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On stochastic differential equation for SLE
on multiply connected planar domains

Masatoshi Fukushima

1 Introduction

In 2000, Oded Schramm [S] formulated the stochastic Loewner evolution
(SLE) on the upper half plane H with a finding that the possible candidates
of the driving processes are {(t) = \/kB;, where B, is the standard Brownian
motion on OH and & is a positive constant. The SLE, was then produced
as the solution of the chordal Loewner equation associated with this driving
process.

We aim at extending the SLE to multiply connected domains. Based
on recent results in [CFR] on the chordal Komatu-Loewner equation and
following lines briefly laid by [BF2], we show that, for a corresponding evo-
lution for a standard slit domain D = H \ U;c\r=1 Ck, the possible candidates
of the driving processes are given by the solution (£(t),s(t)) of a special
Markov type stochastic differential equation, where & (t) is a motion on OH
and s(t) is a motion of slits Cy, 1 < k < N. When no slit is present, it
reduces to \/kB; as above. The solution of the SDE is then substituted into
the KL equation to produce stochastic Komatu-Loewner evolution.

A domain of the form D = H\ Uivzl Cy is called a standard slit domain
where {Cy} are mutually disjoint line segments parallel to z-axis contained
in H. The collection of standard slit domains is denoted by D.

We fix D € D and consider a Jordan arc

v:[0,ty) = D, ~(0) € 8H, 4(0,t,) C D,0 < t, < oo. (1.1)

For each t € [0,¢,), let
¢ : D\ ~[0,¢] — Dy (1.2)

be the unique conformal map from D\(0, ] onto some D; = H\UY_, Ci(t) €
D satisfying a hydrodynamic normalization

g:(2) = 2 + 92-? +o(1), z-— o0 (1.3)

at is strictly increasing in ¢ with ag = 0, that is called half-plane capacity.
We also define
£(t) = g:(7(t)) (€OH), 0 <t <t,. (1.4)
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For a Borel set A C H, we use 0,A to denote the boundary of A with
respect to the topology induced by the path distance in H\ A. For instance,
when A C H is a horizontal line segment, then 0,A consists of the upper
part A* and the lower part A~ of the line segment A.

In §8 of [CFR], the following continuity properties of those quantities
mentioned above are established:

(P.1) For every 0 < s < ty, g¢(z) is jointly continuous in (t,z) € [0, s] x
((D x 8,K U BH) \ [0, 5]), where K = {Jp_, Ck.

(P.2) a; is continuous in ¢ € [0,t,) so that the arc v can be reparametrized
in a way that a; = 2¢, 0 < t < ty, which is called half-plane capacity
parametrization.

(P.3) £(t) € OH is continuous in t € [0, t,).

(P.4) D; € D is continuous in ¢ € [0,t,) with respect to the topology in D
described in the beginning of §3.

Historically g¢:(z) has been obtained by solving the extremal problem
to maximize the coefficient a; among all univalent functions on D \ +[0, ¢]
with the hydrodynamic normalizaion. it follows that a; is strictly increasing.
But, in order to prove the above continuity properties, we need to use the
next probabilistic representation of g;(z) shown in §7 of [CFR]:

Let ZB* = (Z™* P*), z € D*, be the Brownian motion with darning
(BMD) for D and let F; =~[0,t], Ty ={z=z+1iy:y=r}, 7 >0. Then

S gi(2) = lim r-P2*(or, < 0p), (1.5)

r—00

which was first obtained in [L] for Ezcursion reflected Brownian motion
formulated there in place of BMD.

It is proved in [CFR, Theorem 9.9] that the family g:(z) satisfies the
Komatu-Loewner equation under the half-plane capacity parametrization of

v:

dgt(z)
dt

= —2mU(g:(2),€()), go(2) = 2 € (DUGK)\[0,t,), 0Lt <ty,
(1.6)

where Uy(z,&), z € Dy, & € OH, is the BMD-complex Poisson kernel for Dy,
namely, the unique analytic function in z vanishing at oo whose imaginary
part is the Poisson kernel of the BMD for the standard slit domain D;.

The ODE (1.6) has been obtained in [BF2] and in its original version
by Y. Komatu [K], but only in the sense of left derivative with respect to ¢.
The differentiability of g:(2) in t is established in [CFR] by combining (P.1),



(P.3), (P.4) with a Lipschitz continuity of the BMD complex Poisson kernel
U(z,&) of D € D.
This is a résumé of a part of my joint work with Zhen-Qing Chen.

2 Bauer-Friedrich equation of slit motion

For a standard slit domain D = H\ Uszl Ck, the left and right endpoints of
the k-th-slit Cy are denoted by 2, = zj + iy and 2, = x}, + iy, respectively.
The Jordan arc vy will be parametrized by the half-plane capacity which is
possible by (P.2). For t € [0,,), the conformal map g; from D \ [0, ¢] onto
Dy can be extended analytically to 9,K in the following manner.

We fix 1 < j < N. O} denotes Cj \ {2, z;}. We consider the open
rectangles

Ry={z:z¢€ (:cj,:c;-), y € (y5,y;+90)}, R-={z:z € (xj,a:;-), y € (y;—0,y;)},

and R=R, U CJQ UR_ for § > 0 with Ry UR_ C D\ v[0,t,). Since Sg;(2)
takes a constant value at Cj}, g; can be extended to an analytic function g;“
(resp. g; ) from R, (resp. R_) to R across C'J(-) by the Schwarz reflection.

We next take ¢ > 0 with ¢ < f}__gﬁ so that B(zj,e) \ Cj € D\ 40, t,].
Then ¢(2) = (z — 2;)"/? maps B(z;,¢) \ Cj conformally onto B(0, /) N H.
As in the proof of [CFR, Theorem 7.4], f{(2) = giov™(2) = g(22 +2;) can
be extended to be analytic in z € B(0, y/z) by the Schwarz reflection and by
noting that the origin 0 is a removable singularity for ff. Analogously we
can induce an analytic function f{ on B(0,+/z) from ¢; on B(2},e) \ Cj.

Theorem 2.1 The endpoints z;(t) = z;(t) + iy;(t), 2;(t) = (t) + iy;(¢),
of the slit C;(t) satisfy the following equations for 1 < j < N:

%yj(t) = _2W$\pt(zj (t): f(t)), (2.1)
%wa’ (8) = —2mRWy(2(t), £(2)), (2.2)
ditx;' (t) = —2mRW: (25 (1), £(2)), (2.3)

If
gt(zj) = zj(t)a gt(z;) = Z;’(t)a te (Oat’)’)a 1 SJ < Na (24)
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then Theorem 2.1 is merely a special case of the Komatu-Loewner equation
(1.6) with 2 = 25, z = z 1 < j £ N. But we do not know the validity of
(2.4) in advance so that Theorem 2.1 requires a proof.

Its proof can be carried out by using the analytic extensions of the map
gt to OpK as are described in the paragraph preceding Theorem 2.1. Very
roughly speaking, the derivative *-=g;(2)’ is then shown to be a C'-function
in two variables ¢ > 0 and z € 0,K. Further, by a complex analytic ar-
gument,the pre-image z;(t) € 9,C; of z;(t) under g; is proved to satisfy
%gt('z“j (t)) =0, di;ggt(ij(t)) # 0, and an implicit function theorem yields
Theorem 2.1.

We can now combine Theorem 2.1 with a local uniqueness of the solution
of (1.6) as will be described in Proposition 4.3 below to conclude that (2.4)
is actually the case.

We call (2.1)-(2.3) the Bauer-Friedrich equation as it first appeared in
[BF1, BF2].

3 Randomized curve 7 and induced process W

3.1 Random curve with domain Markov property and con-
formal invariance

Let D be the collection of all (labelled) standard slits domains.
For D, D € D, define the distance d(D, D) by

d(D, D) = max (Iox — 5l + |24, — ).

We define an open subset S of the Euclidean space R3N by
S = {(y,x,x)eR¥: y x,x¥eR", y>0, x<x,
either 93; < z, or z), < zj whenever Yi =Yk, J # Kk}

The space D can be identified with S as a topological space. We write s(D)
(resp. D(s)) the element in S (resp. D) corresponding to D € D (resp.
s € S5).

A set F C C is called a compact H-hull if F is a compct continuum,
F=FNHand H\ F is simply connected. We let

D= {D=D\F:DeD, F compact H—hull, FNH C D}.
For D € ﬁ, let
QD) = {y={y(t):0<t< ty} : Jordan arc,
7(0,00) € D, 4(0) € BH\ F), 0 < t, < oo} .



Two curves v, 7 € Q(D) are regarded to be equivalent if ¥ is obtained from
7 by a reparametrization. Q(D) will designate the family of the equivalence
classes of Q(D).

Given v € (D), the associated conformal map g; from D \ ~[0,¢] to
D; € D (for t € [0,t,)) is required to satisfy the hydrodynamic normal-
ization (1.3). Due to (P.2), the curve v admits its half-plane capacity
reparametrizatioll.

Each 4 € Q(D) will be represented by a curve (denoted by % again) be-
longing to this class parametrized by half-plane capacity. We conventionally
adjoin an extra point A to H and define 4(t) = A for ¢ > t4 so that 4 can
be regarded as a map from [0, oo] to HU {A}. We then introduce o-fields of
subsets of Q(D) by

Gi(D) = (a{¥(s): 0<s<tHN{t<ty}, t>0, G(D)=o{¥(s):s>0).

For each D\F €eDandze O(H\ F), we consider a probability measure
Ps, 0 n (Q(D), G(D)) satisfying

P5,({(0) = 2}) = 1. (31)

and further (DMP) and (CI) stated below.
For each D € D and ¢t > 0, define the shift operator
6; : Qﬂﬂfﬁt<tﬁ*ﬁfND\7mtD by (6:9)(s) = 4(t+s), s € [0,t5—1).

(DMP) (domain Markov property): for any ¢ > 0 and any D € D,

Pp,: (6 *AIGD)) = Posionaey (M), VA € G(D\A[0, 1), Ve oML
(32)
(CI) (conformal invariance): for any D=D \ F € D and any conformal
map f from D onto f(D) € D,

P Vz € O(H\ F). (3.3)

1)) = F+ Ppe
3.2 Markov property, Brownian scaling property and homo-
geneity of W

For each D € D, 4 € Q(D) and t € [0, ty), 4 induces the conformal map
gt from D \ [0,¢] onto D; = g;(D) € D, which sends (t) to &(t). Let
{s(t) = s(Dy), t € [0,¢4)} be the induced slit motion, where Dy denotes D.
We then consider a joint process

W, = (€(t),s(t) ERx SCRN*TL <t <ty,
4 t > ty,
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where ¢ is an extra point conventionally adjoined to R x S.
We shall occasionally write s(t) as g¢(s) for s = s(D).
For £ € R and s € S, define a probability measure P o

on (Q(D(s)),G(D(s))) by
Ple,s) = Pp(s),(£,0)-

Theorem 3.1 (time homogeneous Markov property of (Wy, P )))
(W} is {G:(D(s(0))}-adapted. It holds for any £ € R,s € S that

Pes)(Wo = (§,8)) = 1, (3.4)

Pies) (Wirs € B| Gu(D(s))) =Pw, (W, € B), t, 5>0, Be BR xS).
(3.5)

Theorem 3.2 (Brownian scaling property of (W, P q)))
Forse S, é€eRandanyc> 0

{c"'W 2, t > 0} under Ppe o) ~ {Wy, ¢ >0} under Pies)- (3.6)

For n € R, denote by 7 the 3N-vector with the first N-entries 0 and the
next 2N-entries 7. Notice that

s(D+n)=s(D)+7n, for DeD, neR.

Theorem 3.3 (Homogeneity of (W, P q) in z-dirction)
Forse S, £€eRand anyn € R

UE(t)—n,s(t)~7), ¢ 2 0} under P4y o1y ~ {(£(t),s(2)), t 2 0} undez?ip’%,sr

3.3 Stochastic differential equation for W

We write w = (£,s) € Rx S. We have shown by Theorem 3.1 that (W, Py)
is a time homogeneous Markov process taking value in R x § < R3N+L,
Its sample path is continuous up to the life time ¢; < oo owing to (P.3)
and (P.4). Denote by P, its transition semigroup defined as P f(w) =
Ew[f(W)], t >0, we Rx S.

Denote by Co(R x S) the space of all continuous functions on R x S
vanishing at infinity. In this section, we shall assume that {P;;t > 0} satisfies
the following property:



(C) P(C(Rx S)) C Co(R x S), t >0, CP(R x S) ¢ D(L),
where L is the infinitesimal generator of {P, t > 0} defined by

Lf(w) = lim%(Ptf(w)—f(w)), weERXS,

£10
D(L) = {fe€Cx(RxS): the right hand side above
converges uniformly in w € R x S}. (3.8)

Then (W, Py,) is a Feller-Dynkin diffusion in the sense of [RW]. In view
of [RW, III, (13.3)], the restriction £ of L to C(R x S) is a second order
elliptic partial differential operator expresed as

1 3N+1 3N+1
LEW) =5 D7 ai(W) fuu, W)+ Y Bi(w) fuy (W) +h(W) f(w), w € RxS,
i,j=1 i=1

(3.9)
where a is a non-negative definite symmetric matrix valued continuous func-
tion, b is a vector valued continuous function and k is a non-poisitive con-
tinuous function.

A real funcion u(w) = u(¢,s) on R x S is called homogeneous with degree
0 (resp. —1) if

u(cw) = u(w) ( resp. u(cw) = %u(w) ) forany c>0.

The same definition of the homogeneity is in force for a real function u(s)
on S.

Lemma 3.4 (i) a;j(w) is a homogenous function of degree 0 for every
0 <14,j <3N +1, while b;(w) is a homogenous function of degree —1 for
every 1 <i <3N + 1. k(w) vanishes identically.
(ii) For every 1 <4,5 <3N +1,
a'ij(§ +n,8+ ﬁ) = aij(&a S)a bi(f +n,8+ ﬁ) = bi(£75)7 (310)
forany £ €R, s€ S, neR.
Now (3.8) implies that
t
Bf(w) = fw) = [ Pu(Lf)w)ds, 120, weRx S, f e CX(Rx 5).
0
(3.11)
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We denote by Wt(j ) the j-th coordinate of the process W, so that
w =g, W, wEV) = s(0).

On account of [RY, VIL,(2.4)], (3.9) and (3.11) imply that the process
M =wP —wi /Ot bj(Weds, ¢>0, 1<j<3N+1,
are local martingales with
(M?, M*); = /Oajk(Ws)ds, t>0, 1<jk<3N+1. (3.12)

Recall that, for s = (y,x,x'). y,x,x’' € RV, z; = z; + iy;, z; = x; + iy,
are the endpoints of the slit C; in D(s) € D1 < j < N. For s € S, let
Us(z, &) be the complex Poisson kernel of the Brownian motion with darning
(BMD) on D(s). Then the Bauer-Friedich equation (2.1)-(2.3) established
in §2 reads

£) —8,(0) = / d;(W(s))ds, t320, (3.13)

for the function d;(w) = d;(¢,s) defined by

dj(w) = —2mRTs(z;,£), N+1<j<2N, (3.14)

=275 (25,§), 1<j<N,
—2mRTs (25, ), 2N +1<j<3N.

In particular, we are left with one martingale M!:
t

Mi=0 2<j<3N+1. (M MY = / a11(Wy)ds., t > 0.
0

Theorem 3.5 (i) The diffusion W = (§(t),s(t)) satisfies under P(¢ 4 the
following stochastic differential equation:

£t) = £+ /0 a(s(s) — &(s))dB, + /0 d(s(s) - £(s))ds  (3.15)
si(t) = s+ / d;(€(s),s(s))ds, t>0, 1<j<3N, (3.16)
0

for a mon-negative homogeneous function a(s) of s € S with degree 0, a
homogeneous function d(s) of s € S with degree —1 and the functions



d;((¢,8)), 1 < j < 3N, given by (3.14). Here B, is a one-dimensional
standard Brownian motion and g(s) denotes the 3N -vector with the first
N-entries 0 and the next 2N -entries £(s).

(ii) d;(0,s) is a homogeneous function of s with degree —1 and

dj(§+n,s+ﬁ)=dj(§,s), EER, sef, neR, 1<j5<3N. (3.17)

4 Stochastic Komatu-Loewner evolution

4.1 Solving the SDE for given coefficients (o, d)
We consider the following condition for a real function f=f(s)onS:

(L) For any sy € S and any finite open interval J C R, there exist a
neighborhood U(sg) of sy in S and a constant L > 0 such that

[f(s1—&) — f(s2—&)| < L|s1 —sa|, sy, s2€U(s0), £€J, (4.1)

where E is the 3N-vector with the first N-entries 0 and the next 2 N-entries
€.

Recall that the coefficient d;(£,s) in the equation (3.16) is defined by
(3.14) and satisfies

dj(£>s):gj(s—g)7 for Jj(S)"—‘dj(O,S), SES: EER, ISjS3N,
(4.2)
by virtue of (3.17).

Lemma 4.1 (i) The function Jj(s), s € S, satisfies condition (L) for every
1<j<3N.

(ii) If a function f on S satisfies the condition (L), then it holds for any
s1, 82 € U(so) and for any &, & € J that

fG1-8) = fle2 = &) < L(ls1 —sol + VENIE - &) . (43)

In this and the next sections, we assume that we are given a non-negative
homogeneous function a(s) of s € S with degree 0 and a homogeneous
function d(s) of s € § with degree —1 both satisfying the condition (L).

Theorem 4.2 The SDE (3.15), (3.16) admits a unique strong solution W, =
(€(1),s(t), t €[0,C), where { is the time when W, approaches the point at
infinity of R x S.
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4.2 Stochastic Komatu-Loewner evolution

Let us consider a solution W, = (¢(t),s(t)), t € [0,(), of the SDE (3.15)
and (3.16) obtained in Theorem 4.2. We write D; = d(s(t)) € D, t € [0,().
Dy is denoted by D.

We substitute (£(¢), s(t)) into the Komatu-Loewner equation

%z(t) = 20, (2(2), £(1)). (44)

We consider solutions z(t) of (4.4) with the initial condition
2(1) = 20 € Dy UG,K (1) U (H\ &(7)), (4.5)

for any initial time 7 € [0,¢) and any initial position zp.
Foreach1 < j < N, G, CO C’O+ U C’O will denote the set 0,C; with
its two endpoints being removed We further let 8,K° = UN 10p C’O

Proposition 4.3 Take any 7 € [0,().
(i) For each 1 < j < N and for z9 = 2j(7) (resp. 2o = 2;(7)), {2;(¢), t €
[0,¢)} (resp. {z;(t), t € [0,()}) is the unique solution of (4.4) satisfying
2(1) = 2p.
(ii) For each 1 < 7 < N and for zy € C;)’+(T) (resp. zp € CJ(-]’_(T)), there
exists a unique solution {z(t), t € [0,()} of (4.4) satisfying z(7) = zo. It
satisfies that z(t) € C;?’f(t) (resp. 2(t) € C?’—(t)) for every t € [0, ().
(i) For zo € OH\&(7), there exists a unique solution {z(t), t € (t7,,,t5 )}
of (4.4) satisfying z(1) = z9. It satisfies that 2(t) € OH for every t €
(t;zo’ Tzo) Here
tra = inf{t € [0, 7) : infse[t,fr) |2(s) — &(s)| > 0},
tf 20 = sup{t € (7, () : infye(r g |2(s) — §(s)| > O}.

(iv) For zg € D,, there ezists a unique solution {2(t), t € [0,t;,,)} of (4.4).
It satisfies that z(t) € Dy for every t € (0,1, ,,). Here

trzo = sup{t € (r,¢) : inf g 12(8) — €)1 > 0}. (4.6)

By Proposition 4.3 (iv), we see that, for each z € D, there exists a unique
solution z2(t) € Dy, t € [0,t;), of the equation (4.4) with initial condition
2(0) = z. Here

t: =sup{t € (0,¢): inf |2(s) —£(s)[ > 0} (4.7)
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We let
Fr={2eD:t,<t}, t>0. (4.8)

Theorem 4.4 (i) There exists a unique solution gi(z), t € [0,t,), of the
equation

2 01(2) = —2mUyi (9e(2),E(8), golz) = = € D. (49)

gt s a one-to-one map from D\ F; onto D; for each t > 0.

(ii) F; is a bounded closed subset of H. H \ F} is simply connected.

For each t > 0, g; is a conformal map from D\ F; onto D;.

(iil) g:(2) satisfies the hydrodynamic normalization condition at infinity.
(iv) Fy is strictly increasing in t.
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