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Analytic continuation of eigenvalues of Daubechies
operator and Fourier ultra-hyperfunctions

By

Kunio YOSHINO*

Abstract

We will analyze the analytic properties of eigenvalues of Daubechies operator by using the
theory of Fourier ultra - hyperfunctions. The reconstruction formula for symbol function from
eigenvalues will be given by using Borel summability method. We establish the relationship
between symbol functions of Daubechies operators and Fourier ultra - hyperfunctions.

§1. Introduction

Daubechies (localization) operator was introduced by Ingrid Daubechies in A Time
Frequency Localization Operator: A Geometric Phase Space Approach, IEEE. Trans.
Inform. Theory 34 (1988), pp. 605-612. We will analyze the analytic properties of
eigenvalues of Daubechies operator by using the theory of Fourier ultra-hyperfunctions.
Several reconstruction formulas for symbol function from eigenvalues will be given. We
establish the relationship between symbol function of Daubechies operator and Fourier
ultra-hyperfunction.

§2. Bargmann-Fock space and Bargmann Transform

In this section we recall the definition of Bargmann-Fock space and Bargmann trans-
form. Bargmann kernel A, (z,z) is defined as follows:

1
An(z,z) = 1" *exp {—5(22 +2%) +v2z - a:} , (z€eC™* zeR").
We define Bargmann transform B(vy) by following manner.

BW)(2) € | ¢(z)An(z,2)ds, (¥ € L*RY)).

R"»
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§2.1. Bargmann-Fock space BF

We put
BF={g e H(C: / l9(2)Pe 1 dz A dz < o0}

n

where H(C") is the space of entire functions.
BF is called Bargmann-Fock space.

Theorem 2.1 ([1]).
1.  Bargmann-Fock space BF is Hilbert space.
2. Bargmann transform is a unitary mapping from L*(R™) to Bargmann-Fock space
BF.

Example 2.2. For ¢, ,(z) = 7~ /4?7~ (~9°/2 we have

B(6pg)(z) = exw 1wl /2ma/2 () M).

V2

§ 2.2. Hermite functions

Definition 2.3 ([6], [20]). There are several ways to define Hermite functions h,,(z).
Following definitions are all equivalent.

1 1, 5 2 2m
1. = /4exp{—§(z +x2)+\/§z-w} :g;oﬁhm(:v),
2. hp(z) = (-1)™@Qmmly/7) /2 exp(x2/2)£—n—ﬁ exp(—z?),

o (z) = \/zi_m‘ (% (:c _ %))mho(m), ho(z) = 7=/ exp(—22/2).

Example 2.4 ([4]).
ho(z) = m~ /% exp(—x?/2) is called coherent state.

2
ha(z) = /a2 1

V2

w

E\Di—‘

exp(—x?/2) is called Mexican hat wavelet.

Hermite functions of several variables are defined by
Rim) (1, T2, . Zn) = [T g B, (2:),  [m] = (ma,...,m,) € N™

Proposition 2.5 ([1],[6]).
L A{hpm(2)}5o~0 is complete orthonormal basis in L*(R™).

P
2. 18 complete orthonormal basis in BF(C™).
{7 v )

m=0
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Proposition 2.6 ([1],(6]).
2
1. (—8_837 + 22 — ma(x) = mhm(z),
z

2. Blhn)(2) = 2=,
3. F(hm)(@) = (=)™ hm(a),

where § ts Fourier transformation.
Example 2.7. Suppose that f(z) € L2(R™). Then we have following expansion.

f@) = fimhim(@),  {fimi}oemo € 1°
m=0

B(f)(x) = f[m]j%.
m=0 :

Proposition 2.8. We have the following commutative diagram.

L?(R*) -2 BF
Tl BoToB™!

L*(R*) -2 BF

Example 2.9 ([1],[6]). For g(z) € BF, we have
0 02
-1 _ - _ 2 _
1. (BoLoB  )g(z)= z—azg(z), (L 522 +z°—1)

2. (BogoB)g(z) = g(—i2).
§3. Windowed Fourier transform and Gabor transform

§3.1. Windowed Fourier transform

Definition 3.1. We define windowed Fourier transform of f(z) as follows:

Wa(f)(pq) = / e "3z~ Qf(@)dz, f(z) € IXR™), (p,q€ R")

R”
¢(z) is called window function.

If we put ¢p, 4(z) = e’P*¢(x — q), then we have We(f)(p,q) = (dp,q, f)-

Following inversion formula is known.
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Proposition 3.2 ([7]). If (g,h) =1, then

=) [ haa@Wo(1) 0, 0o

valids.

Proof.

//Rz @@ Wo(f) (P g dpdq—/// p.a(Z) 9p.q (W) f(y) dy dpdg
—///RS” e Wh(z — q) g(y — q) f(y) dy dpdg
= /Rzn (2m)"6(z — y) h(z — q) g(y — q) f(y) dy dq
= (2m)" f(x) o g9(x — q) h(zx — q) dg

= (2m)"f(z)(g, h) = (2m)" f (@).
Here we used the plane wave expansion of delta function:

1 :
= T
d(zx) @) /Rn e’Pdp. O

§3.2. Gabor transform

. . . » . 3 3 —_ —_— 2
Windowed Fourier transformation with Gaussian window function 7~ ™/4e=% /2

is
called Gabor transformation. The theory of Gabor transform is already applied to Iris
identification and signal analysis of human voice (consonant, vowel, etc). Gabor trans-

form is closely related to FBI transform, Bargmann transform and Wigner distributions

([6], [11]).

Definition 3.3 (Gabor transform).

Wo(f)(p,q) = 7/4 / e Pe~ =02 f(2)dz,  f(z) € L*(R™)

n

7 "/4eTe—(2-9)*/2 ig called Gabor function,

§3.3. The relationship between FBI transform, Bargmann transform and
Gabor transform

Definition 3.4 (FBI (Fourier-Bros-Iagolnitzer) transform ([6])).
FBI transform P*(f)(p, q) is defined by

PP = [ e me e’ fz)aa.

49
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Proposition 3.5. we have
L PP = [ e eI e @)

Rn
2. B(f)(2) :w-n/4el/4(p2+q2+2ipq)/ e~ 7T~ (=012 f(3)dy,
(z= I2P pge R™).

V2

§3.4. Inversion formula of Gabor transform

As a special case of Proposition 3.2, we have following inversion formula.

Proposition 3.6 ([3], [4]). Assume that f(z) € L2(R™). Then we have
1@ =@m) " [[ | dnal@Wa(H)p.0dpda

where ¢p 4(T) = nn/4eiPTe—(=a)*/2,
This identity is so called resolution of the identity ([4]).

§3.5. Unitarity of Gabor transform

Proposition 3.7. Gabor transform satisfies the following unitary relation.

L (Ws(f), We(9)) = (2m)™(f, 9)
2. [We(Hllzz = 2m) 72| f 2

§4. Windowed Fourier transform and the Heisenberg group

We have following exact sequence.
0 —R—RxC"—C"—0 (exact)

where C™ = R"®R" is phase space and RxC™ = H,, is the Heisenberg group (polarized).
R is center of the Heisenberg group. So the Heisenberg group is central extension of
phase space. Modulation operator M, and translation operator T are defined as follows:

Mpf(z) = e?*f(z), Tyof(z)=f(z—q), f(z)e L*R?).
M, and T, satisfy M, T, = e~"PIT, M.
7(p,q) = MpT, is projective representation of phase space. Namely it satisfies following

relation m(p1, q1)7(p2, g2) = " P2 7(p1 + pa, 41 + ¢2).-
Projective representation 7 (p, ¢) becomes unitary represenration 7 (¢, p, q) of the Heisen-

berg group as follows:
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Put 7(t,p,q)g(z) = e'e’*g(x — q), g € L*(R™) and (¢,p,q) € H,. Then 7(t,p,q) is
unitary representation of the Heisenberg group and 7 (0,p,q) = 7(p, q)

Since Wy (f)(p,q) = (¢p,q, ) with ¢, ,(z) = 7(p, q)é(x), windowed Fourier transform
Wy is related to the Heisenberg group. For the details of Heisenberg group, we refer
the reader to [6], [8], [9], [17].

§5. Daubechies localization operator

In this section we will recall the definition of Daubechies operator and its properties.

Definition 5.1 ([3], [4]). For f(z) € L?(R"), we put
Pe(f)@) = 0™ [ Fo.0)6500)Wal1)p, )apd,

where ¢p (z) = 7 4ePTe=(2-0)*/2 gpg F(p,q) is symbol function.
Pr is called Daubechies operator.

§5.1. Remark on Pr

If F(p,q) = 1, then we have f(z) = Pr(f)(z) (resolution of the identity). So in this
case, Pr is identity operator.

Proposition 5.2 ([3],[4]). Suppose that F(p,q) € L*(R?*") and f € L*(R").
1. IfF(p,q) 20, then Pr is positive operator. i.e. (Pr(f),f) 2> 0.
2. Pr is bounded linear operator. i.e. |Pp(f)|lz2 < (27) ™™ 2| f|p2||F ||

3. Pr 1s trace class operator. i.e. Trace of Pr = (2w)™" // F(p,q)dpdg.
R2n

Proposition 5.3 ([3],[4]).
If F(p,q) € L'(R?") and F(p,q) is polyradial function.
ie. F(p1,q1,. ., Pnygn) = F(ri2%,...,m2), r2=p2+a¢2 (1<i<n).
then
1. Hermite functions h,,(x) are eigenfunctions of Daubechies operator.

Pr(him))(x) = Mmjhmi(x),  ([m] € N7),

1 [e5e] oo N e =
2. Ay = ﬁ./o /0 He S, F(281,...,28,)dsy - - dsy,.
=1

Proof. Original proof was given in [4]. But it is a little bit complicated. If we employ
the Bargmann-Fock space, then we can simplify the proof of this proposition ([21]). O
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§5.2. Commutativity of Daubechies operator Pr,

Proposition 5.4 ([3], [4]).
1. If symbol function F' (p, q) is polyradial function, then Pr commutes with harmonic

02
oscillator Hamiltonian ) + z2 — 1 and Fourier transform.

2. IfF1,F; are polyradzal functions, then Pr, Pp, = Pr,PF, .

Proof. Daubechies operator Pr, harmonic oscillator Hamiltonian and Fourier trans-
form have Hermite functions {h{m)(z)}—o as eigenfunction. {h[m)(z)}r=o is complete
orthonormal basis in L?(R™). Hence they commute each other. O

§6. Analytic continuation of eigenvalues of Daubechies operator

In this section we assume that n = 1.

1 [ ~
Am = —'/ e *s™F(2s)ds
m: Jo
are eigenvalues of Daubechies operator, A(z) = _ / e *s°F(2s)ds (Re(z) >
I'(z+1) Jo

—1), where I'(z) is Euler Gamma function.

Proposition 6.1 ([21], [22], [23]).
1. |A(2)| £ \/—Ci_'e%“m(z)l, (C is constant, Re(z) > 0)
z
A(z) is holomorphzc in the right half plane Re(z) > 0.
A(m) = A, (meN).
A(2) is unique analytic continuation of A,

oo o

§ 7. Generating function of eigenvalues of Daubechies operator

Let {Am)} be eigenvalues of Daubechies operator. We put

o0

A(w) = E /\[m]w[m].

[m]=0

A(w) is called generating function of eigenvalues of Daubechies operator.
In digital signal processing A(w) is called causal Z-transform (w = z7!) instead of

generating function.
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Proposition 7.1 ([21]). Let Ay, be eigenvalues of Pr. Then we have
1. There exists a positive constant C' such that

_c
= N"™).
/ / He—s i(1— wt)F(QSh...,28n)d51-..d8n

3. Aw) is holomorphzc in Hi:l{w € C" : Re(w;) < 1} and bounded in its closure.
Moreover, A(iv) € Co(R"), (v € R"). i.e. A(iv) € C(R™) and limp,|_, o A(iv) = 0.

Proof. Without loss of genelarity, we can assume that n = 1.
1. By Proposition 5.3,

Am = —'/ e~ °F(2s)s™ds.
m! Jo

Since e75s™ < e"™m™_ we have
— )

| < / F(25)|ds.

By Stirling’s formula m! ~ v2rme=™m™, we have |\,| <

§.|Q

x [e°] wm e o)
=) A=Y —/ e *s™F(2s)ds
m=0 m=0 m! 0
B D S Ly
0 m=0 m: 0

3. For Re(w) <1, we have
[A(w)] < /00 e (=) | F(2s)|ds < | F|| -
0

Since A(iv) is Fourier transform of L! function e™*F(2s), we can conclude that it is in
Co(R™) by Riemann-Lebesgue theorem. O

§ 8. Fourier ultra-hyperfunctions
In this section we will recall the definition of Fourier ultra-hyperfunctions and their

properties. Put L = [a,00) +i[-b,b], L.=[a—¢,00)+i[-b—¢,b+e], (b>0).
We consider following test function space:

Q(Le : €') = {f(t) € H(L) N C(L.) : Sup £ (£)es ]| < o0}
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H(L.) is the space of holomorphic functions defined in the interior of L. and C(L¢) is
the space of continuous functions on L. respectively.

Q(L : {0}) = liminde>0e/50Q(Le : ') and Q'(L : {0}) is the dual space of Q(L : {0}).
The element of Q'(L : {0}) is called Fourier ultra-hyperfunction carried by L.

T(z) = (T, e~**) denotes the Fourier-Laplace transform of T € Q’(L : {0}).

Theorem 8.1 ([14]). Suppose that T is Fourier ultra-hyperfunction carried by L.
1. T(z) is holomorphic in the right half plane Re(z) > 0.
2. Ve>0,& >0,3Cce >0 5.t |T(2)] < Ce e @720+

(x>, z=xz+1iyeC)
Conversely, if g(z) is holomorphic in the right half plane and satisfies above estimate
then there exists a unique Fourier ultra-hyperfunction T such that g(z) = T(z)

Example 8.2. For a =0,b = m, we put

(T, Ry = —— /L etsiohwh () dw,  h(w) € Q(L : {0}).

27

€

Then T(z) = J,(t), (J.(t) is Bessel function([5])).

For the details of the theory of Fourier ultra-hyperfunction, please refer to [14], [18]
and [19].

§9. Characterization of Fourier ultra-hyperfunctions by heat kernel
method

In this section we will recall the heat kernel method for genelarized functions intro-

2
duced by T. Matsuzawa ([12], [13]). Fundamental solution E(z,t) = @ of

—_—e 1
(4mt)n/2
heat equation is called heat kernel. For the characterization of Fourier-hyperfunctions
and Fourier ultra-hyperfunctions by heat kernel method, we have following results.

Theorem 9.1 ([2]). For Fourier hyperfunction T, we put U(z,t) = (E * T)(z,1).
Then U(z,t) € C(R™ x (0,1)) satisfies following conditions 1 and 2.
1. —(,%U(:v,t) = AU(z,t)
2. Ve>0,3C. >0 s.t.
|U(z,t)| £ Ce exp(e(|z] + %)), (zeR"0<t<T)
3. th_x}(l) U(z,t)=T
Conversely if U(x,t) satisfies conditions 1 and 2, then there exists a Fourier hyperfunc-
tion T such that U(z,t) = (E * T)(x,t).
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Theorem 9.2 ([2]). For Fourier ultra-hyperfunction T, put U(z,t) = (E * T)(z, t).
Then U(x,t) € C°(R™ x (0,1)) satisfies following conditions 1 and 2.
1. QU(x t) = AU(z,t)

QA >0,3B > 0 s.t.

lU(:c,t)| = Aexp(B'(\xl + %)), (zeR™0<t<T)
3. th_r)rtl) U(z,t)=T
Conversely if U(x,t) satisfies conditions 1 and 2, then there exists a Fourier ultra hy-
perfunction T such that U(z,t) = (E * T)(z,t).

Example 9.3. We give two examples.
1.  (Dirac delta function §(z))

U(z,t) = (6 x E)(z,t) = E(x,t). }1_13% U(z,t) = 1{1_1}(1) E(z,t) = é(=).

2. (Heaviside function H(z))

U(z,t) = (H * E)(z,t) = % /_5\7‘? e~ ds.

hm U(z,t) —hmT/ 7 e ® H(z).

§10. Representation of A\(z) and A(w) by Fourier ultra-hyperfunction

Proposition 10.1. \(z) and A(w) can be expressed by Fourier ultra-hyperfunction
T, € Q([0,00) + i[5, 5], {0})as follows:
L )\(Z) = <Tt»e_2t>;

—t
we
2. A(w) = (T, m) + Ao.

Proof. 1. Since A(z) satisfies the conditions 1 and 2 in Proposition 6.1, there exists
Fourier ultra-hyperfunction 7; € Q'([0, 00) + z[—— ], {0}) such that A\(z) = (T, e **)
(Theorem 8.1).

2. A(w)- Z Amw™ i A(m)w™ = f: (Ty, e "™ yw™
m=1 m=1
= (Tta Z (e_tw) <Tt, %)
m=1
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§10.1. Remark

We can express Fourier ultra-hyperfunction T by A(w) as follows ([15]):

(T, h) = % /6 . AeHh(t)dt, h(t) € Q(L : {0}).

§11. Reconstruction formulas for symbol function

In this section we will show two reconstruction formulas.

Proposition 11.1 (The first reconstruction formula ([21])).

_ e’ 1 c+i00
F(2s) = —— A2 (z+1)s7*dz, (c>0).

s 2wt c—io0o

56

1 e ~
Proof.  Since A(z) = —ITZ-I-_I) / e °sF(2s)s* 'ds, by inverse Mellin transform,
0

we obtain above formula.

Proposition 11.2 (The second reconstruction formula([21])).

- 1 oo
F(2s) = ﬂes/ e**YA(—iv)dv

—0Q

valids.

+0oo

a

Proof. Since A(—iv) = / e~ *F(2s)e™*"ds, by inversion formula of Fourier trans-

—00

form, we obtain our desired result.

§12. The Relationship between A\(z) and A(w)

O

Theorem 12.1. The relationship between A(z) and A(w) are given by following for-

mulas:

1.

1

M) = 5 o,

A(e®)e™*¢d¢

where L, = [—€,00) + 1 [_f —6,7—T- +€].

2.

3.

1 2 2
Alz :—-/ A(w)w™*"tdw
) 2M% Jeap(Le) N
i 0 =T )\ (imp) _ pItT (4
Ale™) = 2M(0) + / A@)e—tda +i / TUN) — N i)
0 0 _




KUNIO YOSHINO

Proof.  For the proof of 1 and 2, we refer the reader to [15], [21], [22], [23].
3. If we apply Plana’s summation formula([5], [10]) to f(2) = A(z)e *?, then we
obtain the above formula. O

§12.1. Examples

1
Example 12.2. F(p,q) = e HPHeY) — ¢ 2alr2, (Re(;) > 1).

a

Am =a™ A2) =a*t, A(w) = T Ti = ad(t + loga).
Example 12.3. Assume that F(2s) = €° Z e ™ ¢ is theta function.
n=2

Am=C@m+2)—1, Az)=((22+2) -1,

where ((z) is Riemann zeta function.

Aw) = 2w (smﬂ'\/_ iV 1) T

1
T; = E ﬁé(t —2logn).
n=2

To calculate A(w), we used g(2n) = 2% ig?n (f:)! and

o0
] = Z(—l)”'l—B—"a:%, (B, is Bernoulli number).
n=1

(2n)!
Example 12.4. F(2s) = ef(s— 1), (6(s) is Dirac’s delta function).
1 1

) A(Z) = 'rmv

(T, h(t)) = /a o, bt € QL o),

Alw) =€,

where L = [a,00) + z[—g g]

Since a is arbitrary positive number, T is carried by oo + z[g, —g] ([16)).

§12.2. Integral representation of Riemann zeta function

1 T/ w ‘
22 +2 TV L i — 1) wT L dw.
(22 +2) = 2mi /aexp( L) 2w (smw\/_ TV )w v

57
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Proof. By 2 in Theorem 12.1 and Example 12.3, we obtain above formula. a

§13. Relationship between symbol function and Fourier
ultra-hyperfunctions

Theorem 13.1. Suppose that T is Fourier ultra-hyperfunction such that A(z) =
oo

T(z) and \(z) = ﬁ/{) e~ °s°F(2s)ds. Then we have
1. (Tt,h(t)):% /a ] { /0 ” ese‘e—Sﬁ(zs)ds} Mot  h(t) € QL : {0})

where L = [0, 00) + i[—%, g .
2. F(2s) = (T}, e*Tt7%¢"), (s> 0).

Proof. 1.

/ { / esete‘sﬁ(Zs)ds}h(t)dt
oL, 0
:/ / %’ {i/ e_is"’A(-iv)dv}dsh(t)dt
8L Jo
1 oo * set —isv :
= %/L /_Ooe e **Y A(—iv)dvdsh(t)dt
L

= i/ / esete'i”ds/ A(—iv)dvh(t)dt

15]
2]
= /aL/ A= “’)d h(t)dt = / A(et)h(t)dt

et—u

- /Me {Tu, T et—u>h(t)dt = (T, /a . Tz hlt)dt) = 2mi(Ty, h(t)).

2. /Oooe_ssz(Tt,e”t“set)ds = (Ty, et /000 s%e%¢ ds)
= (T}, e % /000 u?e vdu) = ['(1 + 2)(Ty, e~ ) = T(1 + 2)A(2).
On the other hand we have
/000 e *s*F(2s)ds = T'(1 + 2)A(2).

Therefore, by the uniqueness of Mellin transform , we obtain our desired result. O
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§14. The Reconstruction formula by Borel summability method

Put

o0 F —8
G(t) =/ F2s)e™ . (t € C\ [0, od]).
0 t—s
Proposition 14.1 ([22]). G(t) has following properties:
1. G(t) is holomorphic in C\ [0, oo].

m=0

o0
i.e. Formal power series Z mIAmt ™™ is an asymptotic expansion of G(t).

m=0

Proposition 14.2 ([22]).

oo

1. A(w) is the Borel transform of formal power series Z m!Apt ™™ L
m=0

2. Laplace transform of A(w) is G(¢).

Proof. 1. This is the definition of Borel transform.
2. A(w) is bounded in left half plane. So we can consider Laplace transform of A(w)

along negative real axis.

Proposition 14.3. We have following diagram:

F(2s)e—s —ZL 5 G

l I
3 mt ™ Aw)

m=0

B is Borel transformation, L is Laplace transformation and H is Hilbert transformation.
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Theorem 14.4 (Third Reconstruction Formula).

F(2s) = 682_711. (G(s + i0) — G(s — i0))..

Proof. Since G(t) is Hilbert transform of F'(2s)e*, F(2s)e™* is boundary value of
G(t). O

References

[1] Bargmann, V., On a Hilbert space of analytic functions and an associated integral trans-
form. Part I, Comm. Pure. Appl. Math (1961), 187-214.

[2] Chung, S. Y., Kim, D. and Kim, S. K., Structure of extended Fourier hyperfunctions,
Japanese J. Math. 19 (1994), 217-226.

(3] Daubechies, 1., A time frequency localization operator; A geometric phase space approach,
IEEE. Trans. Inform. Theory 34 (1988), 605-612.

, Ten Lectures on Wavelets, SIAM., Philadelphia, Pennsylvania, 1992.

[5] A. Erdelyi, A., Magnus, W., Oberhettinger F. and Tricomi, F. G., Higher Transcendental
Functions 1, Bateman Manuscript Project, New York, Tront, London, 1953.

[6] Folland, G. B., Harmonic Analysis in Phase Space, Princeton University Press, 1989.

[7] Grochenig K., Foundations of Time-Frequency Analysis, Birkhauser, 2000.

[8] Kashiwara, M. and M. Vergne, M., Functions on the Shilov boundary of the generalized
half plane, Non-Commutative Harmonic Analysis, Lecture Notes in Math. 728, Springer,
1979, pp. 136-176.

[9] Kawazoe, T., Harmonic Analysis on Group, Asakura Shoten, 2000, in Japanese.

[10] Kurokawa, S. and Wakayama, M., Absolute Casimir Element, Iwanami, 2002, in Japanese.

[11] Martinez, A., An Introduction to Semiclassical and Microlocal Analysis, Springer-Verlag,
New York, 2002.

[12] Matsuzawa, T., A calculus approach to hyperfunctions I, Nagoya Math. J. 108 (1987),
53-66.

[13] , A calculus approach to hyperfunctions II, Trans. Amer. Math. 313 (1989), 619—
654.

[14] Morimoto, M., Analytic functionals with non-compact carrier, Tokyo J. Math. 1 (1978),
77-103.

{15] Morimoto, M. and Yoshino, K., A uniqueness theorem for holomorphic functions of expo-
nential type, Hokkaido Math. J. 7 (1978), 259-270.

, Some examples of analytic functionals with carrier at the infinity, Proc. Japan
Acad. 56 (1980), 357—-361.

[17) Mumford, D., Nori, D. and Norman, P., Tata Lectures on Theta III, Birkhauser, 1991.

[18] Park, Y. S. and Morimoto, M., Fourier ultrahyperfunctions in the Eucledean n-spaces, J.
Fac. Sci. Univ. Tokyo Sec. IA Math. 20 (1973), 121-127.

[19] Sargos, P. and Morimoto, M., Transformation des fonctionnelles analytiques a porteur
non compacts, Tokyo J. Math. 4 (1981), 457-492.

[20] Wong, M. W., Weyl Transforms, Springer-Verlag, New York, 1998.




61

KUNIO YOSHINO

[21] Yoshino, K., Daubechies localization operator in Bargmann-Fock Space, Proceedings of
SAMPTA 2009, Marseille, France, May, 2009.

, Analytic continuations and applications of eigenvalues of Daubechies’ localization

operator, CUBO A Mathematical J. 12 (2010), 196—-204.

, Complex analytic study of Daubechies localization operators, IEEE, ISCIT 2010

(2010), 695-700.

[22]

23]




