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A MODEL THEORETIC REFLECTION PRINCIPLE REVISITED

MASAHIRO SHIOYA
BAR
ABARFALBEEN TR

ABSTRACT. We sketch a simplified construction of a model in which Chang’s
conjecture for triples (w3,ws2,w1) — (w2,w1,w) holds.

1. INTRODUCTION

Suppose that N = (N; R, - - -) is a structure for a countable first-order language
with a distinguished unary relation symbol interpreted by R C N. For a pair of
cardinals v > v/ we say that N is of type (v,v) if |[N| = v and |R| = v'. For such
pairs (v,v') and (g, ') with v > p and v/ > ' define

(v,v') = (u, u’) holds iff for every N of type (v,v')
there is M < N of type (u, u').

Clearly the statement strengthens the downward Lowenheim-Skolem theorem. Fol-
lowing [11], the statement (wp,w;) — (w1, w) is now called Chang’s conjecture.

In [10] Silver introduced a variation of the Levy collapse (now called the Silver
collapse) and established the consistency of Chang’s conjecture:

Theorem (Silver). If an w,-Erdds cardinal exists, then there is a forcing extension
in which (wg,w;) - (w1,w) holds.

Silver’s argument (see [5]) required Martin’s Axiom to hold in some intermediate
model. This was later removed by Shelah [7], who proved further that the Levy
collapse forces Chang’s conjecture to hold.

What about (w3, ws,w;) —» (w2, w1, w)? The meaning of the statement should be
evident: This time we consider structures with two distinguished unary relations. It
is easy to see that (w3,wz,w;) - (w2, w1,w) implies (w3,w2) — (w2,w;). Foreman
and Magidor [3] showed that under PFA the analogue of Shelah’s result fails for
(w3, wz) = (w2, wr).

The consistency of (w3, ws) = (w2, w1) was established in effect by Kunen [6]:
Theorem (Kunen). Let u < k be regular cardinals with k huge. Then there is a
forcing extension in which k = p* and (™, p) > (ut, p) holds.

We refer the reader to [2] for a comprehensive survey of Kunen’s method. Ex-
tending the method, Foreman [1] established the consistency of Chang’s conjecture
for triples:

Theorem (Foreman). If a 2-huge cardinal exists, then there is a forcing extension
in which (w3, wsz,w;) - (w2, w1,w) holds.
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It is still unknown whether (w4, ws, we,w;) = (w3, ws,wr,w) is consistent.

In this paper we sketch a new proof of Foreman’s theorem that is simpler than
the original one. A novel element of our proof, which can be found in §3, is that
we can identify the term forcing of a slight modification of the Silver collapse. §4
illustrates our approach with a new model of Chang’s conjecture (for pairs). In
§5 we construct the first two stages of iterated forcing toward a model of Chang’s
conjecture for triples. §6 is devoted to getting a master condition for this forcing.
Finally in §7 we prove that the forcing followed by the modified Silver collapse gives
the desired model.

2. PRELIMINARIES

Our notation should be standard. We refer the reader to [4] for background
material. Throughout the paper x denotes a regular cardinal, and R the class of
regular cardinals.

Note that (v,v') — (u,u’) holds iff for every f : <“v — v there is z € [V]#
closed under f such that |z Nv/| = u/. Similarly (v,v',v"”) - (u, ', 4”) holds iff
for every f: <“v — v there is z € [v]* closed under f such that |z Nv/| = u’ and
lm n V”I — #l/.

Let P and R be posets. We say that a map n : P — R is a projection if

(1) 7 is order-preserving, i.e. p’ <p p implies 7(p’) <gr 7(p),
(2) W(lp) = ]-R and
(3) 7 <r 7(p) implies that there is p* <p p with 7(p*) <gr 7.

Suppose 7 : P — Ris a projection. Then if D is dense open in R, 7~ (D) is dense
in P. So if G C P is generic, m“G generates a generic filter over R, which we denote
by n[G]. Furthermore ran is dense in R and the map r — Y {p € P : n(p) < r} is
a complete embedding of R into the completion of P (without the least element).
Finally note that the class of projections is closed under taking the composite and
the product.

Suppose further S is an R-name for a poset. The term forcing T'(R, S) is the set
(of representatives under the canonical identification from)

(s€VR . IFgpse S}
ordered by ¢’ < §iff kg §' < 5. By
Px.SorPxS
we mean the set P x T(R, S) ordered by: (p,3') < (p, 8) iff
p <ppand 7n(p) IFr § < s.

Note that the canonical map pr: P, S — P is a projection and hence P %, S can
be identified with an iteration of the form P x Q. In particular P %, S=PxSif
P =R and 7 =id.

The following lemma is essentially due to Laver:

Lemma (Laver). Suppose that w: P — R is a projection and S is an R-name for
a poset. Thenid: P x T(R,S) — P %, S is a projection.

Note also that under the hypothesis of Laver’s lemma 7 X id : Px; S — R% S
is a projection.
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Let I and J be sets of ordinals. First we fix our notation for products. Suppose
that S; is a poset for { € TU J. By

K E
H Sf X H SE
gel E€J
we denote the set of sequences g such that

e domgCc IUJ, |domgNI| < k, domgN J is Easton and
e g(§) € S¢ for every { € domg

ordered by: ¢’ < q iff
dom ¢’ O domg and ¢'(§) <¢ q(&) for every £ € domg.

Here a set d is Easton if d C R and sup(dN+) < v for every v € R. It is understood
that g(§) = 1¢ unless £ € domg.

Next we introduce a generalization of P x § to which Laver’s lemma can be
generalized. Suppose that 7 : P — Ry is a projection and SE is an R¢-name for a
poset for £ € TU J. By

K E
Px H,S"g X HSE
fel £eJ

we mean the set of pairs of p € P and a sequence g such that

e domg CIUJ, |domgNI| <k, domgnNJ is Easton and
e g(§) is an R¢-name and Ik¢ g(§) € S¢ for every £ € domg

ordered by: (p',q') < (p,q) iff
P <pp, domq’ D domgq and me(p') Ibe ¢'(€) <¢ q(€) for every £ € domg.

Here I¢ denotes the forcing relation associated with R;. Note that as sets

K E K E
P x HSE X H SE =P x HT(RE’SE) X HT(R&S{)
gerl §eJ gerl EeJ

Here is the generalization of Laver’s lemma:

Lemma 1. Let I and J be sets of ordinals. Suppose that m¢ : P — Rg¢ is a
projection and Sg is an Re¢-name for a poset for § € IU J. Then

K B K BE
id: Px HT(Rf’Sf)XHT(RE’Sf). — Px HS{XHS&
ger geJ gel I

s a projection.

K. E .
Under the hypothesis of Lemma 1 the canonical map from Px (H Se x I SE)
gerl §eJ

to P is a projection. Suppose further I’ C I, J' C J and IF¢ ¢¢ : SE — S is a
projection for € € I’ U J'. Then we can define a projection

¢ : T(Re, S¢) — T(Re, S¢)
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(by abuse of notation) naturally, and the map

K E K E
id x H"bfx H¢5:P* HgixH‘Sf — Px HSéx HSé
ger geJ ¢el ¢eJ ¢er geJ’
is a projection.

Suppose that j : V — M is an elementary embedding: Let p : j(P) — P be a
projection. We say that p* € j(P) is a master condition for j and p if p < j(p(p))
for every p < p*. In what follows we suppress the mention of j, which should be
clear from the context. If G C j(P) is generic and contains a master condition
for p, then (j o p)“G C G and hence j“p[G] C G, which allows us to extend j to
i : VIpIG] — MIG] in V[G). |

Suppose further 7 : P — R is a projection and S is an R-name for a poset. Let
¢ : j(P) — P % S be a projection. Then we can define projections

ot j(P*8S)— PxS and o~ :j(P)— P
by composing the projections from
JPxg) 2, ypy 2, pug 2, p
Note that (Ij(p),.é*) is a master condition for ¢t : j(Px S) — P« S iff (5, §*) <

3(¢(p)) for every p € j(P).
Foreman [1] proved a lemma that enables us to transfer a master condition for
a projection . ‘
j(R*S)—> RxS
to a master condition for a projection
j(Px8) — P*8S.
Let us restate Foreman’s lemma in terms of projections:
Lemma (Foreman). Suppose
®j:V—M,7:P — R is aprojection and S is an R-name for a poset,
o the following diagram of projections commutes:

i) 22 (R

e | K2

P«S — RxS,

7 Xid

Li(p) is a master condition for o} J(P) — P,
(1j(r), 8*) is a master condition for ¢} : j(R*S) — Rx S.

Then (1j(py, §*) is a master condition for ¢} : j(PxS) — P*8§.
3. THE MAIN LEMMAS

In this section we introduce a slight modification of the Silver collapse. Results
of this section should be valid for other canonical collapses if they are suitably
modified (see [9]).

Throughout the section let x < A be regular cardinals with X inaccessible. Define
S(k,A) to be the set of functions s : § x d — A such that

® d <k, dC[k,) is a set of k-closed cardinals of size <k and
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e s(a,y) < v for every (a,7) € 6 x d.

Here a cardinal v is k-closed if y<% = 5. S(k, ) is ordered by reverse inclusion:
s’ <siff s Ds.

S(k,A) shares nice properties of the original Silver collapse: It is s-directed
closed and a subset of Vj, has the A-cc and forces A = k*. Furthermore we can
identify the term forcing of S(x,A) defined in the extensions by a small poset:

Suppose that R has the k-cc. Then it is easy to check that

D (R, $(x, ,\)) - {s €T (R, S(x, A)) 136 < k3d C [k, \) IF dom § = 6 x d}

is dense in T (R, S(x, ,\)).

Lemma 2. Suppose that R has the k-cc and size < k. Then S(k, A) is isomorphic
to D (R, $(x, ,\)).

In what follows we say that
the isomorphism ¢ : S(k,A) — D (R, S(k, )\)) or

the dense embedding i : S(k,\) = T (R, S(k, )\))

of Lemma 2 are based on the list o of R-names. Note that the construction of ¢
from o is canonical in the following sense: Suppose A’ > X is inaccessible and

i Sk, N) T (R, S(k, )\I))

is a dense embedding based on a list that end-extends ¢. Then for s € S(k,\’) we
have

kg ' (s)|(k X A) =i(s|(k x A)).

Supppse that 7 : P — Ris a projection. Then we can form the poset PxS (k,\)E,
where S(k,A)® is an R-name for the modified Silver collapse. By Laver’s lemma
and Lemma 2 we have

Proposition 3. Suppose that m : P — R is a projection and R has the k-cc and
size < k. Then there is a dense embedding i : S(k,\) — T (R, S(k, )\)), which
induces a projection id X i : P x S(k,\) — P S(x, \)E.

The following corollary of Proposition 3, which was proved in [8], suffices for
the application in §4: Suppose that P has the s-cc and size < x. Then there is a
projection of the form id x i : P x S(k,A) = P * S(k, \).

By Lemmas 1 and 2 we have

Proposition 4. Let I and J be sets of ordinals. Suppose that k¢ € [k,A) N R,
me 1 P — R is a projection and R, has the k-cc and size < k for § € IUJ. Then

there is a dense embedding i¢ : S(ke,A) = T (Re,S(ng,/\)) for £ € IUJ, which



induces a projection

K B
id x H?:E X Hig : P x (HS(mg,/\) X HS(nE,)\)

gel geJ gel geJ

K E
— P* (H S(ke, \) B x HS(ng,)\)Rf) .

ger ¢eJ

In what follows we write S(ke, A) for S(ke, \)¥ in case R = P and m¢ = id.
In §5 we need a commutative diagram of projections of the following form:

(P*8) x S(k,)) 225 (Px8)%S(k, NP

idl lidx k

(P 8S) x S(k,\) —— (Px8)*8(x,N),

id x i*

where

. ﬂ . E .

S =] S(se, B x T] S(se, 2.

el gcJ

Since P S can be identified with an iteration of the form P x Q, the following
lemma should suffice:
Lemma 5. Suppose that P * Q has the k-cc and size < k. Let

i:8(k,A) = D (P, S(x, ,\))

be an isomorphism based on a list ¢ of P-names. Then there are an isomorphism

i*: S(k,\) = D (P O, S(k, A))
based on a list of P x Q-names and an isomorphism
k:D (P, S(x, ,\)) ~D (P «0, S(K,)\))
such that the following diagram of projections commutes:
(P*Q) x S(k,A) “22%5 (P+Q) % S(k, NP

idl lidx k

(P*Q) x S(k,\) —— (P*Q)*8(k,\).

id x i*
4. A NEW MODEL OF CHANG’S CONJECTURE

This section presents a forcing notion for Chang’s conjecture (for pairs) that is
simpler than Kunen'’s:

Theorem 6. Let yu < k < A be reqular cardinals with k huge and X its target. Then

I
H S(y,k) | *S(k, )

YEu,5)NR
forces that k = pt, A= p*t™t and (ut+, ut) - (ut, u) holds.

7
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From Kunen’s argument [6] Foreman [1] isolated a sufficient condition for getting
a master condition for a projection

j (p *S(n,x)) — P % 8(x, N).
Let us restate Kunen’s lemma in terms of projections:

Lemma (Kunen). Suppose

e j:V — M witnesses that k is huge with target A and P C Vj; has the k-cc,
e ¢:j(P)— PxS(k,\) is a projection,
e 1;p) is a master condition for ¢~ : j(P) — P.

Then there is a master condition (1;(p), 8*) for %t : j (P * S(k, /\)) — PxS8(k,A).

Proof of Theorem 6. Let j : V — M witness that x is huge with target A. Let

P= H S(v, k).

v€[u,x)NR

It is easy to see that P C V is p-closed. By standard arguments (or see [8]) P has
the k-cc. Having S(u, k) as a complete suborder, P forces x = ut. Thus P S(k, \)
forces Kk = u* and A = put+.

It remains to prove that P+S(k, ) forces (A, k) = (k, ) to hold. Since *M c M,
we have "

iP=TI sy,
yEp,A)NR

which can be identified with

u w
II svx [ sew.
~v€E[p,x)NR YE[k,A)NR

Let ¢ : j(P) — P x S(k,)) be the projection identified with the composite of the
following:

4 Iz
IT S x I SnA)
~€E[p,s)NR ~v€[k,A)NR

( IT s} Xpr,‘l
YE[p,R)NR

( ﬁ S(%K)) X S(k,A) SAxE, ( ﬁ S('y,n)) * S(k, A).

YE[n,x)NR YE€[u,6)NR
Here
rs) : S(v,A\) — S(v, k) s s|(y X K)
m
pro: [ S(A) — S(kN) g q(k)
~vE[K,A)NR

and id x ¢ is as in Proposition 3.
Note that 1;(py is a master condition for ¢~ : j(P) — P. To see this, let p € j(P)
and ¢(p) = (p,$). Since p € Vi, we have p < p = j(p), as desired. By Kunen’s

lemma we get a master condition (1;(p), $*) for'p™ : j (P * S(k, )\)) — PxS(k,\).



Let G C j (P* S(x, ,\)) be V-generic with (1;(p),$*) € G. Then G = ¢*[G]
is V-generic over P x S(k,)) and we can extend j to j : V[G] —» M|G] in V|G.
We claim that (), k) - (&, ) holds in V[G]. Fix f: <“X\ — X in V[G]. Then
7“\ witnesses that in M[G] there is € [j(A)]?(*) closed under j(f) such that
|z Nj(k)] = |k| = u = j(p). By elementarity there is z € [A]* closed under f such
that |z N k| = u in V[G], as desired. 0

Remark 1. Just like Kunen’s forcing, the poset of Theorem 6 forces that « carries
a k*1-saturated filter. See [8] for a proof.

In [9] we introduced a poset E(u, ) that collapses a Mahlo cardinal & to uF, and -

proved that under the hypothesis of Theorem 6 the iteration E(u, k) *E(k, \) forces
k to carry a x*-saturated filter. We do not know, however, whether (u*+t, ut) —
(u, 1) holds in the model.

5. THE MAIN FORCING

Throughout this section we fix a regular cardinal u. Let M denote the class of
Mabhlo cardinals > p together with . For v € M we define a poset P(7) as follows:
First let P(u) be the trivial poset. If u < v € M, define

B ¢
pm= TI II se».

§€(p,)NM {Ep,E]NM

It is easy to see that P(vy) C V, is p-closed. The following lemma should also be
standard.

Lemma 7. P('y) has the v-cc for every v € M.

For the rest of this section we further fix a huge cardinal x > u. By recursion
on y we define for each pair of a < « from [u, k] N M

a poset R(a,7) C V4 and a projection may : P(y) — R(a, 7).

First we fix a list of P(vy)-names for ordinals for each v € (u,x] N M. Unless
otherwise stated, dense embeddings are based on these lists. »

If o € {p,7}, let R(a;,v) = P(y) and 7y = id. Suppose next a € (u,~y) N M.
First define

o E
Rle,7)=Pla)x | J[ Sn®=x [ S
¢€fu,a)nM £€(oyy)NM

Next we define 7o, : P(y) — R(a,y). We may assume 7¢y : P(y) — R({,7) has
been defined for ¢ € [y, &) N'M as well. In the course of defining 7o, we define
dense embeddings ‘

i1 S(@,7) = T (R(¢, @), 5(a,7)) for ¢ € [u,0] N M
iy 1 S(E7) =T (P(a), 5(5,7)) for € € (a,7) N M
K : D (P(),S(e) = T (R(G @), 8()  for (€ (ma)nM,
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Define 74~ by composing the following projections:

P(y) =1 P(“”‘(ce{ﬁ Sy x I sm))

u,a]NM ¢€(a,y)NM

[

P(a)*(c[le[ S(a, )R x ﬁ 5'(6,'7))-

w,alnM g€(a,y)NM

Here 14 is defined as follows: First we identify

P(y) = H H S(&,7)

£€[u,7)NM CE[p,¢]NM

with

E 3
( I 1 S(ﬁ,'v)) ( 1'[ S(c ,7) ( H H )
e(p,a)NM (€ [p,6]NM ¢€[u,a)NM Ee(a,y)NM CEp, €M

Let 1o~ be the projection identified with

( H H rsf) x id x ( H pri) ,
£€(p,a)PM (E[p,£]NM £€{a,y)NM

where
rsé : S(€,7) = S(¢, ) s sl xa)
¢
pre: J] S(&7) - SE g q(a).
CE[p,EINM

In brief, 1 sends p € P(y) to the pair of

(PO x a) : ¢ € domp(§)) : § € dompN [, cx))
and p(a)”(p(§)(a) : £ € dompN (a,7))-

Next define
Pary = id X ( I & x 11 ig,y),
CE[;J.,O[]OM SE(O"'Y)nM
where
1 8(ey7) = T (R, @), (e 7)) for ¢ € [u,a] MM

S — T (P(@),SE) for € € (2,7) N M

are dense embeddings based on some lists of corresponding names. First by Lemma 2
we get a dense embedding

i, S(ay) = T (P(a), 5(a, 7))



for ¢ € {u,a}, and a dense embedding if,, for £ € (a,v) MM, each of which is based
on the prefixed list of P(a)-names. Suppose next ¢ € (u,a) N M. Then a dense
embedding
i, : S(a,7) = T (P(C), 8, 7))

has been defined based on the prefixed list of P(¢)-names. By Lemma 5 with
P = P(¢) and PxQ = R({,a) we get a dense embedding ., based on a list
of R(¢,a)-names, and a dense embedding kg,y such that the following diagram of
projections commutes: :

R(¢, @) x S(a,7) R(C, ) % §(a,7)P©

id l 1id X kS,

R(Ca Ol) x 5(077) — R(C,OL) N 5(0,7)-

id % 35+

id x i?_y

This completes the description of the recursion.
Let j: V — M witness that « is huge with target A. In §7 we will force with the
poset j(R)(k, ). Since *M C M, we have

M
F(R)(k, ) = (j(P)(n)*( II S xy®en s ] S(s,x)))
NnM

¢E[p,k]AM £e(k,A)

=P(n)*( f[ S(r, AR ﬁ S(g,,\)).
¢el

#,6]NM £€(k,A)NM

Remark 2. It may seem more natural to define

Rle,7)=P(@)* J] $(a,7) 5
¢€fp,a]NM

and projections
P(y) — Pl@)x I S(a,y) —— R(a,7)
¢E[pm,a)nM

suitably, or define (without changing the definition of R(a,~))

E n E
Py = ]] II savwx I seEv],
7€, Y)NM \ (E[u,n]NM ¢e(n,y)NM

and projections

[0

P(v)'—+P(a)><( I S(a7)x ﬁ 5(§7V)>——»’R(077)

C€[p,a]NM €€(a,y)NM
suitably. These alternatives would not work for some reason to be mentioned in §6.

Now suppose that o < 7 are both from (u, ] N M. In what follows we let
« E

Qo= J[ Sln®x J[ SEnF,

¢€lp, M ¢€(a,v)NM

81
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so that we have
R(a,v) = P(a) * Q(e, 7).

We also let
a E
Qo= [ Semx ] seE
(€ (p,a]NM ¢€(a,y)NMM
Thus

Moy : P(7) = P(a) % Q(a,7)
is the composite of the following projections:
Ya A @ -
P(y) — P(a) x Q(a,7) — P(a) * Q(a,7).
We extend the convention and state e.g. that
§(mex : (P(K)) = P(r) % 5(Q) (5, A)

is the. composite of the following projections:

i(P(r) 222 Py x (@) (K, A) 122 P(k) # 5(Q)(k, A).

6. MASTER CONDITIONS

We keep the convention of §5: Let 4 < k < A be regular cardinalsand 7: V —- M
witness that k is huge with target A\. We need at least a master condition for a
projection

7 (P00 % 3(@)(8, X)) — P(x) % 5(Q)(x, X).
To get one, we need a master condition for a projection
K K
il P [ SENE@D | s Pr)x [ Sk 2R,
a€u,x]NM a€p,k)NM

The problem reduces to that of getting for each a € (u, k) "M a master condition
for a projection

3 (P(6) % (0, )F@ Q@) Pl 5 S, \) P em),
which in turn reduces to getting a commutative diagram of the following form:
. .(Wan) . :
3(P(x)) Tress (P * Qe w)

e | k2

P(k) * S(x, /\)P(“)*Q("‘"‘) ——s (P(a) * Q(a, n)) * S(k, ).

o Xid
E . .
This is the reason why IT S(& ) appears as a component of 7(Q)(k, ),
£€(x,A)NM

while j(P(x)) does not (at least seemingly) have the corresponding component (see
Remark 2). More specifically, our definition makes the first diagram in the proof of
Lemma 8 commute.
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Suppose a € (i, k) N M. For the following lemma, let
I E

pa: [ T(RGR),860)x ] T (P(x), $(6,Y))

CE[p,K]NM £€(k,A)NM

ST (R(a, k), $(x, A))

be the projection to the a-th coordinate: pr,(q) = ¢(a). Define a map

pq( fﬁ T (R(¢,0),5(a,5)) x ]ﬁ Tﬁﬂwﬁﬁﬂﬁ)*
¢€l

1,0)OM £c(a,k)NM
@ E
[I 7(RGa)S@m)x I T (P bEn)xT(P),sN)
CE[p,0lnM €€(a,k)NM

as follows: We first identify the domain of p with

I T (R(¢, @), $(a, X)) x ﬁ T (P(a), $(6, 1)) % ﬁ T (P(a),$(60).
¢E[p,a]nM §€(a,k)NM £€(x,A)NM

Let p be the projection identified with

H r'sﬁ X H r'sfc X Pry,

¢E[u,a]NM £€(a,k)NM
where
58 : T (R(G, @), 5(0,2) = T (R(G @), 5 m))  aga 15(8) = 3l(ax x)
58 : T (P(), 5(¢, %)) — T (P(a), (&) I p(a 155(8) = 31(€ x k)
E
pro: [[ T(P),560) — T (P(e), 8(s,3)) pr(a) = a(k).
EE[K,A)NM

Finally note that P(a) (Q(a, k) x S(k, A)) and (P(a) *Q(a, /c)) * S(k, \)P(@)
are canonically isomorphic, and the following diagram of projections commutes:

(P(a) *Q(ay)) % S(k, N) 14X 56)an, (P(e) *Q(a,n)) « 8(r, \)P(@)

idl lid X J(K)2

(P(a)*Q(a, n)) X S(0N) (P(a)*Q(a, n)) x 8k, ).
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Lemma 8. Suppose a € (u, k) N M. Then the following diagram commutes:

§(P(x)) Zr, j(Ple) * Qe k)
j(“)n,\l lid Xp
P(r) % §(Q)(k, A) P(a) * (Qla, %) x 5(x, )
id xp'ral lid x j(k)gx
P(k) % § (s, \)P(1QEn) ——, (P(a)*Q(a,n)) * $(k, \).

It remains to get a master condition for a projection

E E
j(P(N)* 11 S(’Y,/\))—’P('C)* I st»

vE(k,A)NM YE(K,A)NM

via a suitable extension of Kunen’s lemma:

Lemma 9. Suppose
o j:V — M witnesses that & is huge with target A and P C V has the k-cc,
E ) ‘
e p:j(P)=Px [ S(vA) is a projection,
YE(K,A)NM
e 1;p) is a master condition for ¢~ : j(P) — P.

Then there is a master condition (1;p),r*) for

E E
A (P* H .S"('y,)\)) — Px H Sy, ).

YE(K,A)NM yE(K,A)NM

7. THE MAIN THEOREM

This section is devoted to a proof of the following theorem:

Theorem 10. Let u < & be reqular cardinals with < 2-huge. Then there is a forcing
extension in which k = pt and (ut, utt, ut) - (T, ut, 1) holds.

Proof. Let j : V — M witness that « is 2-huge, A = j(k) and § = j(\). Then
®M C M. Define

J(R)(k,A) = P(k) x 5(Q)(k, A)
as in §5. We claim that forcing with (P(n) * 7(Q)(x, )\)) *S(), ) yields the required
model.

First note that P(k) C Vj is u-closed and has the k-cc by Lemma 7. Having
S(u, k) as a complete suborder, P(k) forces k = u*. Since P(k) has the x-cc and
§(Q)(k, \) as defined in §5 is k-closed, P(k) x 5(Q)(k, A) forces k = u* by Easton’s
lemma. Since there is a projection from P(k) x j(Q)(k, ) to P(k) x 5(Q)(k, ),
the latter forces k = ™ as well. Since there is a projection from j(P(x)) = P(})
to P(k) x j(Q)(x,A), the A-cc of the former implies that of the latter. Having
P(k) * S(k,)) as a complete suborder, P(k) * j(Q)(x,A) forces A = kt. Thus
(P(n) * 7(Q)(, /\)) * S(),0) forces k = ut, A= pt+ and § = ut++t.
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It remains to prove that (6, A, k) — (), &, 1) holds in some forcing extension by
(P(n) * §(Q)(k, /\)) * S'(A,G). Since °M C M, the sets of regular (resp. Mahlo)
cardinals < 6 are the same between V and M. Furthermore j sends the relevant
posets as expected:

(P = Q(,1) *8(5,0) = (P(r) % 5(@)(3, 1)) * 67, 0),

K A
Pi)x [ SN P)x [ SO0 BN,

a€p,k]NM a€u,AJ0M
E
P(x) H SN = PN+ I 80,0
yE(k,A)NM YE(A,0)NM

Claim. There is a master condition (Lip(ey), " 1*) for

3mh 3 (PO *3(@)(5, 1)) = Ps)*5(Q)(s, V).
Proof. Define
= U{j(d) :dNk CM has size < Fi/\dffi C (k,A) N M is Easton}.

Then d* N A = [u, k] N M. Since X is inaccessible, |{d C A :dis Easton}| = A. Since
each j(d) — X is an Easton subset of (\,0) N M, so is d* — A.
Let a € [u, k] N M. Define a projection

@u 1 §(P(K)) = P(r) % S(r, \) (&)
by composing the projections

J(P(R)) L2 Pw) % 5(Q)(k, A) B2 (k) x S, A)Rla).

Here pr, denotes the projection to the a-th coordinate as defined for Lemma 8.
We claim that there is a master condition (1;(p(x)), ¢*(cx)) for

id x pr

of:j (P(n)*S(n,,\)RW‘)) o P() % S (s, )@,

If o € {u,k}, then R(a,&) = P(k) and hence the claim follows from Kunen’s
lemma. Suppose next o € (u,x) NM. By Lemma 8 we get a commutative diagram
of projections of the following form:

3(P(x)) LT, (B(ay )

o L

P(k) * S(x, )\)R(“ %) —— R(a, k) * S(k, A).

Tax Xid
Also by Kunen’s lemma we get a master condition (1;(g(a,x)), 7*(c)) for
@} 5 (R, k) % 8(, X)) = Ry ) % 8(s, N).

It is easy to check that 1;p(.)) is a master condition for o5 : j(P(k)) — P(k).
Thus (1(p(x)), ¢*(c)) is a master condition for ¢} by Foreman’s lemma.
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Now it is straightforward to check the hypothesis of Lemma 9 with P = P(k)
and ¢ the composite of the projections

§(P() 222 P(s) % (@) X) 2 Ple)x T $(n ).
~YE(K,A)NM

Here p denotes the restriction to the upper coordinates: p(gq) = g|(x,A). Thus we

get a master condition (1;(p()),r*) for

E E
et j|Px J[ SN ]| -Pw* [ SN

YE(K,A)NM YE(K,A)NM

It is easy to check that (1;(p(x)), (¢*(a) : @ € [u,k] "M)"7*) is a master condi-
tion for j(m)¥,, as desired. O

Let H C P(A) % Q(),8) be V-generic with (1;(p(x)),q*"r*) € H and G be the
projection of A to P()\). Then H = j(w)},[G] is V-generic over P(x) x 5(Q)(k, \),
and we can extend j to j : V[H ] = M[H) in V[H]. Recall that there is a projection
from P(A)xQ(,6) to P(A)xS(}, 9)P()*i(Q)(%:X) which is a dense subset of P(\)*
S\ 0)F (m)*5(Q)(%:)) Hence we get a V[H]-generic filter over S(),0)VH] (say) K
Standard arguments show that {Jj“K € S(6,5(8))™ 1], Let K C S(6,35(6)M# 18]
be V[H]-generic. Then j“K C K. Thus we can extend j : V[H] — M[H] further
to j : V[H][K] — M[H][K] in V[H][K].

The rest of the proof is as in Theorem 6. Fix f : <“6 — 6 in V[H|[K]. Then
7“0 witnesses that in M[H][K] there is z € [j(8)]? closed under j(f) such that
lzNj(A)| = A = j(k) and |z N j(k)| = |k| = p = j(u). By elementarity there
is € [f]* closed under f such that [z N A| = & and |z N &| = p in V[H]|[K], as
desired. O
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