xi, \gamma) \qquad q \mapsto q(\alpha).$$

In brief,  $\psi_{\alpha\gamma}$  sends  $p \in P(\gamma)$  to the pair of

$$\langle \langle p(\xi)(\zeta) | (\xi \times \alpha) : \zeta \in \text{dom } p(\xi) \rangle : \xi \in \text{dom } p \cap [\mu, \alpha) \rangle$$
  
and  $p(\alpha) \cap \langle p(\xi)(\alpha) : \xi \in \text{dom } p \cap (\alpha, \gamma) \rangle$ .

Next define

$$\varphi_{lpha\gamma} = \mathrm{id} imes \left( \prod_{\zeta \in [\mu,lpha] \cap \mathsf{M}} i_{lpha\gamma}^{\zeta} imes \prod_{\xi \in (lpha,\gamma) \cap \mathsf{M}} i_{lpha\gamma}^{\xi} 
ight),$$

where

$$i_{lpha\gamma}^{\zeta}:S(lpha,\gamma)
ightarrow T\left(R(\zeta,lpha),\dot{S}(lpha,\gamma)
ight) \qquad \qquad ext{for }\zeta\in [\mu,lpha]\cap \mathsf{M} \ i_{lpha\gamma}^{\xi}:S(\xi,\gamma)
ightarrow T\left(P(lpha),\dot{S}(\xi,\gamma)
ight) \qquad \qquad ext{for }\xi\in (lpha,\gamma)\cap \mathsf{M} \$$

are dense embeddings based on some lists of corresponding names. First by Lemma 2 we get a dense embedding

$$i_{\alpha\gamma}^{\zeta}:S(\alpha,\gamma)\to T\left(P(\alpha),\dot{S}(\alpha,\gamma)\right)$$

for  $\zeta \in \{\mu, \alpha\}$ , and a dense embedding  $i_{\alpha\gamma}^{\xi}$  for  $\xi \in (\alpha, \gamma) \cap M$ , each of which is based on the prefixed list of  $P(\alpha)$ -names. Suppose next  $\zeta \in (\mu, \alpha) \cap M$ . Then a dense embedding

$$i^lpha_{\zeta\gamma}:S(lpha,\gamma) o T\left(P(\zeta),\dot{S}(lpha,\gamma)
ight)$$

has been defined based on the prefixed list of  $P(\zeta)$ -names. By Lemma 5 with  $P=P(\zeta)$  and  $P*\dot{Q}=R(\zeta,\alpha)$  we get a dense embedding  $i_{\alpha\gamma}^{\zeta}$  based on a list of  $R(\zeta,\alpha)$ -names, and a dense embedding  $k_{\alpha\gamma}^{\zeta}$  such that the following diagram of projections commutes:

$$R(\zeta,\alpha) \times S(\alpha,\gamma) \xrightarrow{\operatorname{id} \times i_{\zeta\gamma}^{\alpha}} R(\zeta,\alpha) \star \dot{S}(\alpha,\gamma)^{P(\zeta)}$$

$$\operatorname{id} \downarrow \qquad \qquad \qquad \downarrow \operatorname{id} \times k_{\alpha\gamma}^{\zeta}$$

$$R(\zeta,\alpha) \times S(\alpha,\gamma) \xrightarrow{\operatorname{id} \times i_{\alpha\gamma}^{\zeta}} R(\zeta,\alpha) \star \dot{S}(\alpha,\gamma).$$

This completes the description of the recursion.

Let  $j: V \to M$  witness that  $\kappa$  is huge with target  $\lambda$ . In §7 we will force with the poset  $j(R)(\kappa, \lambda)$ . Since  ${}^{\lambda}M \subset M$ , we have

$$\begin{split} j(R)(\kappa,\lambda) &= \left(j(P)(\kappa) \star \left(\prod_{\zeta \in [\mu,\kappa] \cap \mathsf{M}}^{\kappa} \dot{S}(\kappa,\lambda)^{j(R)(\zeta,\kappa)} \times \prod_{\xi \in (\kappa,\lambda) \cap \mathsf{M}}^{\mathsf{E}} \dot{S}(\xi,\lambda)\right)\right)^{M} \\ &= P(\kappa) \star \left(\prod_{\zeta \in [\mu,\kappa] \cap \mathsf{M}}^{\kappa} \dot{S}(\kappa,\lambda)^{R(\zeta,\kappa)} \times \prod_{\xi \in (\kappa,\lambda) \cap \mathsf{M}}^{\mathsf{E}} \dot{S}(\xi,\lambda)\right). \end{split}$$

Remark 2. It may seem more natural to define

$$R(\alpha,\gamma) = P(\alpha) \star \prod_{\zeta \in [\mu,\alpha] \cap \mathsf{M}}^{\alpha} \dot{S}(\alpha,\gamma)^{R(\zeta,\alpha)}$$

and projections

$$P(\gamma) \longrightarrow P(\alpha) \times \prod_{\zeta \in [\mu,\alpha] \cap M}^{\alpha} S(\alpha,\gamma) \longrightarrow R(\alpha,\gamma)$$

suitably, or define (without changing the definition of  $R(\alpha, \gamma)$ )

$$P(\gamma) = \prod_{\eta \in [\mu,\gamma) \cap \mathsf{M}}^{\mathrm{E}} \left( \prod_{\zeta \in [\mu,\eta] \cap \mathsf{M}}^{\eta} S(\eta,\gamma) \times \prod_{\xi \in (\eta,\gamma) \cap \mathsf{M}}^{\mathrm{E}} S(\xi,\gamma) \right),$$

and projections

$$P(\gamma) \longrightarrow P(\alpha) \times \left( \prod_{\zeta \in [\mu,\alpha] \cap \mathsf{M}}^{\alpha} S(\alpha,\gamma) \times \prod_{\xi \in (\alpha,\gamma) \cap \mathsf{M}}^{\mathsf{E}} S(\xi,\gamma) \right) \longrightarrow R(\alpha,\gamma)$$

suitably. These alternatives would not work for some reason to be mentioned in §6.

Now suppose that  $\alpha < \gamma$  are both from  $(\mu, \kappa] \cap M$ . In what follows we let

$$\dot{Q}(\alpha,\gamma) = \prod_{\zeta \in [\mu,\alpha] \cap \mathsf{M}}^{\alpha} \dot{S}(\alpha,\gamma)^{R(\zeta,\alpha)} \times \prod_{\xi \in (\alpha,\gamma) \cap \mathsf{M}}^{\mathsf{E}} \dot{S}(\xi,\gamma)^{P(\alpha)},$$

so that we have

$$R(\alpha, \gamma) = P(\alpha) \star \dot{Q}(\alpha, \gamma).$$

We also let

$$ar{Q}(lpha,\gamma) = \prod_{oldsymbol{\zeta} \in [\mu,lpha] \cap \mathsf{M}}^{oldsymbol{lpha}} S(lpha,\gamma) imes \prod_{oldsymbol{\xi} \in (lpha,\gamma) \cap \mathsf{M}}^{\mathrm{E}} S(oldsymbol{\xi},\gamma).$$

Thus

$$\pi_{\alpha\gamma}: P(\gamma) \to P(\alpha) \star \dot{Q}(\alpha, \gamma)$$

is the composite of the following projections:

$$P(\gamma) \xrightarrow{\psi_{\alpha\gamma}} P(\alpha) \times \bar{Q}(\alpha, \gamma) \xrightarrow{\varphi_{\alpha\gamma}} P(\alpha) \star \dot{Q}(\alpha, \gamma).$$

We extend the convention and state e.g. that

$$j(\pi)_{\kappa\lambda}:j(P(\kappa))\to P(\kappa)\star j(\dot{Q})(\kappa,\lambda)$$

is the composite of the following projections:

$$j(P(\kappa)) \xrightarrow{j(\psi)_{\kappa\lambda}} P(\kappa) \times j(\bar{Q})(\kappa,\lambda) \xrightarrow{j(\varphi)_{\kappa\lambda}} P(\kappa) \star j(\dot{Q})(\kappa,\lambda).$$

#### 6. MASTER CONDITIONS

We keep the convention of §5: Let  $\mu < \kappa < \lambda$  be regular cardinals and  $j: V \to M$  witness that  $\kappa$  is huge with target  $\lambda$ . We need at least a master condition for a projection

$$j\left(P(\kappa)\star j(\dot{Q})(\kappa,\lambda)\right) \to P(\kappa)\star j(\dot{Q})(\kappa,\lambda).$$

To get one, we need a master condition for a projection

$$j\left(P(\kappa)\star\prod_{\alpha\in[\mu,\kappa]\cap\mathsf{M}}^{\kappa}\dot{S}(\kappa,\lambda)^{R(\alpha,\kappa)}\right)\to P(\kappa)\star\prod_{\alpha\in[\mu,\kappa]\cap\mathsf{M}}^{\kappa}\dot{S}(\kappa,\lambda)^{R(\alpha,\kappa)}.$$

The problem reduces to that of getting for each  $\alpha \in (\mu, \kappa) \cap M$  a master condition for a projection

$$j\left(P(\kappa)\star\dot{S}(\kappa,\lambda)^{P(\alpha)\star\dot{Q}(\alpha,\kappa)}\right)\to P(\kappa)\star\dot{S}(\kappa,\lambda)^{P(\alpha)\star\dot{Q}(\alpha,\kappa)},$$

which in turn reduces to getting a commutative diagram of the following form:

$$j(P(\kappa)) \xrightarrow{j(\pi_{\alpha\kappa})} j\left(P(\alpha) \star \dot{Q}(\alpha, \kappa)\right)$$

$$\downarrow^{\varphi_{\star}} \qquad \qquad \downarrow^{\varphi_{\star}}$$

$$P(\kappa) \star \dot{S}(\kappa, \lambda)^{P(\alpha) \star \dot{Q}(\alpha, \kappa)} \xrightarrow{\pi_{\alpha\kappa} \times \mathrm{id}} \left(P(\alpha) \star \dot{Q}(\alpha, \kappa)\right) \star \dot{S}(\kappa, \lambda).$$

This is the reason why  $\prod_{\xi \in (\kappa,\lambda) \cap M}^{E} \dot{S}(\xi,\lambda)$  appears as a component of  $j(\dot{Q})(\kappa,\lambda)$ ,

while  $j(P(\kappa))$  does not (at least seemingly) have the corresponding component (see Remark 2). More specifically, our definition makes the first diagram in the proof of Lemma 8 commute.

Suppose  $\alpha \in (\mu, \kappa) \cap M$ . For the following lemma, let

$$\begin{split} \operatorname{pr}_{\alpha} : \prod_{\zeta \in [\mu,\kappa] \cap \mathsf{M}}^{\kappa} T\left(R(\zeta,\kappa), \dot{S}(\kappa,\lambda)\right) \times \prod_{\xi \in (\kappa,\lambda) \cap \mathsf{M}}^{\mathsf{E}} T\left(P(\kappa), \dot{S}(\xi,\lambda)\right) \\ & \to T\left(R(\alpha,\kappa), \dot{S}(\kappa,\lambda)\right) \end{split}$$

be the projection to the  $\alpha$ -th coordinate:  $\operatorname{pr}_{\alpha}(q) = q(\alpha)$ . Define a map

$$\begin{split} \dot{\rho} &: j \left( \prod_{\zeta \in [\mu,\alpha] \cap \mathsf{M}}^{\alpha} T\left(R(\zeta,\alpha), \dot{S}(\alpha,\kappa)\right) \times \prod_{\xi \in (\alpha,\kappa) \cap \mathsf{M}}^{\mathsf{E}} T\left(P(\alpha), \dot{S}(\xi,\kappa)\right) \right) \to \\ &\prod_{\zeta \in [\mu,\alpha] \cap \mathsf{M}}^{\alpha} T\left(R(\zeta,\alpha), \dot{S}(\alpha,\kappa)\right) \times \prod_{\xi \in (\alpha,\kappa) \cap \mathsf{M}}^{\mathsf{E}} T\left(P(\alpha), \dot{S}(\xi,\kappa)\right) \times T\left(P(\alpha), \dot{S}(\kappa,\lambda)\right) \end{split}$$

as follows: We first identify the domain of  $\dot{\rho}$  with

$$\prod_{\zeta \in [\mu,\alpha] \cap \mathsf{M}}^{\alpha} T\left(R(\zeta,\alpha), \dot{S}(\alpha,\lambda)\right) \times \prod_{\xi \in (\alpha,\kappa) \cap \mathsf{M}}^{\mathsf{E}} T\left(P(\alpha), \dot{S}(\xi,\lambda)\right) \times \prod_{\xi \in [\kappa,\lambda) \cap \mathsf{M}}^{\mathsf{E}} T\left(P(\alpha), \dot{S}(\xi,\lambda)\right).$$

Let  $\dot{\rho}$  be the projection identified with

$$\prod_{\zeta \in [\mu,\alpha] \cap \mathsf{M}} \mathrm{rs}_{\kappa}^{\zeta} \times \prod_{\xi \in (\alpha,\kappa) \cap \mathsf{M}} \mathrm{rs}_{\kappa}^{\xi} \times \mathrm{pr}_{\kappa},$$

where

$$\begin{split} \dot{\operatorname{ris}}_{\kappa}^{\zeta} &: T\left(R(\zeta,\alpha), \dot{S}(\alpha,\lambda)\right) \to T\left(R(\zeta,\alpha), \dot{S}(\alpha,\kappa)\right) & \Vdash_{R(\zeta,\alpha)} \dot{\operatorname{ris}}_{\kappa}^{\zeta}(\dot{s}) = \dot{s}|(\alpha \times \kappa) \\ \dot{\operatorname{ris}}_{\kappa}^{\xi} &: T\left(P(\alpha), \dot{S}(\xi,\lambda)\right) \to T\left(P(\alpha), \dot{S}(\xi,\kappa)\right) & \Vdash_{P(\alpha)} \dot{\operatorname{ris}}_{\kappa}^{\xi}(\dot{s}) = \dot{s}|(\xi \times \kappa) \\ \operatorname{pr}_{\kappa} &: \prod_{\xi \in [\kappa,\lambda) \cap \mathsf{M}} T\left(P(\alpha), \dot{S}(\xi,\lambda)\right) \to T\left(P(\alpha), \dot{S}(\kappa,\lambda)\right) & \operatorname{pr}_{\kappa}(q) = q(\kappa). \end{split}$$

Finally note that  $P(\alpha) \star (\dot{Q}(\alpha, \kappa) \times \dot{S}(\kappa, \lambda))$  and  $(P(\alpha) \star \dot{Q}(\alpha, \kappa)) \star \dot{S}(\kappa, \lambda)^{P(\alpha)}$  are canonically isomorphic, and the following diagram of projections commutes:

$$\begin{split} \left(P(\alpha)\star\dot{Q}(\alpha,\kappa)\right)\times S(\kappa,\lambda) &\xrightarrow{\mathrm{id}\times\ j(i)_{\alpha\lambda}^{\kappa}} \ \left(P(\alpha)\star\dot{Q}(\alpha,\kappa)\right)\star\dot{S}(\kappa,\lambda)^{P(\alpha)} \\ &\mathrm{id} \downarrow & \qquad \qquad \downarrow \mathrm{id}\times\ j(k)_{\kappa\lambda}^{\alpha} \\ \left(P(\alpha)\star\dot{Q}(\alpha,\kappa)\right)\times S(\kappa,\lambda) &\xrightarrow{\mathrm{id}\times\ j(i)_{\kappa\lambda}^{\alpha}} \ \left(P(\alpha)\star\dot{Q}(\alpha,\kappa)\right)\star\dot{S}(\kappa,\lambda). \end{split}$$

**Lemma 8.** Suppose  $\alpha \in (\mu, \kappa) \cap M$ . Then the following diagram commutes:

$$j(P(\kappa)) \xrightarrow{j(\pi_{\alpha\kappa})} j\left(P(\alpha) \star \dot{Q}(\alpha, \kappa)\right)$$

$$\downarrow^{id \times \dot{\rho}}$$

$$P(\kappa) \star j(\dot{Q})(\kappa, \lambda) \qquad P(\alpha) \star \left(\dot{Q}(\alpha, \kappa) \times \dot{S}(\kappa, \lambda)\right)$$

$$\downarrow^{id \times \dot{\rho}r_{\alpha}} \downarrow \qquad \downarrow^{id \times j(k)_{\kappa\lambda}^{\alpha}}$$

$$P(\kappa) \star \dot{S}(\kappa, \lambda)^{P(\alpha) \star \dot{Q}(\alpha, \kappa)} \xrightarrow{\pi_{\alpha\kappa} \times id} \left(P(\alpha) \star \dot{Q}(\alpha, \kappa)\right) \star \dot{S}(\kappa, \lambda).$$

It remains to get a master condition for a projection

$$j\left(P(\kappa)\star\prod_{\gamma\in(\kappa,\lambda)\cap\mathsf{M}}^\mathrm{E}\dot{S}(\gamma,\lambda)
ight) o P(\kappa)\star\prod_{\gamma\in(\kappa,\lambda)\cap\mathsf{M}}^\mathrm{E}\dot{S}(\gamma,\lambda)$$

via a suitable extension of Kunen's lemma:

## Lemma 9. Suppose

- $j: V \to M$  witnesses that  $\kappa$  is huge with target  $\lambda$  and  $P \subset V_{\kappa}$  has the  $\kappa$ -cc,
- $\bullet \ \varphi: j(P) \to P \star \prod_{\gamma \in (\kappa,\lambda) \cap \mathsf{M}}^{\mathrm{E}} \dot{S}(\gamma,\lambda) \ \ \textit{is a projection},$
- $1_{j(P)}$  is a master condition for  $\varphi^-: j(P) \to P$ .

Then there is a master condition  $(1_{j(P)}, r^*)$  for

$$\varphi^+: j\left(P\star \prod_{\gamma\in(\kappa,\lambda)\cap\mathsf{M}}^{\mathrm{E}}\dot{S}(\gamma,\lambda)\right)\to P\star \prod_{\gamma\in(\kappa,\lambda)\cap\mathsf{M}}^{\mathrm{E}}\dot{S}(\gamma,\lambda).$$

### 7. THE MAIN THEOREM

This section is devoted to a proof of the following theorem:

**Theorem 10.** Let  $\mu < \kappa$  be regular cardinals with  $\kappa$  2-huge. Then there is a forcing extension in which  $\kappa = \mu^+$  and  $(\mu^{+++}, \mu^{++}, \mu^+) \twoheadrightarrow (\mu^{++}, \mu^+, \mu)$  holds.

*Proof.* Let  $j:V\to M$  witness that  $\kappa$  is 2-huge,  $\lambda=j(\kappa)$  and  $\theta=j(\lambda)$ . Then  ${}^{\theta}M\subset M$ . Define

$$j(R)(\kappa,\lambda) = P(\kappa) \star j(\dot{Q})(\kappa,\lambda)$$

as in §5. We claim that forcing with  $(P(\kappa) \star j(\dot{Q})(\kappa, \lambda)) \star \dot{S}(\lambda, \theta)$  yields the required model.

First note that  $P(\kappa) \subset V_{\kappa}$  is  $\mu$ -closed and has the  $\kappa$ -cc by Lemma 7. Having  $S(\mu,\kappa)$  as a complete suborder,  $P(\kappa)$  forces  $\kappa = \mu^+$ . Since  $P(\kappa)$  has the  $\kappa$ -cc and  $j(\bar{Q})(\kappa,\lambda)$  as defined in §5 is  $\kappa$ -closed,  $P(\kappa) \times j(\bar{Q})(\kappa,\lambda)$  forces  $\kappa = \mu^+$  by Easton's lemma. Since there is a projection from  $P(\kappa) \times j(\bar{Q})(\kappa,\lambda)$  to  $P(\kappa) \star j(\bar{Q})(\kappa,\lambda)$ , the latter forces  $\kappa = \mu^+$  as well. Since there is a projection from  $j(P(\kappa)) = P(\lambda)$  to  $P(\kappa) \star j(\bar{Q})(\kappa,\lambda)$ , the  $\lambda$ -cc of the former implies that of the latter. Having  $P(\kappa) \star j(\bar{Q})(\kappa,\lambda)$  as a complete suborder,  $P(\kappa) \star j(\bar{Q})(\kappa,\lambda)$  forces  $\lambda = \kappa^+$ . Thus  $\left(P(\kappa) \star j(\bar{Q})(\kappa,\lambda)\right) \star \dot{S}(\lambda,\theta)$  forces  $\kappa = \mu^+$ ,  $\lambda = \mu^{++}$  and  $\theta = \mu^{+++}$ .

It remains to prove that  $(\theta, \lambda, \kappa) \rightarrow (\lambda, \kappa, \mu)$  holds in some forcing extension by  $\left(P(\kappa) \star j(\dot{Q})(\kappa, \lambda)\right) \star \dot{S}(\lambda, \theta)$ . Since  ${}^{\theta}M \subset M$ , the sets of regular (resp. Mahlo) cardinals  $\leq \theta$  are the same between V and M. Furthermore j sends the relevant posets as expected:

$$\begin{split} & \left(P(\gamma)\star\dot{Q}(\gamma,\kappa)\right)\star\dot{S}(\kappa,\lambda) \mapsto \left(P(\gamma)\star j(\dot{Q})(\gamma,\lambda)\right)\star\dot{S}(\lambda,\theta), \\ & P(\kappa)\star\prod_{\alpha\in[\mu,\kappa]\cap\mathsf{M}}\dot{S}(\kappa,\lambda)^{R(\alpha,\kappa)}\mapsto P(\lambda)\star\prod_{\alpha\in[\mu,\lambda]\cap\mathsf{M}}\dot{S}(\lambda,\theta)^{j(R)(\alpha,\lambda)}, \\ & P(\kappa)\star\prod_{\gamma\in(\kappa,\lambda)\cap\mathsf{M}}\dot{S}(\gamma,\lambda)\mapsto P(\lambda)\star\prod_{\gamma\in(\lambda,\theta)\cap\mathsf{M}}\dot{S}(\gamma,\theta). \end{split}$$

Claim. There is a master condition  $(1_{j(P(\kappa))}, q^{*} r^{*})$  for

$$j(\pi)_{\kappa\lambda}^+: j\left(P(\kappa)\star j(\dot{Q})(\kappa,\lambda)\right) \to P(\kappa)\star j(\dot{Q})(\kappa,\lambda).$$

Proof. Define

$$d^* = \bigcup \{j(d): d \cap \kappa \subset \mathsf{M} \ \text{ has size} < \kappa \wedge d - \kappa \subset (\kappa, \lambda) \cap \mathsf{M} \ \text{ is Easton}\}.$$

Then  $d^* \cap \lambda = [\mu, \kappa] \cap M$ . Since  $\lambda$  is inaccessible,  $|\{d \subset \lambda : d \text{ is Easton}\}| = \lambda$ . Since each  $j(d) - \lambda$  is an Easton subset of  $(\lambda, \theta) \cap M$ , so is  $d^* - \lambda$ .

Let  $\alpha \in [\mu, \kappa] \cap M$ . Define a projection

$$\varphi_{\star}: j(P(\kappa)) \to P(\kappa) \star \dot{S}(\kappa, \lambda)^{R(\alpha, \kappa)}$$

by composing the projections

$$j(P(\kappa)) \xrightarrow{j(\pi)_{\kappa\lambda}} P(\kappa) \star j(\dot{Q})(\kappa,\lambda) \xrightarrow{\mathrm{id} \times \mathrm{pr}_{\alpha}} P(\kappa) \star \dot{S}(\kappa,\lambda)^{R(\alpha,\kappa)}$$

Here  $\operatorname{pr}_{\alpha}$  denotes the projection to the  $\alpha$ -th coordinate as defined for Lemma 8. We claim that there is a master condition  $(1_{j(P(\kappa))}, q^*(\alpha))$  for

$$\varphi_{\star}^{+}: j\left(P(\kappa)\star\dot{S}(\kappa,\lambda)^{R(\alpha,\kappa)}\right)\to P(\kappa)\star\dot{S}(\kappa,\lambda)^{R(\alpha,\kappa)}.$$

If  $\alpha \in \{\mu, \kappa\}$ , then  $R(\alpha, \kappa) = P(\kappa)$  and hence the claim follows from Kunen's lemma. Suppose next  $\alpha \in (\mu, \kappa) \cap M$ . By Lemma 8 we get a commutative diagram of projections of the following form:

$$j(P(\kappa)) \xrightarrow{j(\pi_{\alpha\kappa})} j(R(\alpha,\kappa))$$

$$\varphi_{\star} \downarrow \qquad \qquad \downarrow \varphi_{\star}$$

$$P(\kappa) \star \dot{S}(\kappa,\lambda)^{R(\alpha,\kappa)} \xrightarrow{\pi_{\alpha\kappa} \times \mathrm{id}} R(\alpha,\kappa) \star \dot{S}(\kappa,\lambda).$$

Also by Kunen's lemma we get a master condition  $(1_{j(R(\alpha,\kappa))}, q^*(\alpha))$  for

$$\varphi_*^+: j\left(R(\alpha,\kappa)*\dot{S}(\kappa,\lambda)\right) \to R(\alpha,\kappa)*\dot{S}(\kappa,\lambda).$$

It is easy to check that  $1_{j(P(\kappa))}$  is a master condition for  $\varphi_{\star}^-: j(P(\kappa)) \to P(\kappa)$ . Thus  $(1_{j(P(\kappa))}, q^*(\alpha))$  is a master condition for  $\varphi_{\star}^+$  by Foreman's lemma.

Now it is straightforward to check the hypothesis of Lemma 9 with  $P = P(\kappa)$  and  $\varphi$  the composite of the projections

$$j(P(\kappa)) \xrightarrow{j(\pi)_{\kappa\lambda}} P(\kappa) \star j(\dot{Q})(\kappa,\lambda) \xrightarrow{\operatorname{id} \times \rho} P(\kappa) \star \prod_{\gamma \in (\kappa,\lambda) \cap \mathsf{M}}^{\mathrm{E}} \dot{S}(\gamma,\lambda).$$

Here  $\rho$  denotes the restriction to the upper coordinates:  $\rho(q) = q | (\kappa, \lambda)$ . Thus we get a master condition  $(1_{i(P(\kappa))}, r^*)$  for

$$\varphi^+: j\left(P(\kappa)\star\prod_{\gamma\in(\kappa,\lambda)\cap\mathsf{M}}^{\mathrm{E}}\dot{S}(\gamma,\lambda)\right)\to P(\kappa)\star\prod_{\gamma\in(\kappa,\lambda)\cap\mathsf{M}}^{\mathrm{E}}\dot{S}(\gamma,\lambda).$$

It is easy to check that  $(1_{j(P(\kappa))}, \langle q^*(\alpha) : \alpha \in [\mu, \kappa] \cap \mathsf{M} \rangle^{\smallfrown} r^*)$  is a master condition for  $j(\pi)_{\kappa\lambda}^+$ , as desired.

Let  $\bar{H} \subset P(\lambda) \star \dot{Q}(\lambda, \theta)$  be V-generic with  $(1_{j(P(\kappa))}, q^{*^{}}r^{*}) \in \bar{H}$  and  $\bar{G}$  be the projection of  $\bar{H}$  to  $P(\lambda)$ . Then  $H = j(\pi)^{+}_{\kappa\lambda}[\bar{G}]$  is V-generic over  $P(\kappa) \star j(\dot{Q})(\kappa, \lambda)$ , and we can extend j to  $j:V[H] \to M[\bar{H}]$  in  $V[\bar{H}]$ . Recall that there is a projection from  $P(\lambda) \star \dot{Q}(\lambda, \theta)$  to  $P(\lambda) \star \dot{S}(\lambda, \theta)^{P(\kappa) \star j(\dot{Q})(\kappa, \lambda)}$ , which is a dense subset of  $P(\lambda) \star \dot{S}(\lambda, \theta)^{P(\kappa) \star j(\dot{Q})(\kappa, \lambda)}$ . Hence we get a V[H]-generic filter over  $S(\lambda, \theta)^{V[H]}$  (say) K. Standard arguments show that  $\bigcup j''K \in S(\theta, j(\theta))^{M[\bar{H}]}$ . Let  $\bar{K} \subset S(\theta, j(\theta))^{M[\bar{H}]}$  be  $V[\bar{H}]$ -generic. Then  $j''K \subset \bar{K}$ . Thus we can extend  $j:V[H] \to M[\bar{H}]$  further to  $j:V[H][K] \to M[\bar{H}][\bar{K}]$  in  $V[\bar{H}][\bar{K}]$ .

The rest of the proof is as in Theorem 6. Fix  $f: {}^{<\omega}\theta \to \theta$  in V[H][K]. Then j " $\theta$  witnesses that in  $M[\bar{H}][\bar{K}]$  there is  $x \in [j(\theta)]^{j(\lambda)}$  closed under j(f) such that  $|x \cap j(\lambda)| = \lambda = j(\kappa)$  and  $|x \cap j(\kappa)| = |\kappa| = \mu = j(\mu)$ . By elementarity there is  $x \in [\theta]^{\lambda}$  closed under f such that  $|x \cap \lambda| = \kappa$  and  $|x \cap \kappa| = \mu$  in V[H][K], as desired.

#### REFERENCES

- [1] M. Foreman, Large cardinals and strong model theoretic transfer properties, Trans. Amer. Math. Soc. 272 (1982) 427-463.
- [2] \_\_\_\_\_\_, Ideals and generic elementary embeddings, Handbook of Set Theory, pp. 885-1147, Springer, Berlin, 2010.
- [3] M. Foreman and M. Magidor, Large cardinals and definable counterexamples to the continuum hypothesis, Ann. Pure Appl. Logic 76 (1995) 47-97.
- [4] A. Kanamori, The Higher Infinite, Springer Monogr. Math., Springer, Berlin, 2005.
- [5] A. Kanamori and M. Magidor, The evolution of large cardinal axioms in set theory, Higher Set Theory, pp. 99-275, Lecture Notes in Math., 669, Springer, Berlin, 1978.
- [6] K. Kunen, Saturated ideals, J. Symbolic Logic 43 (1978) 65-76.
- [7] S. Shelah, Proper Forcing, Lecture Notes in Math., 940, Springer, Berlin, 1982.
- [8] M. Shioya, A new saturated filter, Set Theory and Set-theoretic Topology, pp. 63-69, RIMS Kokyuroku, 1595, 2008.
- [9] \_\_\_\_\_, The Easton collapse and saturated filters, in preparation.
- [10] J. Silver, The independence of Kurepa's conjecture and two-cardinal conjectures in model theory, Axiomatic Set Theory, pp. 383-390, Proc. Sympos. Pure Math., XIII, Part I, Amer. Math. Soc., Providence, 1971.
- [11] R. Vaught, Models of complete theories, Bull. Amer. Math. Soc. 69 (1963) 299-313.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA, TSUKUBA, 305-8571 JAPAN. E-mail address: shioya@math.tsukuba.ac.jp