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Existence of the solutions of Lewy equation
as the tempered ultrahyperfunctions

By

Yasuyuki OKA* and Kunio YOSHINO**
y

Abstract

The aim of this article is to show that there exist the solutions of the Lewy equation in the
space of the tempered ultrahyperfunctions and give the example.

§1. Introduction and Main result

In the middle of 1950’s, B. Malgrange and L. Ehrenpreis independently obtained the
result that every linear differential operator with constant coefficients has a fundamental
solution (see [2] and [9]). This implies that if L is a linear differential operator with
constant coefficients on R? and f € C§°(R?), there exists u € C°(R%) such that

Lu=f

(see [3] and so on). Therefore everyone believed that a linear differential equation with
variable coefficients

P(z,0)u= Y au(x)0%u=f

la|<m
can be also solved for an arbitrary right-hand side f, especially f € C$*(RY). But in
1957, H. Lewy destroyed all hopes in the world by the following result:

Theorem 1.1 ([4], [16]). There exist the functions f € C§°(R3 ;) so that the fol-

lowing linear partial differential equation has no solution in the space C' in any neigh-
borhood of the point (z,y,t) = (0,0,%o):

(1) = (g +ige ) uled) + 2+ ) et = (@00, £ € OGRS,
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Moreover in (7] and [8], L. Hormander showed that the Lewy equation (1.1) has no

solution in the space of Schwartz’s distributions in any open non-void subset of Riyy,t

by giving the following necessary condition:
Theorem 1.2 ([7], [8]). Suppose that the differential equation
PX,0u=f
has a solution u € D'(Q) for every f € C§°(). Then we have
Com-1(X,€) =0 if Pn(X,£) =0, X €Q, £ € RY,

where we use the following notations:
e 0 C R%: an open set,
¢ P(X,0) = Y aa(X)0% aq(X) € C®(Q),

la|<m
¢ Pu(X,8) = Y aa(X)E%, Pr(X,6) = Y aa(X)E%,
laj=m |al=m

o P(X,8) = 2 Pr(X,6), Prj(X,€) = 55 Pu(X,0),
d

¢ Com—1(X,€) = 3 i(BF (X, )P ;(X,6) = P j(X,6) P (X, ).
In fact, by (1.1), we have =

e X = (Z,y,t) € Rsa € = (61’62,53) € R3’

PIX,6) = ) aa(X)E* = —&1 — by + 2i(z + iy)és,

le|=1

oPUX,8) = ) aa(X)E* = —& + ity — 2i(z — iy)Es.

Jal=1

Hence, we obtain that
Ci(X,€) = —8¢; #0if PL(X,€) = 0as & = —2y, & =2z, & = 1.

Therefore we can see that the Lewy equation does not satisfy this necessary condition.

Besides, in [14] and [15], P. Schapira showed that the Lewy equation (1.1) has no
solution in the space of Sato’s hyperfunctions in any open non-void subset of Rg’y’t by
proving that, at least, for first order PDE with analytic coefficients, nonsolvability in
the distribution sense implies nonsolvability in the space of Sato hyperfunctions.

Now we have one question, “when can we always solve the Lewy equation for
f € C§&°(R%)?". To this question, we can find that in [1], S.-Y. Chung, D. Kim and
S. K. Kim showed that the Lewy equation for f € CG°(R3 ;) has a solution in the
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space C*(RZ ;G'(R;)). As a remark, the space G'(R) is a space of the Fourier ultra-
hyperfunctions. This space is a kind of the space of analytic functionals (see [1] and
[13]).

Our motivation is to catch the smaller space in which Korean group’s result holds
than the space G'(R;) with respect to t variable and we obtained the following result:

Main Theorem 1.1 ([12]). The Lewy equation has a solution in C*(R2 ; (G')'(R;))
for f € C(RZ,; I} (Ry)).

x,y’

As a remark, the space (G!)'(R) is a space of the tempered ultrahyperfunctions which
is smaller than the space G'(R) with respect to ¢ variable.
This result implies that the following Corollary 1.3:

Corollary 1.3 ([12]). The Lewy equation has a solution in C*(R3Z ; (G')'(R;)) for
f € C(())O(Rg,y,t)'

In this paper, we will make a report our main result more precisely by giving some
supplementations and examples than in [12].

Authors Year | u Space f

H. Lewy 1957 | No | C}(f) Cs°(R3)
L. Hérmander 1960 | No | D'(Q) Cs°(R3)
P. Schapira 1967 | No | B(2) C$°(R3)
Korean Group 1993 | Yes | C*(R2 ;G'(R;)) CS°(R3)
Y. Oka and K. Yoshino | 2012 | Yes | C*(R2 ;(G')'(R;)) | C3°(R?)

§2. The spaces (G;)'(R?) and (G!)'(R%)
For z € R? z% = z{'---25% and 02 = 021 ---82¢, where O3] = (5%)0‘1' and

a=(ai, - ,0q) so that a; € Z and o; > 0.

Definition 2.1 ([5]). Let us denote by S1 4(R%), A = (A1, A4s,...,Aq) € (0,00)%,
the space C*(R?) satisfying the following condition: For any § > 1 and 8 € Zi, there
exists a constant Cg s > 0 such that

d
10°p(z)| < Cp.5exp (— Zagj 1z, |, € C®(RY),

=1

where as; = %j. The space S; a(R?) is a Fréchet space with the semi-norms

d
Iellg,s = sup |85¢(z)| exp (Z aaﬂ%l)-
z€R4 j=1
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for any ¢ € S 4(R?). The space G, (R?) is given by the projective limit

G1(RY) = lim &1 4(RY).
A—0

Example 2.2. f(z) = e € G1(R).
Remark. The space given by the inductive limit

lim S1,4(RY).

A—oo

is the Gel’fand-Shilov space S;(R9) (see [5]).
Definition 2.3. We denote by (G;)’(R?) the dual space of the space G (R?).
In 1961, M. Hasumi obtained the following structure theorem:

Proposition 2.4 ([6]). Let T be in (G1)'(R%). Then T € (G1)'(R?) can be expressed

by
T(z) = 8°h(x), B € Z4,

where a continuous function h(x) satisfying that there exist positive constants A and B

such that
|h(z)| < AePlel.

Example 2.5. f(z) =e” € (G1)'(R), €* ¢ (S1)'(R).

Next we define the space G (R?). At first, we define the space SLE(R?), B € (0, 00)¢,
as follows:

Definition 2.6 ([5]). Let us denote by S1B(R?) the space C°(R?) satisfying the
following condition: For any p > 1 and « € Z%, there exists a constant Ca,p > 050 that

288 p(2)| < Ca,p(pB)?B!, B € Z2.

The space SB(R?) is a Fréchet space with the semi-norms

2208 (2)

a,p: T

lell™" = sup = eyaar
/362‘1+

It is known that the following result holds:

Proposition 2.7 ([5]). Let B € (0,00)%. Then the spaces SVB(R?) and S; p(R?)
are topologically isomorphic via the Fourier transform.
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Thus, we can replace the space S1Z(R%) with the space S; p(R?) via the Fourier
transform.

Definition 2.8. The space G*(R?) is given by the projective limit
gl(Rd) — @ SI’B(Rd).
B—0
Remark. The space given by the inductive limit

lim SMB(RY).
_

B—oo

is the Gel’fand-Shilov space S*(R?) (see [5]).

By Proposition 2.7, we immediately obtain the relationship between the spaces
G'(R?) and G, (R?) as follows:

Proposition 2.9. The spaces G'(R?) and G1(R?) are topologically isomorphic via
the Fourier transform.

Thus, we can replace the space G (R¢) with the space G, (R?) via the Fourier trans-

form.

Remark. The spaces G!(R%) and G, (R?) are subspaces of the Schwartz class S(R%),
respectively. Moreover the space G;(R?) has the subspace D(R?) but the space G'(R?)
does not have the subspace D(R?) because of its analytic property.

Definition 2.10. We denote the dual space of G!(R¢) by (G!)'(R9).

By Proposition 2.9, we obtain the following relationship between the spaces (G!)'(R%)
and (G;)'(R%):

Proposition 2.11. The spaces (G!)'(R?) and (G1)'(R?) are topologically isomorphic
via the Fourier transform.

Thus, we can replace the space (G!)(R?) with the space (G;)’(R%) via the Fourier
transform.
On the other hand, we prepare the following space to clear the analytic property of

the space G1(RY):

Definition 2.12 ([11]). Let O” be an open set in R¢ and K be a compact set in
O". Then let us denote by h(R? + i0") the space O(R? + i0") satisfying the following
condition: For any K C 0" and m € Z4,

lellz = sup €™ w(¢)] < oo.
Im{eK
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The space h(R? + i0") is the space of the test functions for the tempered ultrahy-
perfunctions (see [6] and [11]).

Example 2.13. Let z = z + iy and = > 0 be fixed. If |y| — oo, then we have
T(z 4 iy) ~ V2r|y|*~ /D emlvl/2
(see [10]). Therefore we can see that
F(¢) =T(i¢) € h(R +10")
where O” = (B, Bs) for some positive constants B;, Bs.

We have the following Proposition 2.14 (in [12], we did not prove this proposition
directly. So we give the proof here):

Proposition 2.14. Let B € (0,00)%. Then the spaces SLZ(R?) and h(R%+i{|Im ¢| <
1/B}) are topologically isomorphic.

Proof. Let p € SLB(R?). Then for any compact sets K C {|Im ¢| < 1/B}, we have
for any m € 74,

sup_ [cme(0) < Cp 3 IOl s

Im¢eK 18]=0 g

< Cxllel®? > (oBlnl)?
1=0

< Cpllel™* (1~ (pBn))~*
for ( = £ +in € R? 4+ iK. Hence we have
el < Cllel™”

for some constant C' > 0. Conversely, if ¢ € h(R? + i{|Im (| < 1/B}), then by the
Cauchy’s integral formula, we have

ﬁ!_/cr(&dg'sm (%)Im sup ¢ (O],

2mi ¢ —&)PHt |Im¢|<r

where C, - {¢eC4||¢~¢& =r}for any 0 < r < 1/B. Hence we obtain

lel™? < Cllellz -

[EI™10%0(€)] < (€™
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Now the space h(C?) is given by the projective limit

h(C?) = lim h(R? + i{|Im ¢| < 1/B}).
B—0

Then by Proposition 2.14, we immediately obtain the following Proposition 2.15:
Proposition 2.15. The spaces G*(R?) and h(C?) are topologically isomorphic.

Definition 2.16. We denote by h’(C?) the dual space of the space h(C?) called the
space of the tempered ultrahyperfunctions in [11].

Remark. The space §’'(C?) of the tempered ultrahyperfunctions is a subspace of the
space @Q'(C?) of the Fourier ultrahyperfunctions. Hence the space b’ (C%) is a kind of
the space of the analytic functionals (see [11] and [13]).

By Proposition 2.15, we immediately obtain the following Proposition 2.17:
Proposition 2.17. The spaces (G') (R?) and §'(C?) are topologically isomorphic.
Remark. We can consider the h’(C%) as (G')'(R?) below.

Example 2.18. Since the function €® is in (G;)’'(R), the Fourier transform of e”

Fle®l(¢) = 6(C+1)
is in b’ (C?).

§3. The proof of Main Theorem and the example

We have showed the proof of Main Theorem 1.1 in [12]. Therefore we give the
abbreviated proof (we refer to [12]). Moreover we give the example of our result.

Proof. Let us denote by F3 the Fourier transform for the third variable. Then by
the Fourier transform for the third variable of Lewy equation, we have

1) (+ige ) (Fuue ) + 2o + w)olFon)o,3:)

= —(F3f)(z,y,w), f € CHRE ;L' (Ry)),

z,y?

where supp (F3f) C {\/z2+y? < M, for some M > 0} x R,. By (3.1), we can see
that

1/0 .0 wl(z? 42 | T
82 3 (2 +ig) (£ FEE 0} = eI E )0,
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Since the function 1/(z + iy) is the fundamental solution of the Cauchy-Riemann
operator, we obtain

(3.3) (Fzu)(z,y,w)

e—w(z?+y?) 1 , , N2 y—y ) 9t gt
RE //Rz v ST I CIt S Al ) e eV H =V dr/dy.

By (3.3), with respect to z, y variables, we can see that (Fsu)(,-,w) € C! and with
respect to w variable, we can see that the function (F3u)(z,y, -) is a continuous function
satisfying the following estimate:

|(Fsu)(z,y,w)| < CeM 1!

for some constants C > 0 and M? > 0. By Proposition 2.4 and Proposition 2.11, the
solution u belongs to the space C(R2 ; (G1)(Ry)). O

T,y

Example 3.1. If f is in C§° with respect to x,y variables and 0 with respect to t
variable for Lewy equation, then we have the solution

w(z,y,t) = U(z,y) ® H(t +1),
where U(z,y) € C*°(RZ ) and H(t + i) defined by

1, ¢ € (0,00) +1i

HE+9) = H(Q) = {o ¢ ¢ (0,00) +i

is in b'(C).
Now we have for any ¢ € b(C),
(H'(t+1),6) = (IO, ) = — (H(0), &)
= [l +ie = ~lole + 0l
= 0(5) = (8¢ ~ 1)) .
Thus we obtain

H'(t+14) =56(C —1i) := {;o EZ , (€C.

Therefore we can see that H(t + ) and its derivative H'(t + i) are identically 0 on a
real line R;.
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Finally, we can see that the solvability of the Lewy equation holds in the space of the
tempered ultrahyperfunctions smaller than the space of the Fourier ultrahyperfunctions.
(In [12], we also show the solvability of the Lewy equation with non-homogeneous term
f in an another space.) But we have not known whether the space of the tempered
ultrahyperfunctions is the smallest yet. Therefore we will be would like to obtain the
smallest space in which the Lewy equation always has a solution in the future.
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