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1 Introduction

In Heegaard Floer homology theory, L-spaces introduced in [17] have an important role.
A rational homology 3-sphere Y is called an L-space if HF (Y) is a free abelian group
whose rank is equal to the order of H;(Y). Lens spaces are typical L-spaces, and several
other families of L-spaces are known so far. However, it is still an open problem to give
a characterization of L-spaces without involving Heegaard Floer homology.

In [4], Boyer, Gordon and Watson conjecture that an irreducible rational homology
3-sphere is an L-space if and only if its fundamental group is not left-orderable. This
would be an algebraic characterization of L-spaces. Here, a non-trivial group G is said
to be left-orderable if it admits a strict total ordering “<” which is invariant under left-
multiplication. That is, if g < h then fg < fh for any f,g,h € G. As a convention,
the trivial group is defined to be not left-orderable. It is easy to see that G is left-
orderable if and only if G is right-orderable, which is defined similarly. The history of
research on orderable groups is long, and many groups which appear in topology are left-
orderable. For example, free groups, free abelian groups, knot or link groups, braid groups
are left-orderable. Also, the fundamental groups of surfaces but the projective plane are
left-orderable. Since left-orderable groups are torsion-free, the fundamental groups of lens
spaces, elliptic manifolds are not left-orderable. It is natural to ask which 3-manifolds have
left-orderable fundamental groups. As a classical fact, the free products of left-orderable
groups are left-orderable. Hence we may restrict ourselves to prime 3-manifolds. Boyer,
Rolfsen and Wiest [5] prove that if a compact connected orientable prime 3-manifold has
non-zero first betti number, then its fundamental group is left-orderable. Thus irreducible
rational homology 3-spheres remain to be done.

Dehn surgery might be the easiest way to create rational homology 3-spheres. For a
given knot K in the 3-sphere S3, r-surgery yields a rational homology sphere whenever
r # 0. By considering the cabling conjecture, the resulting rational homology sphere



would be irreducible if K is not cabled. On the other hand, there are some strong
constraints for knots which admit Dehn surgery yielding L-spaces. For example, such
knots are fibered ([16]), and their Alexander polynomials have a specified form ([17]).
Thus the above conjecture by Boyer, Gordon and Watson suggests that any non-trivial
Dehn surgery on K yields a 3-manifold with left-orderable fundamental group, unless K
passes such criteria.

Any knot group is left-orderable. The fundamental group of the resulting manifold by
Dehn surgery on a knot is a quotient of the knot group. Although any subgroup of a left-
orderable group is left-orderable, a quotient may not be left-orderable. For torus knots,
the resulting manifold by Dehn surgery is either a Seifert fibered manifold or the con-
nected sum of two lens spaces. Since Boyer, Gordon and Watson [4] solved the conjecture
affirmatively for Seifert fibered manifolds, the left-orderability of the fundamental groups
of the resulting manifolds by Dehn surgery is completely understandable for torus knots.

The simplest hyperbolic knot is the figure-eight knot. By [17], it does not admit Dehn
surgery yielding an L-space. Hence we may expect that any non-trivial Dehn surgery
yields a 3-manifold whose fundamental group is left-orderable. Toward this direction,
Boyer, Gordon and Watson [4] showed if the surgery slope r lies in the interval (—4,4),
then r-surgery yields a manifold with left-orderable fundamental group. Later, Clay,
Watson and Lidman [6] confirmed the same conclusion for r = +4. (We remark that as
noted in [4], this is also true for any integral surgery by [9].) These two arguments are
quite different. The former builds a non—tr/_iv\i:ai representation of the fundamental group of
the resulting manifold by r-surgery into SLy(R), which is known to be left-orderable ([2]).
But the latter makes use of the torus decomposition of the resulting (graph) manifold into
two Seifert fibered pieces and some gluing technique of left-orderings ([3]). The argument
of [6] was generalized to all hyperbolic twist knots in [19]. We showed that 4-surgery on
a hyperbolic twist knot yields a manifold with left-orderable fundamental group. (Here,
the hook of a twist knot is assumed to be left-handed.) Furthermore, we extended the
argument for any exceptional Dehn surgery on hyperbolic two-bridge knots in [7].

In this note, we report a generalization of the argument of [4] from the figure-eight knot
to hyperbolic genus one two-bridge knots. Details are found in [11]. Let K = K(m,n) be
a hyperbolic genus one two-bridge knot S(4mn + 1, 2m) as shown in Figure 1. Here, the
twists in the vertical box is left-handed (resp. right-handed) if m > 0 (resp. m < 0), but
those in the horizontal box is right-handed (resp. left-handed) if n > 0 (resp. n < 0). By
symmetry, K(m,n) is equivalent to K(—n,~m). Also, K(—m, —n) is the mirror image
of K(m,n). Hence we may assume that m > 0. Thus K(1,1) is the figure-eight knot,
and K (1, —1) is the right-handed trefoil.

For a knot K, a slope r is said to be left-orderable if the resulting manifold K (r) by
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1: A genus one two-bridge knot K(m,n)

r-surgery has a left-orderable fundamental group.

Theorem 1.1 ([11]) Let K(m,n) be a hyperbolic genus one two-bridge knot S(4mn +
1,2m) in the 3-sphere S3. Let I be the interval defined by

(—4n,4m) if n >0,
I = ¢ [0,max{4m,—4n}) ifm>1andn < -1,
[0, 4] otherwise.

Then any slope in I is left-orderable. That is, the fundamental group of the resulting
manifold by r-surgery on K(m,n) is left-orderable if r € I.

Among K(m,n), K(1,n) and K(m, £1) are twist knots. Moreover, K (m, —1) is equiv-
alent to K(1,—m), and K(m,1) is the mirror image of K(1,m).

Corollary 1.2 Let K(1,n) be the n-twist knot with n # —1. Ifn > 0, then any slope
in the interval (—4n, 4] is left-orderable. If n < —1, then then any slope in [0,4] is left-
orderable.

Our argument works for the figure-eight knot, and it is much simpler than one in (4],
which involves character varieties. The fact that a knot has genus one is crucial in our
argument as well as that of [4]. In general, the longitude of a knot group is a product of
commutators. If a knot has genus one, then the longitude is a single commutator. For
a representation of a knot group into the universal covering group SL,(R), we need to
control the image of the longitude, by using Wood’s inequality [21]. See Lemma 2.7.

Anh Tran [20] obtained independently a similar result to Theorem 1.1.



2 Outline

Let K = K(m,n) and let G = m,(S® — K) be its knot group. We always assume that
m > 0 and n # 0, unless specified otherwise.

Proposition 2.1 The knot group G admits a presentation
G = (z,y | w'z = yw"),

where x and y are meridians and w = (zy~1)™(z'y)™. Furthermore, the longitude L
is given as L = wiw", where w, = (yz~1)™(y~'z)™ is obtained from w by reversing the

5

order of letters.
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2: A surgery diagram of K(m,n)

This is slightly different from that in [13, Proposition 1], but both are isomorphic. It is
derived from a surgery diagram of K as illustrated in Figure 2, where 1/m-surgery and
—1/n-surgery are performed along the second and third components, respectively.

Let s and ¢ be real numbers such that s > 0 and ¢ > 1. Let p: G — SLy(R) be a
representation of G defined by

)_\/21/\/5 _ [Vt 0
p(z) = 0 1/\/5"0(”_ _svE Vi)

By [18], p gives a non-abelian representation if s and ¢ are a pair of solutions of the Riley
polynomial. Let W = p(w) and z;; be the (4, )-entry of W™, Then the Riley polynomial
of K is given by ¢x(s,t) = 211 + (1 — t)z12. (See also [8].) Since s and ¢ are limited
to be positive real numbers in our setting, it is not obvious that there exist solutions for
Riley’s equation ¢x(s,t) = 0. However, this will be verified in Proposition 2.3 under some
condition.

To describe the Riley polynomial of K explicitly, we need two sequences of polynomials
with a single variable s.
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For non-negative integer m, let f,, € Z[s| be defined by the recursion

fmi2 = (8 +2)fnt1+ fm =0 (2.1)

with initial conditions fo =1 and f; = s+ 1. Also, let g,, € Z[s]| be defined by the same
recursion

Im+2 = (84 2)gm41 + gm =0 (2.2)

with slightly different initial conditions go = 1 and ¢g; = s + 2. We remark that g, is
equivalent to the Chebyshev polynomial of the second kind.
The closed formulas for f,, and g, are

m . m .

m+i\ ; m+1+3\

e () s (M)
1=0 i=0

In particular, all coefficients of f,, and g,, are positive integers, and the degree of f,, and

9m is m. Also, f,, and g,, are monic.

Let Ay € C be the eigenvalues of W = p(w). For any integer k, set 7 = (M —X¥) /(A4 —
A).

Proposition 2.2 The Riley polynomial of K 1is
¢ (8,t) = (Tnt1 — Ta) + (8 +2 —t — 1/¢) fm-19m-1Tn.

For convenience, we introduce a variable T' = ¢t + 1/t. Then the Riley polynomial of K
iS ¢K(Sa T) = (Tn+1 - Tn) + (3 + 2 - T)fm—lgm—lTn-
For example, if n = 1 then

ox(s,T) = (o—1)+(s+2-T)fm-19m-17T1

(trW —1)+(s+2—-T) fm-19m-1
s(s+2-T)g2_,+1+(s+2~T)fm19m-1
= (s+2-T)gm-1(89m-1+ fm-1) +1
(s+2—=T)gm-1fm + 1.

Thus Riley’s equation ¢x(s,T) = 0 has the unique solution T = s + 2 + 1/(fmgm-1) for
any s > 0. Then T > s+ 2 > 2, because f, > 0 and g,—1 > 0. Hence we have a real
solution t = (T + v/T? — 4)/2 > 1. In fact, we have s + 2 < T < s + 2+ 4/(sg2,_,).

Proposition 2.3 Suppose n # 1. For any s > 0, Riley’s equation ¢k (s,T) = 0 has
a solution T satisfying s + 2+ c/(sg2,_;) < T < s+ 2+ d/(sg%_,), where ¢ and d are
constants in (0,4) depending only on n. In particular, ¢x(s,t) = 0 has a solution t > 1
for any s > 0.



Now, we introduce a continuous family of representations of G. For s > 0, let p, : G —
SLy(R) be the representation defined by the correspondence

t—s—1 s
vt 0 -3 el
ps(m) = ( 0 1 | ps(y) = vt sﬁ_l . (23)
Vi —$ Vi
Vi

Since p; is conjugate with p, if s and ¢ satisfy Riley’s equation ¢x(s,t) = 0 then p, gives
a non-abelian representation of G as well as p (see [8, 14]).

Proposition 2.4 For the longitude L of G, the matriz ps(L) is diagonal, and the (1,1)-
entry of ps(L) is a positive real number.

The first conclusion is easy, but the second is important. To show it, the character vari-
ety theory was used in [4, Lemma 7], but we can establish it through a direct calculation.
Let B be the (1,1)-entry of the matrix ps(L).

Proposition 2.5
_ _fm + tfm—l

- ‘"f m-1+ tf m'

This conclusion is interesting, because the parameter n disappears.

Let 7 = p/q be a rational number, and let K(r) denote the resulting manifold by 7-
surgery on K. In other words, K(r) is obtained by attaching a solid torus V' to the knot
exterior E(K) along their boundaries so that the loop £ bounds a meridian disk of V,

S

where z and £ are a meridian and longitude of K.

Our representation p, : G — SLy(R) induces a homomorphism 7, (K (r)) — SLy(R) if
and only if ps(x)Pps(L£)? = I. Since both of ps(z) and ps(L) are diagonal (see (2.3) and
Proposition 2.4), this is equivalent to the single equation

APBI =1, (2.4)

where A, and B, are the (1, 1)-entries of p,(z) and ps(L), respectively. We remark that
As = v/t (> 1) is a positive real number, so is B, by Proposition 2.4. Hence the equation
(2.4) is furthermore equivalent to the equation

logBs p

- ==, 2.5
logAs ¢ (25)

Let g: (0,00) = R be a function defined by

log By
g(S) - —logAs'

By calculating limits, we obtain the following.
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Proposition 2.6 The image of g contains an open interval (0,4m).

The next is the key in [4], which is originally claimed in [14], for the figure-eight knot.
Our proof most follows that of [4].

The universal covering group SLy(R) can be described as

SLy(R) = {(,w) | 7] < 1,—00 < w < 0c}.

—~——

See [1, 14]. Let x : SLy(R) — SLo(R) be the covering projection. Then kerx = {(0,2j7) |
JjEZ}.

Lemma 2.7 Let p : G — SLy(R) be a lift of ps. Then replacing p by a representation

—

p = h-p for some h: G = SLy(R), we can suppose that p(m1(0E(K))) is contained in

—_——

the subgroup (—1,1) x {0} of SLy(R).

Proof of Theorem 1.1 Suppose n # —1. Let r = p/q € (0,4m). By Proposition 2.6, we
can find s so that g(s) = r. Choose a lift js of ps so that (71 (0E(K))) C (—1,1) x {0}
(Lemma 2.7). Then p,(zPL?) = I, so x(ps(zPL?)) = I. This means that j,(zPL?) lies in
ker x = {(0,2j7) | 7 € Z}. Hence ps(zPL?) = (0,0). Then g, can induce a homomorphism
m(K(r)) — Sm) with non-abelian image. Recall that S/L_;(I/R) is left-orderable ([2])
and any (non-trivial) subgroup of a left-orderable group is left-orderable. Since K(r)
is irreducible [12], m (K (7)) is left-orderable by [5, Theorem 1.1]. For r = 0, K(0) is
irreducible ([10]) and has positive betti number. Hence 7;(K(0)) is left-orderable by
[5, Corollary 3.4]. Thus we have shown that any slope in [0,4m) is left-orderable for
K = K(m,n).

Suppose n > 0. If we apply the above argument for K (n,m), then any slope in [0,4n) is
shown to be left-orderable. Since K (n,m) is equivalent to the mirror image of K(m,n),
any slope in (—4n, 0] is left-orderable for K (m,n). Thus we can conclude that (—4n, 4m)
consists of left-orderable slopes for K = K(m,n) with n > 0.

Suppose m > 1 and n < —1. Since K(m,n) is equivalent to K (—n,—m), the argument
in the first paragraph shows that any slope in [0, —4n) is left-orderable. In this case, we
obtain [0, max{4m, —4n}) consisting of left-orderable slopes.

Finally, consider the remaining cases. They are K(1,n) with n < —1 and K(m, —1)
with m > 1. Since K (m, —1) is isotopic to K (1, —m), two cases coincide. We obtain [0, 4)
consisting of left-orderable slopes by the argument in the first paragraph. Furthermore,
since these knots are twist knots, the slope 4 is also left-orderable by [19]. O
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