0000000000
0 18550 20130 222-228 222

Strong Solutions of Infinite-dimensional SDEs
and Random Matrices

Hirofumi Osada (Kyushu University)
Hideki Tanemura (Chiba University)

This paper is an announcement of our recent results that will be published in [6] and
[7] as full papers.

Let S be a connected open set in R%. We will take S = R and (0, 00) for example. If
S = R?, then we naturally regard R? as C. S is a space where infinitely many particles
move. If S has a boundary, we will suppose no particles hit the boundary for simplicity.

We present a new method to construct unique, strong solutions of infinite-dimensional
stochastic differential equations (ISDEs) describing interacting Brownian motions (IBMs).
Namely, we will solve ISDEs on SN. Our method can be applied to IBMs with Ruelle’s
class interaction potentials (with minimal smoothness just for the necessity to consider
SDEs) such as Lennard-Jones 6-12 potentials in R? and 2D Coulomb potentials in R and
R? related to random matrix theory such as Dyson’s model (sine random point fields)
and Bessel random point fields. As an application, we detect and solve the ISDEs whose
unlabeled dynamics reversible with respect to Airys random point fields with inverse
temperatures 8 =1, 2,4.

When S = 2, infinite-dimensional stochastic dynamics has been constructed by a
method of space-time correlation functions, which we will refer to the algebraic method,
by Spohn and Johansson and others. We will prove that their dynamics is same as our
stochastic dynamics given by the strong solution of the ISDE.

1 A new and equivalent notion of strong solutions
of ISDEs

Since our method is flexible and seems to be applied in various situation, we state it in a
general framework.

Let W(SN) = C([0, T); SN) and let Wy, be a Borel subset of W(SN). Let o?, b*: Weo —
W(SN). Let Sy be a Borel subset of SN.

We consider a quadruplet ({o%}, {b*}, Wsa1, So) and the ISDE on SN of the form

dX! = ¢*(X)dB; + b'(X):dt (i € N) (1.1)
Xo=8=(5i)ien €So (1.2)
X € Wgqr- (13)

Here X = {X;}ieor) = {(X})ien}ieor] € Wsor, and B = {B*} (i € N) is the SN-valued
standard Brownian motion. By definition, B is a product of independent copy of S-valued
standard Brownian motions.

Let WO(SN) = {X € W(SN); X, = 0}. We assume:
(P1) The ISDE (1.1) has a solution (X,B) € W(SN) x W9(SN) for each s € S,.

For a probability measure P, on W(SN) x WO(SN) we denote by P, g the regular
conditional probability. We set

Ps,B = Ps(x € '|B)v P = ps(x € ')’ Pg = PS(B € ) (1~4)



We next introduce a system of finite-dimensional SDEs associated with the ISDE
(1.1)~(1.3). For this we prepare a couple of notations.
For a path X = (X});en € W(SYN) and m € N, we set

Xm* — (0, . ‘707 ‘X'tm-l-l,)(trn#ﬂ7 N ) e W(SN)

For X € W1, s € S, and m € N, we consider a system of finite-dimensional SDEs (1.5)
on Y™ = (Y™, ..y,

dY} = o' (Y™ + X™)dBi + b{(Y™ + X™),dt (i =1,...,m) (1.5)
Yo' = (s1,...,8m) € S™, wheres= (8i)i21,

Here X™* is interpreted as a part of the coefficients of the SDE (1.5), and we set
Y™+ X™ = (Y Y XL X, (1.6)

Let W, = {X € Wi ; Xo = s}. We assume:
(P2) For each s € 8y and X € W
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each m € N. Moreover, Y™ satisfies

the SDE (1.5) has a unique, strong solution Y™ for

Y™+ X™ € Wy (1.7)

We remark that the SDEs in (P2) are all in finite-dimensions. We will solve ISDEs by
introducing the consistent family of finite-dimensional SDEs in (P2) and the tail o-field
concerning the path space, which we now define.

Let Tail papn(SN) be the tail o-field of W (SN) defined by

Tail pasn (SN) = ﬁ a[X™]. (1.8)

m=1

For a probability measure P on W (SN), we set

Tail [, (P) = {A € Tail pun (S™) ; P(A) = 1).

(P3) For each s € Sy, the tail o-field Tail path (SN) is Pg-trivial.

We state the main theorems in this section.

Theorem 1. (1) Assume (P1)~(P3). Then ISDE (1.1)~(1.3) has a strong solution for
each s € Sy.

(2) Assume (P2). Let Y and Y, be strong solutions of ISDE (1.1)~(1.3) starting ats € S,
defined on the same space of Brownian motions B. Then Y. =Y, a.s. if and only if

Tail b, (Law(Y,)) = Tail Y,

path (Law(Y7)). (1.9)
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2 A Tail theorem

The first two assumptions (P1) and (P2) in Theorem 1 can be verified by the general
theory developed in [2, 3, 4, 5] together with the classical theory of (finite-dimensional)
SDEs. The third assumption (P3) requires the triviality of the tail o-field of path space
with respect to the label of the particles. This assumption is the most difficult one to be
verified. We will deduce the tail triviality of path spaces from the tail triviality of the
associated configuration spaces. We again give a general statement.

Let S be the configuration space over S. Set S, = {s € S; |s| < r}. Let Tail (S) =
o2, o[mse] be the tail o-field of S. Here m4:S—S such that m4(s) = s(- N A). Let u be a
probability measure on S. We assume:

(Ql)  Tail (S) is p-trivial, that is, u(A) € {0, 1} for all A € Tail (S).

Let W(S) = C([0,T];S) and write X = {X;}o<t<r € W(S). We lift the p-triviality of
Tail (S) to the triviality of the labeled path spaces W (SN) with respect to a lift dynamics
we now introduce. For this we equip S with a measurable subset Sq and a family of
probability measures {Ps}scs, on W (S). We suppose that Ps(A) is measurable in s € S for
each A € B(W(Sp)), and fSo Psv(ds) becomes a probability on W (Sy) for any probability
measure v on Sy.

For a given p, {Ps}scs, are called p-lift dynamics if {Ps}ses, satify (2.1)—(2.3).

w(So) =1, Ps(Xo=s)=1forallseS,. (2.1)
Py, < u for all t € [0,T] and m € L*(y). (2.2)
The density p(t,s,t) is B([0,T]) x B(S) x B(S)-measurable. (2.3)

Here PX, = Ppy o X;, Py = fs Pem(s)u(ds), and p(t,s, t) = Ps o X;'(dt)/du. Moreover,
for given Radon measures u,v, we denote by u < v if u is absolutely continuous with
respect to v.

(Q2) There exist p-lift dynamics {Ps}ses,-
We set Sqi. = {s; s(S) = 00,s({z}) < 1 for all z € S}, and assume that
(Q3) Ps(W(Ss31)) =1 for all s € S.

We call a measurable map [: S — SN a label if u o[ = id. Here u is the unlabel
map defined by u((s;)) = >, ds,. Let [(s) = (In(s))nen be a label. Let [un be the map
lpath : W(Ssi) = W(SN) such that lpan(X)o = I(Xo). This map is well defined because
the domain is restricted on W (Ss;.). We write X = [,on(X). If we write X; = > > | oxp,
where X7 € C([0,T7; S), then by definition X; = (X]*)nen for all ¢.

We set W(S¢) = C([0,T); S¢) and define m,: W (Ss;) >N U {00} by
m,(X) = inf{m € N; X" € W(S;) for all m < n € N}. (2.4)

Here we set [un(X) = (X!, X2%,...) € W(SN) and regard X™ as a map from S,; to
W (S) by the correspondence X = 2, xi —> X™. By construction, this map is the
composition of [, and the path coordinate map X = (X);cen — X™.

(Q4) P, and the label [ satisfy the following.
P.(m,(X) < 00) = 1. (2.5)
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Theorem 2. Assume (Q1)—(Q4). Let Py = P, o [Cain S=1(s), and ' = pol !, Letg
be a sub o-field of Tail paen(SN). Assume that G is countably determined under {Ps}ses,-
Then

(1) G is Py-trivial for p'-a.s. s.

(2) For u'-a.s. s, the set Tail Elth(SN, G;Ps) = {A € G; Py(A) = 1} 4s independent of s
and the particular choice of {Ps}ses, in (Q2).

3 Strong solutions of interacting Brownian motions

In this section, we apply the results to interacting Brownian motions. We will prove the
uniqueness and existence of strong solutions of interacting Brownian motions in infinite-
dimensions.

We begin by introducing the ISDE. Let H be a measurable subset in S. Let u be the
unlabeled map, and set H = u=!(H). Let 0°: S x H— (R)N and b': S x H — (RE*)N
be measurable functions. Let X = (X})jew € W(SY) and set X, = 2 ienOxiy Xi* =
2 jeN, ji 0 x;- Consider the ISDE of Markovian type.

dX] = o(X{,X*)dBi + b(X}, Xi*)dt (3.1)
XO =scH (32)
Xe [path(H)' (33)

We set a(z,y) = o(z,y)'o(z,y) and assume (R1)-(R6) below.
(R1) p has a log derivative d,(z,y) satisfying the identity

b(a,y) = 5{Vaa(zy) +a(z,y)du(z, )}

(R2) p is a (®, ¥)-quasi Gibbs measure, and (®, ¥) is upper semi continuous.
(R3) p* € L (S,dz) and oF € L2(S*, dx;) for all k,r € N.
Here p! is the I-correlation function of 4 and o* are k-density functions on S, = {|z| < r}.

(R4) H is a subset of S satisfying Cap*(H®) = 0. Here H = u(H).
(R5) Each tagged particles are non-explosive. N amely,

P(sup |X}| < oo, forall T,ieN)=1.

0<t<T
(R6) The assumption (P2) is satisfied by taking So = H and Wy, = C([0, T); H).

¢ “quasi-Gibbs meaures” and “log derivative” are most prime notions in our argument.
We refer to [4, 3, 5] for the definition of quasi-Gibbs measures, and [3] for log derivatives.
e From (R2) and (R3), we deduce that (E#,D*) is a quasi-regular Dirichlet form on
L%(S, ). Cap” in (R4) is the capacity associated with this Dirichlet space.

e The assumption (R6) is satisfied if the coefficients a and b satisfy “local Lipschitz
conditions”.

Let yi be the regular conditional probability defined by p, = p(+| Tasl (S))(t). Here
t € S. By construction we see that

p(A) = /ut(A)u(dt), and p(A) is Tail (S)-measurable for each A € B(S). (3.4)
s
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Lemma 3. Assume that p is a quasi-Gibbs measure. Then Tail (S) is p-trivial for y-a.s.
t. Moreover, for p-a.s. t,

(A) = 1a(t)  for all A € Tail (S). (3.5)
Taking (3.5) into account, we introduce the equivalent relation S/ Tasl (S) such that
t~t ot t' €Aforall A€ Tail (S). (3.6)

Theorem 4. Assume (R1)—(R6). Then there exists So such that u(So) = 1 satisfying the
following:

(1) The ISDE (3.1)—(3.3) has a strong solution (X, Ps) for each s € Sy.

(2) So can be decomposed as a disjoint sum So = 3, g (s) Sor such that pe(Sox) = 1,
where Sox = u(So+), and that the sub collection {(X, Ps)}ses,, are Soy-valued, p-reversible
diffusion satisfying

PooX;'<pu forallt for p-as.t. (3.7)

(3) A family of strong solutions {(X,Ps)}ses, of (3.1)—(3.3) satisfying (3.7) is unique for
[
p'-a.s. s.

We next give examples that Theorem 4 can be applied to. Let 8 > 0 be an inverse
temperature.

Example 1. y are canonical Gibbs measures with free potential ® and Ruelle’s class
interacting potentials W.

§V<I>(Xf)dt+§ Z V(X! — X))dt (i € N).

dX} =dB} +

Let S=R3, & =0 and ¥ = {|z|712 — |z|~®} be Lennard-Jone’s 6-12 potentials. Then

- LB = 120X -X]) e(X - X]) .
dX!=dBi + = (== - =t gt (ieN).
b 2].},;# IXi-Xx{|Xi - X]|B

Example 2. u are sineg random point field with 5 = 1,2,4. Then S = R and

i i B .. 1
dXt = dBt + E r]-l—glo Z _z_—)(Jdt
[Xi-Xi|<r,j#i ¢ t

Example 3. p is Besselg random point field with § = 2. Then S = (0,00) and a > 1,

i i a . B 1
|X;—X‘Zl<1‘,j-‘,éi

The case 8 = 1,4 is in progress.
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Example 4. p is Airys random point field with 8 = 1,2,4. Then S = R and

; B 1 / o(z)
dX; =dB!+ = lim E —_—) — —~dz}dt
t ) T—*°°{( =~ Xi- Xf) loj<r —Z }
(Xi—X7|<r, j#i

Here p is the rescaled semi-circle function centered at 2, defined by

o) = 2

1(_0070] (.’E)

Example 5. p is the Ginibre random point field. Then S = R? and

. : Xi— X7
dX! = dB! + lim § =t Tt ¢
¢ Pl L xi_ X7

[X;—X]l<r, j3#i

A surprising fact is that X = (X?);cy is a strong solution of another ISDE.

dX}=dB{ — X{dt+ lim ) Kz X,
T e e X - X2
| X7 |<r, j#i
Remark 1. (1) From the uniqueness of strong solutions, we deduce the uniqueness of quasi-
regular local, Dirichlet forms on the configuration space (unlabeled dynamics) when the
tail o-field Tail (S) of the configuration space is p-trivial, where w is the reference measure
of the Dirichlet space. In particular, Dirichlet spaces related to Lang’s approximation and
the first author’s approximation are the same (if the tail o-field Tail (S) is p-trivial). The
condition (R5) is essential for this.
(2) It is plausible that our method can be applied to Airyg, Sineg, Besselg ensembles for
general 0 < B < 0o, and random point fields given by the zero points of Gaussian analytic
functional.

4 Identification of Airy, stochastic dynamics in infinite-
dimensions

As an application of the uniqueness of strong solutions, we see that the solution of the
ISDE related to Airy, random ponit field is same as the Airy, stochastic dynamics given
by the algebraic method in [1, 8].

Lemma 5. The Airy, random point field has a trivial tail.

Theorem 6. The Airy, stochastic dynamics given by the space-time correlation functions
in [1, 8] is the unique strong solution of the ISDE

dX;=dBi+ lim{( Y —lﬁ.)—/li @)yt (i € N).

i J —
oot L xE X0 z
[Xi—X]|<r, j#i

Here o(z) = \/T-_Zl(—oo,o) (z) as before.
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