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1 Introduction

In the classical duration problem as a variation of the secretary problem
studied by Gilbert and Mosteller (1966) extensively, a known number $n$ of
rankable objects appear sequentially in random order and we must find a
stopping rule that maximizes the expected duration of holding a relatively
best object. At each stage, we observe only the relative rank of the current
object with respect to its predecessors. We select a relatively best object,
receiving a payoff of 1 plus the number of future observations before a new
relatively best object appears or until the final stage $n$ is reached. This no-
information version is one of several duration problems studied by Ferguson
et al.(1992), along with the full-information analogue: given $n$ independent
and identically distributed random variables $X_{1},$ $X_{2},$

$\ldots,$
$X_{n}$ with a known

continuous (to avoid ties) distribution $F$ , find the stopping rule which max-
imizes the expected duration of holding a relative maximum. Since the dis-
tribution is known and continuous, $F$ is assumed, without loss of generality,
to be the uniform on the interval $(0,1)$ .

It is known that the optimal rule in the nxinformation problem lets
approximately $n/e^{2}\approx 0.1353n$ objects go by and then selects the first rel-
atively best object, if any. The optimal proportional payoff $(=payoff/n)$
converges to $2e^{-2}\approx 0.2707$ . In the full-information version, there exists
a sequence of non-decreasing thresholds $b_{m},$ $m=0,1,$ $\ldots$ and the optimal
rule with $n$ observations stops at the first $k$ such that the $kth$ observation
is a relative maximum and $X_{k}\geq b_{n-k}$ . The optimal proportional payoff
converges to 0.4352. $A$ bivariate integral expression for this value was given
as

$\int_{0}^{1}e^{-c^{*}/u}[\int_{0}^{u}(\frac{e^{c^{*}v/u}-1}{v}+\frac{e^{c^{*}v/u}}{1-v})dv-1]du$

by Mazalov and Tamaki (2003), which is shown to be equivalent to

$(e^{c^{*}}-1)I(c^{*})+(e^{-c^{*}}-c^{*}I(c^{*}))J(c^{*})$
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by Samuels (2004, Sec. 13.2) and Gnedin (2004)(see also Mazalov and
Tamaki (2006) $)$ , if the exponential-integral functions are defined as

$I(c)= \int_{c}^{\infty}\frac{e^{-x}}{x}dx, J(c)=\int_{0}^{c}\frac{e^{x}-1}{x}dx$

and $c^{*}\approx 2.1198$ as a solution $c$ of the equation

$1+J(-c)=e^{-c}(1-J(c))$ .

In this paper, we introduce uncertainty about the number $N$ of the actu-
ally available objects into the above full-information problem. $N$ is assumed
to be a bounded random variable, independent of the sequence $X_{1},$ $X_{2},$

$\ldots,$

and have a prior distribution $p_{k}=P\{N=k\}$ such that $\sum_{k=1}^{n}p_{k}=1$ and
$p_{n}>0$ for a known upper bound $n$ (thus the classical problem corresponds
to the case where $p_{n}=1$ and $p_{k}=0$ for $1\leq k<n$). The objective of
maximizing the expected duration remains unchanged. We henceforth refer
to this problem as the random horizon duration problem (abbriviated to
RHDP). Two models, MODEL 1 and MODEL 2, can be considered for the
RHDP according to whether the final stage of the planning horizon is $N$

or $n$ . More specifically, if the chosen object is the last relative maximum
prior to $N$ , we hold it until stage $N$ in MODEL 1, whereas until stage $n$

in MODEL 2. For the corresponding no-information problem, see Tamaki
(2013). See also Gnedin (2005) for the similarity between the RHDP and the
best choice problem with random horizon (see, for the latter, Presman and
Sonin (1972), Petruccelli (1983), Samuel-Cahn (1996) and Tamaki (2011) $)$ .

In Section 2, the structure of the optimal rule is examined, and a neces-
sary and sufficient condition for it to be of the form

$\tau=\min\{k : X_{k}=\max(X_{1}, X_{2}, \ldots, X_{k})\geq a_{k}\}$

for a monotone sequence $a_{1}\geq a_{2}\geq\cdots\geq a_{n}$ is given. The stopping rule
is said to be monotone in this case. We evaluate the optimal proportional
payoff. The case of uniform distribution for $N$ is studied in detail both for
MODELs 1 and 2.

2 MODEL 1

We simply call a relative maximum candidate and denote by $(k, x)$ the
state, where we have just observed the $kth$ object to be a candidate having
value $x,$ $1\leq k\leq n$ . Let $S_{k}(x)$ and $C_{k}(x)$ represent the expected pay-
off earned by stopping with the current candidate in state $(k, x)$ and by
continuing observations in an optimal manner respectively. Then $V_{k}(x)=$

$\max\{S_{k}(x), C_{k}(x)\}$ represents the optimal expected payoff, provided that
we start from state $(k, x)$ . Define $\pi_{k}=\sum_{j=k}^{n}p_{j},$ $1\leq k\leq n$ . Then we have

$S_{k}(x)= \frac{\sum_{i--k}^{n}\pi_{i}x^{i}}{\pi_{k}x^{k}}$
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and

$C_{k}(x)= \sum_{i=k+1}^{n}(\frac{\pi_{i}}{\pi_{k}})x^{i-k-1}\int_{x}^{1}V_{i}(y)dy.$

Since, for a given $k,$ $S_{k}(x)$ is increasing in $x$ , while $C_{k}(x)$ decreasing, it is
optimal to stop in $(k, x)$ for $x\geq ak$ , where

$a_{k}= \min\{x:S_{k}(x)\geq C_{k}(x)\}.$

Lemma 2.1. $A$ necessary and sufficient condition for the sequence $\{a_{k}\}$ to
be monotone is

$1 \leq\sum_{j=1}^{n-k}\frac{\pi_{j+k}}{\pi_{k}}(\frac{1-a_{k+1}^{j}}{j})$

for each $k$, where $a_{k}$ is a unique root $x$ of the equation

$\sum_{i=k}^{n}\pi_{i}x^{i}=\sum_{i=k}^{n-1}\pi_{i}x^{i}\sum_{j=1}^{n-i}\frac{\pi_{j+i}}{\pi_{i}}(\frac{1-x^{j}}{j})$

For the purposes of most applications, the following corollary is useful.

Corollary 2.1. $A$ sufficient condition for the optimal rule to be monotone
is that

$\frac{\pi_{j+k}}{\pi_{k}}$ is non–increasing in $k$

for each possible value of $j.$

Corollary 2.1 is applicable to the following distributions.

Example 1 ( $N$ degenerates to $n$ ) $:p_{n}=1$ and $p_{k}=0,1\leq k,<n.$

Example 2 (uniform): $p_{k}=1/n,$ $1\leq k\leq n.$

Example 3 (generalized uniform):

$p_{k}=\{\begin{array}{ll}0, if 1\leq k<T\frac{1}{n-T+1}, if T\leq k\leq n,\end{array}$

for a given parameter $T=1,2,$ $\ldots,$
$n.$

Example 4 (curtailed geometric) : $p_{k}=(1-q)q^{k-1}/(1-q^{n}),$ $1\leq k\leq n$ for
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a given parameter $0<q<1.$

The explicit expression for the proportinal payoff is given as follows:

Lemma 2.2. Let $h_{k}= \sum_{j=1}^{k}1/j$ for $k\geq 1$ with $h_{0}=0$ . Then the expected
proportional payoff, when the optimal rule is monotone, can be calculated as

$v_{n}^{*}= \frac{1}{n}\sum_{k=1}^{n}v_{k}p_{k}$

where

$v_{k}=h_{k}+ \sum_{j=1}^{k}\sum_{i=j}^{k}\frac{1}{i}(h_{k-i}-h_{i-j}-1)a_{j}^{i}.$

When $N$ is uniform on $\{$ 1, 2, $\ldots,$
$n\}$ , the main results can be summarized

as follows (see Mazalov and Tamaki (2006)).

Theorem 2.1 $(a)$ Optimal $\mathcal{S}$ topping rule: The thresholds value $a_{n-m}$ is
given as a unique root $x\in(0,1)$ to the equation

$\sum_{j=0}^{m}\sum_{k=0}^{j}x^{k}=\sum_{k=0}^{m-1}x^{k}\sum_{i=1}^{m-k}\sum_{j=1}^{i}(1-x^{j})/j.$

$(b)$ Optimal proportional payoff:

$v_{n}^{*}= \frac{1}{n^{2}}\sum_{k=1}^{n}v_{k}.$

$(c)A_{\mathcal{S}}ymptotics$ : Let $c^{*}(\approx 3.6925)$ be the unique root $c$ to the equation

$2(e^{-c}+c-1)=e^{-c}J(c)-(c-1)J(-c)$ . (1)

Then $v_{n}^{*}$ converges, as $narrow\infty$ , to

$v^{*} = (e^{c^{*}}+ \frac{1}{c^{*}-1})I(c^{*})+\frac{1}{2}J(c^{*})(e^{-c^{*}}-\frac{(c^{*})^{2}}{c^{*}-1}I(c^{*}))$ (2)

$\approx$ 0.2022. . .

Proof. $A$ brief sketch of (c) by PPP (see Samuels (2004)): Let

$T=the$ arrival time of the first (leftmost) atom that lies below the threshold
curve $y=c/(1-t)$ .
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$S=the$ time when the value of the best (lowest) atom above threshold is now
equal to the threshold.

$V=a$ uniform random variable on $(0,1)$ .

Then,

$f_{T}(t) = c(1-t)^{c-1}, 0<t<1$

$f_{S}(s) = \frac{cs}{(1-s)^{c+2}}e^{-\frac{cs}{1-s}}, 0<s<1.$

Let $(t, y)$ be the state on PPP and denote by $p(t, y)$ and $q(t, y)$ the expected
payoff earned by stopping in state $(t, y)$ and by continuing and stopping
with the next candidate respectively. Then, by letting $D(t, y)$ represent the
stopping payoff in state $(t, y)$ , we have

$p(t, y) = \int_{0}^{1-t}P\{D(t, y)>x\}dx$

$= \int_{0}^{1-t}\frac{1-t-x}{1-t}e^{-yx}dx$

$c-1+e^{-c}$

$cy$

$q(t, y) = \int^{1}\{\int_{0}^{y}p(s, z)\frac{1}{y}dz\}f_{S}(s)P\{V>s|V>t\}dtds$

$= \frac{1}{cy}((1-c-e^{-c})+e^{-c}J(c)+(1-c)J(-c))$

$p(t, y)=q(t, y)$ yields (1). Moreover,

$v^{*}$ $=$ $\int_{0}^{1}\int_{0}^{t}(1-s)p(s, \frac{c^{*}}{1-s})f_{S}(s)f_{T}(t)dsdt$

$+ \int_{0}^{1}\int_{0}^{s}[\int_{0}^{c^{*}/(1-t)}(1-t)p(t, y)_{*}\frac{1-t}{c}dy]f_{T}(t)f_{S}(s)dtds,$

which yields (2) by straightforward calculations.

3 MODEL 2

We have

$S_{k}(x)= \frac{\sum_{i--k}^{n}\sigma_{i}x^{i}}{\pi_{k}x^{k}},$

16



where $\sigma_{i}=\pi_{i}+(n-i)p_{i}$ . The analogous results to Lemma 2.1 and Corollary
2.1 can be given to MODEL 2 as well by simply replacing $\pi_{k}$ by $\sigma_{k}.$

Lemma 3.1. $A$ necessary and sufficient condition for the sequence $\{a_{k}\}$ to
be monotone is

$1 \leq\sum_{j=1}^{n-k}\frac{\sigma_{j+k}}{\sigma_{k}}(\frac{1-a_{k+1}^{j}}{j})$

for each $k$, where $a_{k}$ is a unique root $x$ of the equation

$\sum_{i=k}^{n}a_{i}x^{i}=\sum_{i=k}^{n-1}\sigma_{i}x^{i}\sum_{j=1}^{n-i}\frac{\sigma_{j+i}}{\sigma_{i}}(\frac{1-x^{j}}{j})$

Corollary 3.1. $A$ sufficient condition for the optimal rule to be monotone
is that

$\frac{\sigma_{j+k}}{\sigma_{k}}$ is non–increasing in $k$

for each possible value of $j.$

Examples 1, 2 and 4 satisfy the sufficient condition in Corollary 3.1.
When $N$ is uniform on $\{$ 1, 2, $\ldots,$

$n\}$ , the asymptotic proportional payoff is
$2v^{*}\approx 0.4044$ . This is intuitively clear because $\sigma_{i}=2\pi_{i}-1/n$ , and so, as
$narrow\infty,$ $S_{k}^{(2)}(x)/S_{k}^{(1)}(x)= \sum_{i=k}^{n}\sigma_{i}x^{i}/\sum_{i=k}^{n}\pi_{i}x^{i}arrow 2$ where $S_{k}^{(i)}(x)$ is just
the $S_{k}(x)$ for MODEL $i.$

4 Remark

Consider now a class of stopping rules having an identical threshold value
$b(0<b<1)$ , i.e., a rule which chooses the first observation whose value
exceeds $b$ . How about the asymptotic performance of such a simple rule?
Let $K$ be the number of observations that exceed $b$ . Then $K$ is a binomial
random variable with parameters $n$ and $1-b$ and the expected proportional
payoff is given by

$f_{n}(b)= \frac{1}{n}\sum_{k=1}^{n}(\frac{n}{k+1}h_{k})(\begin{array}{l}nk\end{array})(1-b)^{k}b^{n-k}.$

Let $n$ tend to infinity and $b$ to 1 in such a manner that
$n(1-b)ten4^{1_{S}}$

to
some constant $\lambda$ . Then we can approximate the binomial random variable
$K$ by the Poisson random variable with parameter $\lambda$ , implying that

$f_{n}(b) arrow f(\lambda) = \sum_{k=1}^{\infty}(\frac{1}{k+1}h_{k})e^{-\lambda}\frac{\lambda^{k}}{k!}$

$= \frac{-J(-\lambda)-e^{-\lambda}J(\lambda)}{\lambda},$
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where the last equality follows from Gnedin (2006). $\frac{df(\lambda)}{d\lambda}=0$ is equivalent
to

$(1+\lambda)e^{-\lambda}J(\lambda)+J(-\lambda)=0,$

which has a unique solution $\lambda^{*}\approx 2.83970$ . Thus $f(\lambda)$ is maximized at $\lambda=\lambda^{*}$

yielding

$f(\lambda^{*})=e^{-\lambda^{*}}J(\lambda^{*})\approx 0.42632.$

Surprizingly large! Compare $0.42632/0.43517\approx 0.98$ with $0.51735/0.58016\approx$

$0.89$ for the best-choice problem.
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