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ARCHIMEDEAN L-FACTORS FOR STANDARD L-FUNCTIONS
ATTACHED TO NON-HOLOMORPHIC SIEGEL MODULAR FORMS
OF DEGREE 2

TAKU ISHII (SEIKEI UNIVERSITY)

INTRODUCTION

Bump, Friedberg and Ginzburg [1] introduced a zeta integral which contains two com-
plex variables sy, s, and interpolates the standard and the spinor L-functions for generic
cuspidal representation m = ®.m, of GSp(2,A). Actually they carried out the un-
ramified computation to show that the local zeta integral coincides with the product
L(sy,my, std) L(s2, my, spin) of the local L-factors at the unramified place v. We com-
pute the (real) archimedean zeta integral by using the explicit formulas of the Whittaker
functions on GSp(2, R) developed by Oda, Miyazaki, Moriyama and the author. When
T is isomorphic to a large discrete series representations, for an appropriate choice of
Whittaker function and sections for Eisenstein series, we show that the archimedean zeta
integral is equal to the product of two archimedean L-factors.

1. ZETA INTEGRALS

We recall the zeta integral discovered by Bump, Friedberg and Ginzburg [1]. Let G be
the symplectic group with similitude of degree two defined over Q:

G = GSp(2) = {g € GL(4) | 'gJg = v(g)J for some v(g) € GL(1)}, J = (_0;2 (1;)
Let A be the ring of adeles of Q. Let m = ®!m, be a cuspidal automorphic representation
of G(A). For simplicity, we assume that the central character of 7 is trivial. We take a
maximal unipotent subgroup Ng of G by

1 i) 1 r1 X2
1 1 T2 I3

NO = {TL(illo, Zy, T2, $3) = 1 1 € G}
l —Z0 1 ’ 1

We fix a nontrivial additive character ¥ = [[,%» : A/Q — C and define a non-
degenerate unitary character ¥y, of No(A) by ¥, (n(zo, z1, T2, 23)) =¥ (—z0 — z3). For
a cusp form ¢ € 7, the global Whittaker function W, attached to ¢ is defined by

W,(g) = / o(ng)iny(n~Ydn, g€ G(A).
No(Q)\No(A)

Thoughout this paper we assume that 7 is generic, that is, W,, does not vanish for some
@ in .
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Let Py and P, be the Siegel and Jacobi (Klingen) parabolic subgroups of G, respectively:

* ok ok %
* % 0 * * %
p1:{<02 *>eG}, Po={|0 2 2 eq
0 * *x =%

The unipotent radical N; of P; is given by
N, = {n(0,$1,$2, :L'3) € G}, Ny = {n(xo,xl,(),xg) € G}
The Levi part of P; is isomorphic to GL(2) x GL(1) embedded via the maps ¢;:

o a b
61(01,9) = ( J tg—1> ) Lz(%g) = a1 det g )

C

a b

where a € GL(1) and g = € GL(2). The modulus characters d; of P; are given by
c d

61(e1(e, 9)) = Idet gP’lal®,  d2(22(e, g)) = |det g|2|a|*.
For a complex number s, we denote by Indgi(é;)) (6;) the space of smooth functions fi(s, g)
on G(A) satisfying fi(s,pg) = & (p)fi(s,g) for all p-€ P;(A) and g € G(A). For com-
plex numbers s; and sy, we take a global sections f; € Indgfﬁz)(éfﬁl)/ > and f, €
Indgé‘&) (852/3%1/ %). We define Eisenstein series E;(si, f;, g) as usual manner:
Ei(si, fi,9) = Z fi(8i,79).
YeP:(Q\G(Q)
For a generic cusp form ¢ € , the global zeta integral is defined by
Z(s1, 82,9, 1, f2) =/ ©(9)Er(s1, f1,9) Ea(s2, f2,9) dg.
Z(A)G(Q)\G(A)

Here we denote by Z the center of G. Unfolding two Eisenstein series, one can find the
basic ideritity:

Z(s1, 82, ¢, f1, f2) =/ ch(g)fl(sl,w2g)f2(32’wlg) dg
Z(A)N12(A)\G(A)
for Re(s;) and Re(sy) sufficiently large. Here Njz = N; NNy, = {n(0, z1,22,0) € G},
1 1
wy = ,1 — | and wy = - -1
1 1

Suppose that 7, f; and f, are factorizable. Then the global zeta integral is the product
of local zeta integrals

ZU(Sla 82, an fl,'ln f2,v) = / W'U(g)fl,v(sly wzg)fZ,v(S27 wlg) dga
Z(QU)N12(QU)\G(QU)

where the subscripts denote the local analogues. The unramified computation is the
following:
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Theorem 1.1. [1, Theorem 1.2] For v = p < oo, we suppose that m, is an unramified
principal series representation of G(Qy). Let diag(ao, apar, @00z, apaian) € GSp(2,C)
be the Satake parameter of m,. If all data are unramified, then we have

L(sy, my, std) L(sg, Ty, spin)
{(1 = plertD)(1 = p=20)(1 = p~22)} V'
where the local L-factors are given by
L(s, my, std) = {(1 = p~)(1 = oap™*)(1 — azp™*)(1 = ag 'p™°) (1 = 0 'p™)} 7,
L(s, my,spin) = {(1 — aop™*)(1 — aparp™*)(1 — aoazp™*)(1 — aparaap™)} .

Zv(sh S2, an fl,va fZ,U) =

2. REPRESENTATION THEORY OF GSp(2,R)

We introduce some representations of G := GSp(2, R). Main references are [6] and [7].
We denote by Go = Sp(2,R), P, =P;(R), N; = N;(R). Since we have assumed 7 = um
is generic, each local component T, is also generic. In particular, by a theorem of Kostant
[2], the representation 7, of G must be large in the sense of Vogan [9]. An irreducible
large representation ., of G is equivalent to one of the following:

(i) a (limit of) large discrete series representation of G;
(ii) an irreducible (generalized) principal series representation induced from the par-
abolic subgroup P;. (1 =0,1,2, Py: Borel)
We mainly treat the case (i).
Fix a maximal compact subgroup K of G by K = GNO(4). Let Ko = GoNO(4). Then

K is isomorphic to the unitary group U(2) via the isomorphism u : Ko 3 _AB ﬁ ) —

A+ V=1B € U(2). For A = (\;,\2) € Z? with Ay > Xp, let Vi = {f € Clzy, 73] |
homogeneous, deg(f) = A\; — Ag}. For f € Vy and k € Ko, we set (ma(k)f)(21,22) =
(det u(k))*2 f((x1,22) - u(k)). Here (1, 22) - u(k) means the ordinal product of matrices.
Then (73, V4) is an irreducible (A; — A2 + 1)-dimensional representation of K, with highest
weight ). We take a basis of Vy as s {y; = v} = 2{a*™ 7 |0 <1 < A — A} A
-1

Ko-invariant inner product {( , ) on Vy is given by (v, v;) = d;; - M ;)\2

For (A1, \2) € Z?, we denote by Dy, »,) be the (limit of) large discrete series repre-
sentation of G with Blattner parameter (A1, A2). Since Dy, ;) is large, (A1, A2) satisfies
1—=XM <A <0o0rl+Xi<—-X<0. Force C, we denote by D, x,)[c] the irreducible
admissible representation of G characterized by D, xp)lcllco = Diarae) @ D(=xz,-2;) and
D(,\h)\,_,)[c](z) = 2¢ (Z > 0)

Let T'r(s) = 7~*/*I'(s/2) and Tc(s) = 2(2m)°T'(s). We fix Yo(z) = exp(2mv/—1x)
(z € R). When 7o & Dy, pplc] with 1 — X < Ag <0, the L- and e-factors at the real
places via the Langlands parameter are the following (see [7, §4}):

L(s, Moo, Spin) = Fc(s e P (s + M=l

L(8, Moo, std) = M'r(s)Tc(s + A — 1)I'c(s — Az2),
(8, Moo, SPIN, Yoo) = (— 1)’\1
£($, Too, td, Yoo) = (= 1)M~



3. WHITTAKER FUNCTIONS ON GSp(2,R)

We recall the explicit formulas for Whittaker functions on G for the large discrete
series representations. A nondegenerate unitary character ¥y, of Ny is of the form
Yo (n(20, 1, T2, 23)) = exp{2mv/—1(coTo + c323)} with nonzero real numbers ¢ and cs.
We introduce the space

CF(No\G; ¥, ) :=A{W € C®(G, C) | W(ng) = ¢, ()W (g), Y(n,g) € No x G}
on which the group G acts by right translation. The restriction of a global Whittaker
function to G is of moderate growth. Then we consider the subspace C° (No\G; ¥n,) 1=
{W € C*(No\G;%n,) | W is of moderate growth} of C®°(No\G;n,). Let g and go be

the Lie algebra of G and Gy, respectively. Wallach’s multiplicity one theorem asserts that
for an irreducible (g, K')-module 7, dimcHom g g) (oo, Cmg(NO\G ¥N,)) < 1. If there

is a nonzero intertwining operator ¥ € Homq k(oo G (No\G; ¥n,)), then we call the
image W (v; *x) = ¥(v) of v € 7y, the Whittaker functlon correspondlng 10 v € oo
Theorem 3.1. [8], [6] Assume that 1 — X\ < Xy < 0.

(i) We have

1 ife3 >0

dimc Hom(go’K)(D(,\l’/\Z),COO(NO\Go;wNo)) = {O ich <0

0 ifes>0;

dimcHom(HO,K)(D(‘/\z,—)\l)ﬂCOO(NO\GO;wNo)):{1 if ¢ <0

(ii) Let cz < 0. We take a standard basis {vl(—)‘z’“)‘l) |0 <1< A\ — X} of the minimal

Ko-type 1(_x;—x1) 0f D(—ry—r,)- Then, up to a constant multiple, the radial part

T given by

of Whittaker function corresponding to v
W (v, diag(ar, az, 07", a3 "))

- a -
= VT (el )M (epfa) O+ exp( 2o

1 o1+v =100 o2++/ oo ar,_o | 9
X o——— (mleol—) 7 (4rrlcslaz) ™™
(27T _1)2 »/01—\/—300 /2-\/:TOO az ?

X (281)iT'(s1)T (81 — s2)T (82 + 1/2)[ (53 — Ag + 1/2) ds1dss,
where (a), =T'(a+n)/T(a) is the Pochhammer symbol, and real numbers (o4, 03)
are chosen such that o1 > 05 > 0.
4. COMPUTATION OF ARCHIMEDEAN ZETA INTEGRALS
Using the explicit formulas for Whittaker functions, we can show the following.

Theorem 4.1. Assume that T, = Dy, a)[0] with 1 — Xy < Ap <0. We take Whittaker
function Wo, for Do, »,)[0] and sections fi o, foeo as follows:

Waolg) = WS> ™sg), g€,
fie0(k) =1, k€ K,

Faioo(k) = (Mg (RS2 ™My g e K,

87
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Then we have

- L(s1, Moo, std) L(s2, oo, SPIN
Z00(81732»Wooaf1,007f2,oo) =C'(\/——1) M ( ! ) ( 2 Sp! )

FR(Sl + I)FR(281)FR(282 + A1 — A2+ 1)‘

- - Al(=Ag)!
Here ¢ = 272(2m) AZWAI(TEA_:-%%?'

(Outline of proof) Recall that
Zoo(51, 52, Woo, f1,00 f2,00) = / Woo(9) f1,00(81, w29) f2,00 (52, w19) dg-
Z(R)N12(R)\G(R)

We denote by Z(R)N2(R)\G(R) 3 g = n(z,0,0,0)n(0,0,0,z3) - diag(ab,a,b™',1) - k
(ro,73 € R, a € R, b > 0, k € Ko) and consider the Iwasawa decomposition of w;g.
Then we have

T (51, 52, Woo, fromn faco) = / / / Woo(ding(ab, a, b, 1)k)
rRX JrR* JK, JR?

><f1,o<,(s1,u-1<(1 u%))k)fzm(sz,u*(ﬁ (5 2 )

z%+a?
a?b? \(s1+D)/2, gb? \eH/2 o da db
(ara) (gym) T exe(o2ny=Tle + o) ldeodasdh g

We choose the data (W) e, fi.00, f2,00) @8 above and abbreviate 7 = 7(_y, -»,) and
v = vl(_’\z‘_’\l). For k € Ky, we have

W(oorigh) = Wr(koasg) = 3 by )

0<i<A1—Ag (vi, v3)
fz,oo(sg,pk) = Z <T(k)v—-)\2<7v,l;j>v<]§(p)vj, vn)

0<j<A1—A2
where p = p~! = u‘%ﬁ(f" xl:])) € K. Then Schur’s orthogonal relation implies
that

Zoo(sl) S2, WOO7 f1,007 f2,00)

I— | ;
> / Wi (v ding(ab, a, b, 1)) T E) % Uoda)
X (Ri)2 R2

(A1 — A+ 1)! osin (vs, v5)
a?h? \(tD)/2, qb? \s2H1/2 o da db
(W) (W) (a b ) exp{—27rv —1(270 + xg)}dmodxgj-b—.

We substitute the explicit formula for Wy, and compute the integrations with respect to
Zo, L3, A, b:

Zoo(sl’ S2, WOO, f1,607 f‘Z,oo)
J /T1+\/joo /Tz+\/:Too F(Sl + 89— to + )\]+22—2)F(82 —ty+ )\1+§\2—2)

B [CRVESTEN V= W = T(% + 53 — tp + 2¥22=LyT (2t
X Z Z (—1)mHre=D/2( /T Z <—;\2> (l /11].) (j + (M -;e - l)/Q)

e€{0,1} 0<i<A1—X2 jim
i=A1+€(mod 2)



F(—l—!-s _t1+2)\] Ag— 22m i—1— e)F( 4+ Al=i- 1+5)

X
F(82+>\] )\2;2m+1>

(2V/ )= (2,)iT (1) Tt — )T (12 + %)mz e+ ) dtydts.

Here ¢ = (;‘1—/\:2%2 (s14+252) =M =Ae =27 =81 52— (’\‘+’\2)/2+7/2 We use Barnes’ first lemma for

the integration over ¢;, and collect the terms to find that

Zoo(sla 52, Weos fl,oo, fz,oo)
(&) p(at=l)

(L (sy + M2t

d TV =To0 A+ —2 1 1
B — ety + T2 T PG g+ Dty + =
X (271_\/___1) ‘/7:2_\/:?00 F(Sg t2+ 5 )F(z 2+2> (2+2)
(/2 /TT)-Mtdet2092ata ()| Mo+ 1
Z ( 2 (= 2> ( —ty 4+ 22 i +q)dty if —\y is even;
e R ] 2 2
X
(1-X2)/2 -
o 1)1 ArHA2+2092¢H e +1( ) Ao _
Z ( ) —— (=)t F(—~t2+—+q)dt2 if — Xy is odd.
par (2¢ + D)I(Z2=L — o) 2 2

\

Using Barnes’ first lemma, for ftz again, and taking the summation over g, we can get the
assertion. O

Remark 1. When 7, is isomorphic to the class one principal series, coincidence of
archimedean zeta integral and the product of local L-factors (divided by normalizing
factors of two Eisenstein series) is shown ([3]).
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