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1 Why a fixed law of dynamics for each system?
$O$ne of the implicit but standard preconceptions in physical sciences seems
to be that

“a physical theory should describe a specific physical system
with a fixed law of dynamics”

Sticking to this belief causes the following difficulties:
i $)$ difficulty caused by “singular constrained dynamics” with a de-

generate symplectic form (typically in a gauge theory to be quantized), and
ii) (mathematical) difficulty in treating “explicitly broken symmetris”

(e.g., broken scale invariance and approximate flavour symmetry of hadrons).
If we are free from the above prejudice, we can easily relativize the situ-

ation concerning overlap vs. separation between responses of a physical
system against two sorts of actions on its internal ( $\Rightarrow$ symmetries) and ex-
ternal ( $\Rightarrow$ dynamics) degrees of freedom.

A geometric analogy: resolution of singularity
Between $i$)& ii) with no inevitable relations seen at first, some aspect of

mutual duality starts to show up. To understand it, the analogy to geometric
configurations of two diagrams (like an arc and a surface) with or without
intersections will be helpful;

by shifting the diagrams along the axis orthogonal to the intersections,
we can freely change their contact relations with or without intersections,
which is a simple-minded picture of the blowing-up method for singularity
resolutions.

Or, even if we do not touch on given two separated diagrams, they can
be viewed as intersecting by choosing suitable angles of axis of our sight.

The former is in the active version of deformations, while the latter in
the passive one.
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Duality between gauge constraints and explicit breaking
Going back from this analogy to our physical context of symmetry and

dynamics, we can interpret, respectively,
constrained dynamics with overlap of internal- & space-time symmetry

$rightarrow$ two diagrams with intersection as singularity, and
explicitly broken symmetry $rightarrow blowing$-up of intersection singularity.

Then, the two questions must be asked about local gauge invariance:
a$)$ Why is such an awkward detour inevitable that the beautiful gauge

symmetry should be explicitly violated by hand via “gauge fixing condi-
tions” which make the lst-class constraints into the $2nd$-class ones? And,

b$)$ Is the vital essence of local gauge invariance really recovered after
the explicit breaking? What are the mutual relations among different
theories quantized with different gauge fixing conditions?

2 To relativize dynamics $of^{}$ a system

In special or general theory of relativity, standard reference systems are
relativized and pluralized for one and the same physical system,
whose mutual relations are controlled, deformed and compared via Lorentz
or general coordinate transformations, respectively.

Generalizing this excellent idea of relativity, we can naturally and legit-
imately relativize and plurvnlize dynamics of a physical system whose
mutual relations are controlled, deform$ed$ and compared;
the freedom attained by this extension is expected to liberate us from the
stereotyped spell of a physical system with a fixed law of dynamics” Then,
it will enable us to examine a theoretical framework of theories to describe
“a physical systems with a family of dynamical laws exhibited in an
array, where their mutual relations are systematically examined from the
viewpoints of deformation and evolutionary theories” : in [1], the essence of
this line of thought has been proposed under the name of.“ Theory Bun-
dle”, bundles of theories patched together by the “method of variation
of natural constants”

2.1 Relevance to$/in$ controls and evolutions

While someone dubious may take this idea as a groundless “fairy tale” or
“science fiction”, its essence may have alreay been embodied (partially) in
the control theory to treat physical systems from the viewpoint of controls;
such a natural way of thinking can be treated as a heterodoxical idea only
within the traditional stance of theoretical and$/or$ mathematical physics (if
it sticks to the precise description of objective nature existing outside of us).

Along the above line of thought, the rational way of ontogenetic descrip-
tions of historical evolution processes of physical nature can be envisaged;
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the goal will, perhaps, be attained in parallel with the scientffic explanations
of the biological evolutions to be implemented through the bi-directional pas-
sage between the ontogenesis of species with fixed law of repeatable dynamics
and the phylogenesis consisting of evolution of laws governing species-speficic
laws.

3 Framework for multiple laws of dynamics and
applications

Now the required mathematical bases for this purpose can be consolidated by
connecting the essence of multiple laws of dynamics based on the “groupoid
dynamical systems” with the notions of”sectors” and of”sector space”
in the framework of “quadrality scheme” based on “Micro-Macro du-
ality” [2].

After brief explanation of groupoids and groupoid dynamical systems,
an application of the framework will be discussed in the case of local gauge
invariance: on the basis of the duality in gauge theories between

gauge constraints $\Leftrightarrow$ gauge fixing conditions,
we aim at providing the answer to the afore-mentioned questions in terms
of gauge sectors and of gauge equivalence.

The same method can be applied also to the problems of renormaliza-
tion and of unffication of four interactions. In the former, the duality plays
important roles between “cutoffs” (or, regularizations of ultra-violet diver-
gences) to circumvent Haag’s no-go theorem and renormalization conditions
and, in the latter, the evolution of dynamical laws can be discussed in “his-
torical evolution of physical nature”

3.1 Groupoids and groupoid dynamical systems

First we need to explain the notion of “groupoid” and the “groupoid dy-
namical system”

In a word, “groupoid” is a family of invertible transformations from an
initial point to a final one, which can be thought of as a family of groups
scattered over spacetime. In this sense, it provides not only a generalization
of the notion of groups in close relation with the basic ideas of $10$cal gauge
invariance and of general relativity, but also an algebraic and generalized
formulation of “equivalence relations” ubiquitously found at the basis of
any kind of mathematical descriptions.

Definition of a groupoid $\Gamma$

A groupoid $\Gamma$ is defined on a set $\Gamma^{(0)}$ (called unit space) and two maps
$s,$

$t:\Gammaarrow\Gamma^{(0)}$ satisfying the following three properites Rl), R2), R3). When
$t(\gamma)=x,$ $s(\gamma)=y$ , we write $xarrow\gamma y$ or $\gamma$ : $xarrow y$ , where $\gamma$ is called an arrow
from $y$ to $x$ and for which we have:
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Rl) For any $x\in\Gamma^{(0)}$ , there is an arrow $xLx_{X}$ from $x$ to $x$ called a unit
arrow :

R2) when $x2^{\underline{1}}y$ and $yL^{2}z$ , there exists a composition $x\gammaarrow\gamma_{2}z$ of
arrows $\gamma_{1}$ and of $\gamma_{2}$ from $z$ to $x.$

R3) when $\gamma$ is an arrow $xarrow\gamma y$ from $y$ to $x$ , there exists the inverse $\gamma^{-1}\in$

$\Gamma$ from $x$ to $y$ in the sense of $\gamma\gamma^{-1}=1_{x}:xarrow x$ and of $\gamma^{-1}\gamma=1_{y}:yarrow y.$

If we define a relation $R$ on $\Gamma^{(0)}$ by $R(x, y)=(\exists\gamma\in\Gamma$ such that $xarrow\gamma y)$ ,

then Rl), R2), R3) are equivalent to laws of symmetry, transitivity, and
reflexivity, respectively. In this way, a groupoid is an algebraic generaliza-
tion of an equivalence relation. While the equivalence relation $R\zeta x,$ $y$ ) is

symmetric in $x,$ $y$ owing to R3), we retain the direction of arrows $xarrow\gamma y$ for
the purpose of unified treatment of such relations with preferred directions
as order relations or arrows of time. The totality of the arrows $\gamma$ is called
a groupoid $\Gamma$ and the set $\Gamma^{(0)}$ of $x,$ $y$ , etc., connected by the arrows $\gamma\in\Gamma$

in such a way as $xarrow\gamma y$ is called the “unit space” of the groupoid $\Gamma$ . The
element $y\in\Gamma^{(0)}$ in $xarrow\gamma y$ is called the source of $\gamma$ and denoted by $s(\gamma)=y,$

and, in this situation, $x\in\Gamma^{(0)}$ is called the target of $\gamma$ and denoted by
$t(\gamma)=y.$

In this context, a groupoid $\Gamma$ can be viewed as a special sort of categories,
all of the arrows of which are invertible. Then, the unit space $\Gamma^{(0)}$ is nothing
but the set of objects of the category $\Gamma$ , where

Rl) means the assignment of the identity arrow $1_{x}$ corresponding to an
object $x\in\Gamma^{(0)},$

R2) explains the relation among the source, target and the composition
of arrows in the category $\Gamma,$

R3) means the invertibility of all the arrows in $\Gamma.$

It can be easily understood that a groupoid is a generalization of the
concept of a group and that a group is a special case of a groupoid: for this
purpose, we equip a group $G$ with $a$ (virtual) object $*$ which is regarded as
connected by any group element $g\in G$ to itself: $*\xi*$ . In this way, a group
$G$ can be viewed as a groupoid $G$ whose unit space is given by $\{*\}.$

The important difference between a general groupoid and a group can be
found in that any pair $(g_{1}, g_{2})\in G\cross G$ of group elements can be composable:
$(g_{1}, g_{2})\mapsto g_{1}g_{2}\in G,$

whereas the product $\gamma_{1}\gamma_{2}$ of a pair $(\gamma_{1}, \gamma_{2})\in\Gamma\cross\Gamma$ can be defined only
when the condition $s(\gamma_{1})=t(\gamma_{2})$ is satisfied: $\gamma_{1}\gamma_{2}=[t(\gamma_{1})arrow s(\gamma_{1})=$

$t(\gamma_{2})arrow s(\gamma_{2})]=[t(\gamma_{1})^{\gamma}t_{S}^{\underline{\gamma}_{2}}(\gamma_{2})].$

The set of all the composable pairs $(\gamma_{1}, \gamma_{2})$ is denoted by $\Gamma^{(2)}$ , which
can be identffied with the fiber product : $\Gamma^{(2)}$ $:=\{(\gamma_{1}, \gamma_{2})\in\Gamma\cross\Gamma;s(\gamma_{1})=$

$\Gamma prarrow^{1} \Gamma\cross\Gamma$

$\Gamma^{(0)}$

$t(\gamma_{2})\}=\Gamma_{\Gamma(0)}\cross$Fcharacterized by acommutative diagram: $s\downarrow$ $0$ $\downarrow pr_{2}$

$\Gamma^{(0)} arrow t \Gamma$
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For $x,$
$y\in\Gamma^{(0)}$ we denote $\Gamma_{y}^{x}$ $:=\{\gamma\in\Gamma;t(\gamma)=x, s(\gamma)=y\}=\Gamma(xarrow y)$ .

Since $\Gamma_{x}^{x}\subset\Gamma^{(2)}$ , any pair of elements in the subgroupoid $\Gamma_{x}^{x}$ are composable,
and hence it is a group $\Gamma_{x}^{x}\subset\Gamma$ , among many such contained in $\Gamma.$

Transformation groupoid:
In contrast to a group $G$ as a groupoid with a trivial unit space $\Gamma^{(0)}=$

$\{*\}$ , a typical example of a groupoid with non-trivial unit space $\Gamma^{(0)}$ can be
found in a “transformation groupoid” associated with an action of a group
$G$ as follows:

An action of a group $G$ on a space $M$ is specified by a map $\alpha$ : $G\cross Marrow$

$M$ satisfying the following two properties:

$\alpha(e, x)=x,$

$\alpha(g_{1}, \alpha(g_{2}, x))=\alpha(g_{1}g_{2}, x)$ .

If we write $\alpha(g, x)=\alpha_{g}(x)=g\cdot x$ , this means

$\alpha_{e}=id_{M}, \alpha_{g_{1}}\circ\alpha_{g_{2}}=\alpha_{g_{1}g_{2}},$

or,
$e\cdot x=x, g_{1}\cdot(g_{2}\cdot x)=(g_{1}g_{2})\cdot x.$

Namely, $G\ni g\mapsto\alpha_{g}\in Aut(M)$ gives a representation $\alpha$ on $M$ , where
$Aut(M)$ denotes the totality of automorphisms transforming the space $M$

onto itself with leaving the structure of $M$ unchanged.
In this situation, a groupoid $\Gamma$ $:=G\cross M$ consisting of the unit space

$\Gamma^{(0)}=M$ which is acted on by arrows $\gamma=(x, g)$ $:=(g\cdot xarrow x)$ (or $\gamma=$

$(x, g);=(xarrow 9^{-1}. x))$ is called a transformation groupoid.
In a word, a transformation groupoid $\Gamma$ $:=G\cross M$ consists of the pairs

$(g, x)$ of group elements $g\in G$ and points $x\in M$ which specify the motion
$(g\cdot xarrow x)$ of a point $x\in M$ under the action of $g\in G$ . Or, it can also be
viewed as a trivial $G$-principal bundle over a base space $M$ with a fiber $G,$

specffied by an exact sequence $G\hookrightarrow\Gamma=G\cross Marrow M=\Gamma^{(0)}=\Gamma/G$ . It
can also be viewed as the graph $\{(x,g)=((g\cdot xarrow x));x\in M,g\in G\}$ of
$G$-action on $M.$

Sector decomposition by central measure
To classify symmetry breaking patterns in a universal way, we need

Tomita decomposition theorem on sector decompositions:

Theorem 1 (Tomita decomposition theorem) For a state $\omega$ of a $C^{*}-$

algebm $\mathcal{X}$ , a unique measure $\mu_{\omega}$ called a centml measure, (pseudo-)supported
by factor states $\in F_{\mathcal{X}}$ , exists with its bawcenter $b(\mu_{\omega})$ $:= \int_{E_{\mathcal{X}}}\rho d\mu_{\omega}(\rho)=\omega$

such that
(0) $( \int_{\triangle}\rho d\mu_{\omega}(\rho))0|(\int_{E_{\mathcal{X}}\backslash \Delta}\rho d\mu_{\omega}(\rho))$ for Borel set $\triangle\subset E_{\mathcal{X}},$

(1) $\exists$ unique projection $P=[\mathcal{Z}_{\pi}.(\mathcal{X})\Omega_{\omega}]$ on $GNS$ space $\mathfrak{H}_{\omega}s.t.$ $P\Omega_{\omega}=$
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$\Omega_{\omega},$ $P\pi_{\omega}(\mathcal{X})P\subseteq\{P\pi_{\omega}(\mathcal{X})P\}’$ with center $\mathcal{Z}_{\pi_{\omega}}(\mathcal{X})=\pi_{\omega}(\mathcal{X})"\cap\pi_{\omega}(\mathcal{X})’$ ;
(2) $\mathcal{Z}_{\pi_{\omega}}(\mathcal{X})=\{\pi_{\omega}(\mathcal{X})\cup P\}’$ ;
(3) $\mu_{\omega}(\gamma(A_{1})_{1}\cdots\gamma(A_{n}))=\langle\Omega_{\omega},$ $\pi_{\omega}(A_{1})P\cdots P\pi_{\omega}(A_{n})\Omega_{\omega}\rangle$ ;
(4) $\mathcal{Z}_{\pi_{\omega}}(\mathcal{X})$ is $*$-isomorphic to the mnge of map $L^{\infty}(E_{\mathcal{X},\mu_{\omega})}\ni f\mapsto\kappa_{\omega}(f)\in$

$\pi_{\omega}(\mathcal{X})’$ defined by

$\langle\Omega_{\omega}, \kappa_{\omega}(f)\pi_{\omega}(A)\Omega_{\omega}\rangle=\int_{E_{\mathcal{X}}}f(\rho)[\gamma(A)](\rho)d\mu_{\omega}(\rho)$

and for $A,$ $B\in \mathcal{X}$

$\kappa_{\omega}(\gamma(A))\pi_{\omega}(B)\Omega_{\omega}=\pi_{\omega}(B)P\pi_{\omega}(A)\Omega_{\omega},$

where $\gamma(A)$ $:=(E_{\mathcal{X}}\ni\rho\mapsto\rho(A))\in L^{\infty}(E_{\mathcal{X}}, \mu_{\omega})$ .

$\kappa_{\omega}$ as $*$-algebraic embedding defines a projection-valued measure $\kappa_{\omega}$ :
$(\mathcal{B}(supp\mu_{\omega})\ni\Delta\mapsto\kappa_{\omega}(\Delta) :=\kappa_{\omega}(\chi_{\Delta})\in Proj(\mathcal{Z}_{\omega}(\mathcal{X})))$ on Borel subsets
$\triangle\in \mathcal{B}(supp\mu_{\omega})$ of $E_{\mathcal{X}}$ , satisfying

$\langle\Omega_{\omega}, \kappa_{\omega}(\Delta)\Omega_{\omega}\rangle=\mu_{\omega}(\Delta)$ .

Hilbert $C^{*}$-module associated with sector structure
For a $C^{*}$-dynamical system $Garrow \mathcal{X}$ with a $G$-action $\tau$ on $\mathcal{X}$ , a Hilbert

$\tau$

$C^{*}$-bimodule $\tilde{\mathcal{X}}:=C(E_{\mathcal{X}})\otimes \mathcal{X}$ can be defined with left $C(E_{\mathcal{X}})$ action and
right $\mathcal{X}$ action together with $C(E_{\sim^{\mathcal{X}}})$ -valued left inner product and $\mathcal{X}$-valued
right inner product for $\hat{F}_{1},\hat{F}_{2}\in \mathcal{X}$ as follows:

$|\hat{F}_{1}\rangle\langle\hat{F}_{2}|\iota:=\Lambda(\hat{F}_{1}\cdot\hat{F}_{2}^{*})\in C(E_{\mathcal{X}})$;
$\langle\hat{F}_{1}|\hat{F}_{2}\rangle_{r}:=\hat{\mu_{\omega}}(\hat{F}_{1}^{*}\cdot\hat{F}_{2})\in \mathcal{X},$

where $\Lambda$ : $\tilde{\mathcal{X}}\ni\hat{F}\mapsto(E_{\mathcal{X}}\ni\rho\mapsto\rho(\hat{F}(\rho)))\in C(E_{\mathcal{X}})$ and $\hat{\mu_{\omega}}$ : $\tilde{\mathcal{X}}\ni\hat{F}\mapsto$

$\mu_{\omega}(\hat{F})\in \mathcal{X}$ are conditional expectations.

$\hookrightarrow\kappa \hat{\mu_{\omegaarrow}}$

$C(E_{\mathcal{X}}) \tilde{\mathcal{X}}=C(E_{\mathcal{X}})\otimes \mathcal{X}$ $\mathcal{X}$

$\langlearrow\Lambda rightarrow\iota$

$\mu_{\omega}, \kappa_{\omega} \kappa_{\omega}\ltimes\pi_{\omega} \pi_{\omega}$

$G$-equivariance relation between $\omega$ and $\mu_{\omega}$

Using $\Lambda$ and representation $\kappa_{\omega}\ltimes\pi_{\omega}$ of $f\otimes A\in\tilde{\mathcal{X}}$ , we rewrite the equation,
$\langle\Omega_{\omega},$ $\kappa_{\omega}(f)\pi_{\omega}(A)\Omega_{\omega}\rangle=\int_{E_{\mathcal{X}}}f(\rho)[\gamma(A)](\rho)d\mu_{\omega}(\rho)$, for defining $\kappa_{\omega}$ ae follows:

$\langle\Omega_{\omega}, (\kappa_{\omega}\ltimes\pi_{\omega})(f\otimes A)\Omega_{\omega}\rangle=\langle\Omega_{\omega}, \kappa_{\omega}(f)\pi_{\omega}(A)\Omega_{\omega}\rangle$

$=\mu_{\omega}(f\cdot\gamma(A))=\mu_{\omega}(\Lambda(f\otimes A))=[\Lambda^{*}(\mu_{\omega})](f\otimes A))$ .
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Central measure $\mu_{\omega}\in M^{1}(F_{\mathcal{X}})$ : uniquely determined by $\omega\in E_{\mathcal{X}}\Rightarrow \mathbb{R}om$

$\omega 0\tau_{g}=b(\mu_{\omega})\circ\tau_{g}=b(\mu_{\omega\circ\tau_{g}})$ we have

$d\mu_{\omega 0\tau_{g}}(\rho)=d\mu_{\omega}(\rho 0\tau_{g}^{-1})$ or $\mu_{\omega\circ\tau_{g}}(f)=\mu_{\omega}(fo\tau_{g}^{*})$ , (a)

for $f\in C(E_{\mathcal{X}}),$ $g\in G,$ $\rho\in E_{\mathcal{X}}$ , where

$(fo\tau_{9}^{*})(\rho)=f(\rho 0\tau_{g})=((\tau_{g})_{*}f)(\rho)$ .

Then, $G$-action on $\hat{F}\in\tilde{\mathcal{X}}$ given by $[\hat{\tau}_{g}(\hat{F})](\rho)=\tau_{g}(\hat{F}(\rho\circ\tau_{g}))$ implies the
$G$-equivariance relation between $\omega$ and $\mu_{\omega}$ :

$\langle\Omega_{\omega}|(\kappa_{\omega}\ltimes\pi_{\omega})(\hat{\tau}_{g}(\hat{F}))\Omega_{\omega}\rangle=\langle\Omega_{\omega\circ\tau_{g}}|(\kappa_{\omega}\ltimes\pi_{\omega 0\tau_{g}})(\hat{F})\Omega_{\omega\circ\tau_{9}}\rangle$ (b)

Operational meaning of $G$-equivariance relation
Combining Eqs. (a) and (b), we see the microscopic $G$-action $\hat{F}arrow\hat{\tau}_{9}(\hat{F})$

can be transformed into the state change $\omegaarrow\omega 0\tau_{g}$ , which can further be
transformed into the change in macroscopic observable $farrow fo\tau_{g}^{*}.$

In this way, $G$-equivariance relation (b) between $\omega$ and $\mu_{\omega}$ plays such an
important role as making microscopic effects of $G$ visible at the macroscopic
level.

Once a sector structure emerges, this equivariance relation (b) always
holds, irrespective of whether group $G$ is written in terms of a unitary rep-
resentation or not. For the purpose of distinguishing kinematical and dy-
namical symmetries, we consider next the problem as to whether a symmetry
is unitarily implemented or not.

Transformation groupoid associated with G-quasi-invariant $\omega$

A state $\omega\in E_{\mathcal{X}}$ is called G-quasi-invariant if its corresponding central
measure $\mu_{\omega}\in M^{1}(E_{\mathcal{X}})$ is a G-quasi-invariant measure on $E_{\mathcal{X}}$ in the sense
that $\mu_{\omega}$ and $\mu_{\omega}o(\tau_{g})_{*}=\mu_{\omega 0\tau_{g}}$ are equivalent measures, namely, both are
absolutely continuous w.r. $t$ . the other: $\mu_{\omega}\ll\mu_{\omega\circ\tau_{g}}$ and $\mu_{\omega\circ\tau_{g}}\ll\mu_{\omega}.$

On the basis of this G-quasi-invariance, unitary representation $U_{\omega}$ of $G$

can be given in $L^{2}(E_{\mathcal{X}};\mu_{\omega})\otimes \mathfrak{H}_{\omega}$ by

$[U_{\omega}(g)\xi](\rho):=\sqrt{\frac{d(\mu_{\omega\circ\tau_{g}})}{d\mu_{\omega}}}\xi(\rho\circ\tau_{9})$

for $g\in G,$ $\rho\in E_{\mathcal{X}},$ $\xi\in L^{2}(E_{\mathcal{X}};\mu_{\omega})\otimes \mathfrak{H}_{\omega}.$

Kinematics vs. dynamics
Under the assumption of transitivity, this action can be identffied with

transformation groupoid $\Gamma=G\cross\Gamma^{(0)}$ with the $G$-transitive unit space
$\Gamma^{(0)}$

$:=supp\mu_{\omega}$ embedded in Spec $(\mathcal{Z}_{\pi}(\mathcal{X}))\subset F_{\mathcal{X}}.$

Because of the unitary representation $U_{\omega}$ , the G-quasi-invariant action
on classifying unit space $\Gamma^{(0)}$ can be viewed as kinematical and a $G$-action
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violating quasi-invariance of $\omega$ is to be viewed as dynamical since it does
not leave the unit space $\Gamma^{(0)}$ invariant.

Some remarks on transitivity
$\Gamma^{(0)}=G/H$ : transitivity $+$ symmetric space $\subset$ ergodicity $=$ me$aeure-$

theoretical transitivity
$\Gamma^{(0)}=\coprod(G/H_{i})$ : orbit decomposition, ergodic decomposition

Symmetry breaking patterns classified by unit space $\Gamma^{(0)}$

Then, in terms of the unit space $\Gamma^{(0)}\subset F_{\mathcal{X}}$ , breaking patterns of the
symmetry described by $Garrow \mathcal{X}$ can be classified into unbroken, sponta-

$\tau$

neously broken, explicitly broken ones as follows:
(i) unbroken: $\Gamma_{unbroken}^{(0)}=one$-point set (or, disjoint union of such sets)

(ii) spontanesously broken: $\Gamma_{SSB}^{(0)}=$ sector bundle $G_{H}\cross\hat{H}$ of a theory

with a fixed dynamics, whose base space $G/H$ consists of degenerate vacua
and whose fibers consist of sectors $\hat{H}$ of unbroken symmetry $H$

(iii) explicitly broken: $\Gamma_{explicitbr}^{(0)}.$ $=$ double-layer bundle of sectors,
whose base space consists of physical constants to parametrize different
dynamics, upon each point of which we have a sector bundle $\Gamma_{SSB}^{(0)}$ of SSB
corresponding to a fixed dynamics

4 Local Gauge Invariance

In the case of local gauge invariance, a “gauge sector” is specffied by a gauge-
fixing condition, the totality of which defines the unit space $\Gamma^{(0)}=\mathcal{G}/G_{BRS}$

of the transformation groupoid $\mathcal{G}\cross\Gamma^{(0)}$ of local gauge transformations $\mathcal{G}$

(where $G_{BRS}$ is the BRS cohomology representing unbroken gauge symme-
try in each gauge sector).

Each point of $\Gamma^{(0)}$ is a “gauge sector” parametrized by a “name” $(f, \alpha)$ of
the gauge-fixing condition $f(A)+\alpha B\approx O$ specified in terms of the Nakanishi-
Lautrup B-field, each ofwhich is transferred to another g\‘auge sector by the
action of broken gauge transformations in $\mathcal{G}$ (: transitivity of $\Gamma^{(0)}=$

$\mathcal{G}/G_{BRS})$ .
Geometry of gauge configuration space What is most important here is

the role played by the Nakanishi-Lautrup B-field as the Lie derivative $f$ on
the configuration space of gauge field :

$f:[Lie(\mathcal{G})\ni X\mapsto-if_{X}$

$=-i(d_{B}oi_{X}+i_{X}od_{B})=-i\{d_{B}, i_{X}\}]$

$=-i\delta_{BRS}(\overline{c})=B.$

Namely, the differential operator $f+if(A)/\alpha$ determined by the quantum
field $B$ acts as a covariant derivative on configuration space of gauge field,
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whose connection coefficient is provided by the Lie-algebra-valued function
$\Gamma^{(0)}\ni(f, \alpha)\mapsto if(A)/\alpha\in Lie(\mathcal{G})$ on $\Gamma^{(0)}.$

Gauge fixing$=$ parallel transport & BRS cochains Then, the gauge-fixing
condition $f(A)+\alpha B\approx O$ to determine a gauge sector $(f, \alpha)\in\Gamma^{(0)}$ plays the
role of parallel transport on configuration space of gauge field :

$(\mathcal{L}+if(A)/\alpha)\psi=0$

for state vectors $\psi\in$ gauge secto.r $(f, \alpha)$ ,

which specffies the geometric meaning of a gauge sector $(f, \alpha)$ .

Inside of each gauge sector $(f, \alpha)$ , we can find
$FP$ ghost $c\in\wedge Lie(\mathcal{G})^{*}$ : Maurer-Cartan form on Lie $(\mathcal{G})$ ,
anti-$FP$ ghost $\overline{c}=$ ($Lie(\mathcal{G})\ni X\mapsto i_{X}$ : interior product) $\in\wedge Lie(\mathcal{G})$ ,
B-field $B=(Lie(\mathcal{G})\ni X\mapsto-i\ell_{X})\in\vee Lie(\mathcal{G})$

BRS cohomology which determine the BRS cohomology,

$\delta_{BRS}A_{\mu}=D_{\mu}c, \delta_{BRS}D_{\mu}c=0,$

$\delta_{BRS}c=-\frac{1}{2}gc\wedge c,$

$\delta_{BRS}\overline{c}=iB, \delta_{BRS}B=0,$

acting on the gauge sector $(f, \alpha)$ as the unbroken remaining symmetry.
The equation of $FP$ ghost $c$ in the gauge sector $(f, \alpha)$ :

$\frac{\delta f(A)}{\delta A_{\mu}}D_{\mu}c=\frac{\delta f(A)}{\delta A_{\mu}}\delta_{BRS}A_{\mu}=\delta_{BRS}(f(A))$

$=\delta_{BRS}(f(A)+\alpha B)=0$

guarantees the consistency between the gauge-fixing condition $f(A)+\alpha B\approx$

$0$ and the action of the BRS coboundary $\delta_{BRS}$ in the sense that the action
of BRS coboundary $\delta_{BRS}$ is restricted to the inside of each sector without
leakage to other sectors (: unbmken symmetry!).

4.1 Answers to questions a) & b)

In this way, the basic structures found in the quantum gauge theory can be
$c_{\backslash }onsistently$ understood as the sector structure associated with the explicitly
broken symmetry under the group of local gauge transformations which
answers the above first question:

a$)$ Why is such an awkward detour inevitable that the beautiful gauge
symmetry should be explicitly violated by hand via “gauge fixing con-
ditions” which make the lst-class constraints into the $2nd$-class ones?

The role of the exphcit breaking via gauge-fixing is just to disentangle or
“blow up” the overlaps between the dynamical and the internal-symmetry
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transformations (as local gauge transformations) taking the form of a first
class constraint. The essence of local gauge invariance is unfolded by
this procedure into the coexistence of many gauge sectors $(f, \alpha)$ , the to-
tality of which constitute the unit space $\Gamma^{(0)}$ of the transformation groupoid
$\Gamma=\mathcal{G}\cross\Gamma^{(0)}$ with the group $\mathcal{G}$ of local gauge transformations as a broken
symmetry.

As parallel trvnnsports, each of gauge fixing conditions represents a
specffic direction in the configuration space of gauge field, the totality
of which are mutually transformed by the local gauge transformations $\mathcal{G}.$

Therefore, the gauge invariance of the theory containing all the gauge sectors
can naturally be understood by its construction. This is the answer to the
question:

b$)$ Is the vital essence of local gauge invariance really recovered after
the explicit breaking? What are the mutual relations among different
theories quantized with different gauge fixing conditions?

What remains at the end is such a natural question as to whether it
should be possible to judge in a simpler way the meaning of gauge invari-
ance without checking all the gauge sectors. While I have not encountered
the detailed discussions on the meaning of gauge equivalence, it can be
interpreted here that “the contents of $BRS$-invariant sector are all the
same over all gauge sectors”

4.2 Gauge equivalence

If the positivity is guaranteed of the inner products in the BRS-invariant
sectors contained in each of gauge sectors, the action of local gauge transfor-
mations as a broken symmetry connecting different sectors can consistently
be restricted to BRS-invariant sectors. Since the transitive action of $\mathcal{G}$ over
all gauge sectors $\Gamma^{(0)}$ connects different gauge sectors by conjugacy transfor-
mations $g(-)g^{-1}$ , the required conclusion is easily seen to hold by $g\iota g^{-1}=\iota,$

in such a form as the triviality $Ind_{G_{BRS}}^{\mathcal{G}}(\iota)=id_{\mathcal{G}/G_{BRS}}\otimes\iota$ of the induced
representation from the trivial representation of BRS transformation. In
the relativistic context, therefore, this picture is just the expected natural
realizatioh of the gauge equivalence.

Gauge-dependent classical observables
In the low energy regimes, however, we cannot deny the possible emer-

gence of macroscopic classical fields like the Coulomb tails or Cooper pairs,
as gauge-dependent physical modes due to the condensation effects of
soft photons. 1

In this case, we have to be prepared for such a possibility that different
gauge sectors are not equivalent and that the different choices of gauges may

lThis is in sharp contrast to the wrong naive claim of group invariance” of measurable
quantities, as is seen, e.g., in S. Tamimura, arXiv 1112.5701.
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result in different ways of realization of physical phenomenta.
The possible “emergence of physical but gauge-dependent classical

modes” can be interpreted as the result of spontaneous symmetry break-
ing $(SSB)$ of $BRS$ invariance in each gauge sector arising from the
explicit breaking by gauge fixing condition. These aspects seem to pro-
vide useful viewpoints for the systematic analysis of phase transitions and
infrared photon-like modes (in progress).
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