
Application of the lace expansion to the $\varphi^{4}$ model

Akira Sakai1

Department of Mathematics
Hokkaido University

The $\varphi^{4}$ model is a standard model in scaler field theory. It is defined as the Gaussian
free field combined with quartic self-interaction. Let $\Lambda\subset \mathbb{Z}^{d}$ and define the Hamiltonian
for the spin configuration $\varphi=\{\varphi_{x}\}_{x\in\Lambda}$ as

$\mathscr{H}_{\Lambda}(\varphi)=-\sum_{\{u,v\}\subset\Lambda}\mathscr{J}_{u,v}\varphi_{u}\varphi_{v}+\sum_{v\in\Lambda}(\frac{\mu}{2}\varphi_{v}^{2}+\frac{\lambda}{4!}\varphi_{v}^{4})$,

where $\mu\in \mathbb{R}$ plays the role of the temperature, while the intensity $\lambda$ of self-interaction
is fixed nonnegative. We assume that the spin-spin coupling $\mathscr{J}_{u,v}$ is ferromagnetic (i.e.,
$\mathscr{J}_{u,v}\geq 0)$ , translation-invariant $(i.e., \mathscr{J}_{u,v}=\mathscr{J}_{0,v-u}),$ $\mathbb{Z}^{d}$-symmetric and finite-range.
For example, the nearest-neighbor coupling $\mathscr{J}_{0,x}=\delta_{|x|,1}$ satisfies all those properties. Let

$\langle\varphi_{0}\varphi_{x}\rangle_{\mu}=\lim_{\Lambda\uparrow \mathbb{Z}^{d}}\frac{\int_{\mathbb{R}^{\Lambda}}\varphi_{0}\varphi_{x}e^{-\mathscr{H}_{\Lambda}(\varphi)}d^{\Lambda}\varphi}{\int_{\mathbb{R}^{\Lambda}}e^{-\mathscr{H}_{\Lambda}(\varphi)}d^{\Lambda}\varphi}.$

It is known to exhibit a phase transition and critical behavior: there is a $\mu_{c}=\mu_{c}(d, \mathscr{J}, \lambda)$ ,
which is not larger than the critical point $\hat{\mathscr{J}}\equiv\sum_{x\in \mathbb{Z}^{d}}\mathscr{J}_{0,x}$ for the Gaussian free field,
such that $\chi_{\mu}\equiv\sum_{x\in \mathbb{Z}^{d}}\langle\varphi_{0}\varphi_{x}\rangle_{\mu}$ is finite if and only if $\mu>\mu_{c}$ and diverges as $\mu\downarrow\mu_{c}[7].$

There were intensive researches in the $1980$ ’s when Aizenman [1] and Fr\"ohlich [2] succeeded
in showing mean-field behavior (e.g., $\chi_{\mu}$ is bounded above and below by a positive multiple
of $(\mu-\mu_{c})^{-1}$ as $\mu\downarrow\mu_{c})$ above 4 dimensions under the assumption of reflection-positivity.
The nearest-neighbor model satisfies this assumption. In 4 dimensions, Gawedzki and
Kupiainen [4] and Hara and Tasaki [5, 6] succeeded in showing the mean-field behavior
(with $\log$ corrections) for the weakly coupled nearest-neighbor model using a rigorous
renormalization-group method.

The sufficient condition for the mean-field behavior that Aizenman suggested in [1] is
the bubble condition

$\sum_{x\in \mathbb{Z}^{d}}\langle\varphi_{0}\varphi_{x}\rangle_{\mu_{c}}^{2}<\infty.$

For reflection-positive models, the Fourier transform of $\langle\varphi_{0}\varphi_{x}\rangle_{\mu}$ is known to obey the
Gaussian infrared bound [3]

$0 \leq\sum_{x\in \mathbb{Z}^{d}}e^{ik\cdot x}\langle\varphi_{0}\varphi_{x}\rangle_{\mu}\leq O(|k|^{-2})$
uniformly in $\mu>\mu_{c},$

which implies that the bubble condition holds for $d>4$ , hence the mean-field behavior.
Although the result is satisfactory, it is often hard to verify the assumption of reflection-
positivity.

The goal of my research is to investigate asymptotic behavior of the critical two-
point function $\langle\varphi_{0}\varphi_{x}\rangle_{\mu_{c}}$ above the upper-critical dimension, without the assumption of
reflection-positivity. In [9], we prove the following:
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Theorem 1. Let $\rho=2(d-4)>0$ and $0<\lambda\ll 1$ (depending on $d$ and $\mathscr{J}$ ). Then there
is a $\Phi_{\mu}(x)=\langle\varphi_{0}^{2}\rangle_{\mu}\delta_{o,x}+O(\lambda)(|x|\vee 1)^{-(d+2+\rho)}$ , where $O(\lambda)$ is uniform in $\mu\geq\mu_{c}$ , such
that

$\mu_{c}=\hat{\mathscr{J}}-\frac{\lambda}{2}\hat{\Phi}_{\mu_{c}}, \langle\varphi_{0}\varphi_{x}\rangle_{\mu_{c}}|x|\uparrow\infty\sim\frac{\frac{d}{2}\Gamma(\frac{d-2}{2})\pi^{-d/2}}{\sum_{y\in \mathbb{Z}^{d}}|y|^{2}(\mathscr{J}_{0,y}-\frac{\lambda}{2}\Phi_{\mu_{c}}(y))}|x|^{2-d}.$

The key elements for the proof of the above theorem are the following:

1. The Grifliiths-Simon construction [10] to approximate the $\varphi^{4}$ model on $\Lambda$ to some
Ising model on $\Lambda\cross\{1,2, \ldots, N\}.$

2. The lace expansion for the Ising two-point function [8].

3. Detail estimates on the expansion coefficients in terms of $N[9].$

These steps yield a linearized version of the Schwinger-Dyson equation, which further
yields the aforementioned asymptotic expression for $\langle\varphi_{0}\varphi_{x}\rangle_{\mu_{c}}.$
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