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Explicit modular map for abelian surfaces via K3 surfaces
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Graduate School of Science, Chiba University

1 Introduction

1.1 Purpose and Method

We use the following notations:
X4 : the total family of principally polarized (in short p.p. ) abelian surfaces,
KC: the total family of algebraic Kummer surfaces,
X, : the total family of p.p. abelian surfaces with real multiplication by Q(v/5),
Ks : the total family of Kummer surfaces corresponding to X4;.

The purpose of this article is to show an explicit description of the modular map for X4 and

X45. Here, ”explicit” means

(i) an exact defining equation of the surfaces with parameters fitting with the compactifica-

tion of the moduli space,

(ii) an exact system of modular functions defined on the period domain that makes possible

our approximate calculations,
(iii) an exact definition of the period map such that its inverse map coincides with (ii)
(iv) a description of the period differential equation (if possible).

For this purpose, we use some kind of families of K3 surfaces those are equivalent to X4 or

X4, as deformation families of the complex structure.

1.2 Two period domains

Suppose an abelian surface A.

(1) The usual period matrix is given by ¢ <Ql) = (/ wk> ,(1 <t <4,k=1,2) of the peri-
Vi

Qy

ods of the holomorphic 1- forms wy along 1-cycles ;. Here the system {~1,...,74} is a symplectic
basis with ; - ;42 = —1 (i = 1,2). The normalized period matrix is given by Q = Q05 1. It

belongs to the Siegel space Gs.

(2) The holomorphic 2-form is given by ¢ = w; A wo. By taking six (2,2) minors of the

g h 1 0) we get a map
h ¢ 01

g h
wily ) meim) = ®, @, @, ®, ¢
9 Y2\V4 Y1/\Y4 —Y2 /Y3 YiAY2 Y3\ V4

=(h:g:9 :h?®—gg :1).

extended normalized period matrix ! (
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It holds

Im (i 5/) > 0 <= Im n; > 0,nB'7 > 0.

Here, we have — /
Y274
taking the orthogonal compelement C: in Hy(A, Z), we obtain

p= / @. It means C, = 3 A y3 + ¥2 A4 is an algebraic cycle. By
MAY3

Bo=(-2@UaU,U = (‘1) é)

Hence, we have equivalent period domains G, =
D, ={n=0p:...:1m5) € P*:nBo'n = 0,7Bo'7 > 0,12 > 0}.
The map w induces an explicit isomorphism
w*: POY(By, Z) = Sp(4, Z).

1.3 K3 surfaces

Let S be a K3 surface (note that a Kummer surface is a K3 surface). Always it holds

1
Hy(S,2) = Lxs = Es(-1) @ Es(-1)@UeU®U, U = <(1) 0) '

Let NS(S) be a sublattice in Lg3 which is generated by divisors on S. Its signature is always
(1,*). Let Tr(S) be its orthogonal complement. Its signature is always (2, *).

Let Fo be a family of K3 surfaces which generic member S has Tr(S) = By, namely NS(S) =
Lo = Eg(—1) & E7(—1) @ U, with a fixed marking. Here we omit the exact definition of this
marking (for detail see [N-5]).

The Torelli type theorem: We have a bijective correspondence by the period map between
the family Fq of isomorphism classes of marked K3 surfaces and the period domain Zg,.

Hence, X4 and Fy have the common period domain Zp,. It is the same for the family K.

2 Family of elliptic K3 surfaces

2.1 Clingher-Doran’s F¢p

According to Clingher-Doran [C-D], we take a family of elliptic K3 surfaces with complex
parameters «, 3,7, §:

S = S(a, 3,7,6) : v* = 23+ (=3at* —4t°)z + (t° — 26t% + 6t7). (2.1)

The fibration is given by 7 : (t,z,y) + t. For a generic member, it holds NS(S) = Eg(—1) @
E;(—1) @ U with singular fibers of type II*, of type I1I* and five of type I;’s, we say in short
with the singular composition I1*+II1T*+51;. In Fig. 2.1, so indicates the holomorphic section
given by the points at infinity at every fiber, and f indicates a generic fiber.
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Fig. 2.1: Singular fibers of S

We set Fop := {S(a, 8,7, 6)}. The following is our key property.
Theorem 2.1. It holds Fo = Fcp.

To show it, we must start from the exact definitions of Fy and Feop as families of marked
K3 surfaces. Stll more, we need a detailed argument about the isomorphism of marked pairings.
We omit them (for detail see [N-S)).

2.2. Kummer surfaces

1
By a change of the fibration t = — « , we have another expression equipped with a

2277 222
2-torsion section z; = y; =0

XCD = XCD(a7 /61'77 5) : 3/% = Z% + ,PX(S)Z% + QX(S)Zl
Px(s) = 4s% — 3as — 3, (2.2)
Qx(s) = 1(6 — 2vs).

By the fiberwise two isogeny map

2 s) — 22
(zlsyl) = (-75',?/) = (Z_%) (Q)(()Z*%l)yl') )

we obtain its quotient manifold

Yop =Yep(e, B,7,6) 1 y* = 2° + Py (s)2% + Qy (s)z
Py (s) = —2Px(s) = —8s3 + 6as + 24,
Qv (s) = Px(s)* — 4Qx(s)
= 165° — 24as* — 885 + 90252 + 2(3a8 + v)s + (82 — b).

(2.3)

It becomes to be a Kummer surface with the same period as S(e, 8,7, 8) (for detail see [N-S]).

2.3 A Shimura variety

According to Theorem 2.1, for a member S = S(a, 3,7, 0) € Fcp, we may identify a p.p. abelian
surface A(S) that has the same period with that of S. If A(S) has a real multiplication by /5,
we say that S has the same property.

Theorem 2.2. The surface S{e, B3,7,8) € Fy has a real multiplication by V5 if and only if

(—a® = 32 +6)? — da(afB —v)? = 0. (2.49)
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Remark 2.1. S(«, 8,7, 9) is a rational elliptic surface for v = 6 = 0. Otherwise it is an elliptic
K3 surface. Degenerating locus (i.e. the singular composition is not generic) is given by

Cr : v(6aBy + 72 + 9028)(—23328a° 573 + 466560333y — 233283°> — 3888a°~*
+97200a%32y* + 33750a8v° + 31258 — 3499207+2%6 + 699840 32425 — 34992084426
+184680a° 85 + 486003135 + 3712502415 + 71928014262 + 68040082426% — 270008362
+11664a58% — 2332803 3%6° + 116643%6% — 4665602 376> — 486000263
—233280°36* — 23328325 + 116645°) = 0.

Remark 2.2. (a) We are considering the family of isomorphism classes of marked K3 surfaces
(with some special marking) by Fo.

(b) That is the family of isomorphism classes of (some special) elliptic K3 surfaces.

(c) S(a,B,7,6) and S(c/,B,7,d") are isomorphic (as elliptic surfaces) if and only if they
lie on the same orbit of two C* actions (z,y) — (z',y') = (kz, k3y),t — ' = mt.

(d) It means that we get the weighted projective space P(2,3,5,6) as the compactification of
the space of parameters (a, 8,7, 6).

(e) Via the period map and theTorelli theorem, we know that the compactified moduli space is
P(2,3,5,6). According to Remark 2.1, this is the compactification by attaching P! = {(«, 8,7, 0) €
P(2,3,5,6) 1y =6 =0} .

2.4 Nagano’s family Fy for /5

According to A. Nagano [N3], we have

Theorem 2.3. (1) The family of Kummer surfaces with /5 action is given by
ZN(A,B,C) s w? = (u? — 2¢°)(u — (5 AY* — 10By + C)), (2.5)

with (A,B,C) € P(1,3,5) — {(1,0,0)}.

(2) Let Fn be the family of Zn(A,B,C). The parameters A,B,C are described by some sym-
metric Hilbert modular forms of weight 2,6,10, resp..

(8) The period map is constructed geometrically. It gives a biholomorphic correspondence between
the compactified parameter space P(1,3,5) and the one point compactification of the period
domain H x H/(SL(2, 6}),t), where ¢ is the involution of the coordinates exchange of H x H.

Theorem 2.4. We have the equivalence of the deformation families (under some markings):

Fn &2 Ks. (2.6)

3 Quartic Kummer surface

3.1 Rosenhein’s formula

Start from a curve of genus 2:

C(A) = C(A, Ao, A3) : ¥2 = z(z — D)(z — M)(z — A2)(z — A3),
()\1,/\2,/\3) eA= {()\1,)\2,>\3) € Cs : )\z ¢ {0, 1},)\7, # )\J}

Set \g = (—0.6,—0.3,0.6), Co = C(\o), and set a symplectic basis {A;, Az, By, B2} of H(Co, Z)
as in Fig. 3.1.



Fig.3.1: Homology cycles of C,

For {w; = %,wz = Ey&} , the period of Cj is given by
(Ql) _t (f31 w1 f32 Wi fAl w1 ng w1>
Qz fBl w9 fBz Wy fAl w2 fA2 w9
Q=00"e6,.

We extend this procedure in a small neighborhood Uy of Ao , and we get a local period map
A= QX € U. By the analytic continuation we define the global period map ¢ : A — G,.
Under this setting we can define Riemann theta constants

O T R o e

with a = (al,ag),b = (bl,bz) (S {O, 1}2.

Theorem 3.1. (Classical Rosenhein type formula) The inverse of the period map is given by

21 1] .0 0 21 1] 51 0 2[0 0] (1 0
"9[11‘901 Pl o 1 Plo 1" o 1
(O TRy B T R e THY B TR RE R e o @GV
2 |~ 2 ’ 2 2 2 2
R R R A

We have the following numerical evidence of the above representation. For (Aig, Ago, Az0) =
(—0.6,—-0.3,0.6), it holds an approximate calcuation

_{ 0.4+0.997664927977185: 0. + 0.405656989172200065
0.+ 0.4056569887269773i 0. + 1.2660611766736107; | °

By (3.1), we have
—0.6 + 3.9993 % 1073, —0.3 + 1.88524 % 107331, 0.6 + 3.16375 + 10~

here we used the trancation

9 [‘;1 ‘;2} Q) = 3 explmi(a/2 + n)Q(a/2 + n) + 2mi(a/2 + n)'b/2).
! 2 n=(n1,n2)€2Z2,|n1|<10,|n2|<10
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Remark 3.1. If we start from the other reference curve C(A) with 0 < A\ < A2 < Az <1
equipped with the following homology bisis { A1, B1, A2, B2} asin Fig. 3.2, we obtain the classical

formula found in the work of Igusa [I4]
o1 0] ,f1 1
v [0 o/" o o

o1 0] o1 O

19[001901
00 0 1]
2 2
#lo 7o o

M= 0 0
2 2
#[o oo 3]

7A2=

-._.).-'

Fig.83.2: Rosenhein cycles

We have a numerical evidence of this formula for the case C(X) with X = (A, A2, A3) =
(1/4,1/2,3/4). The approrimate period matriz (1, Q2) = (fA,- wi) , (fB]- w,') is given by

3.6882 -10.9961 0. —3.6882¢ 0.—10.9961¢
5.73182 —6.80204/ ’\0. + 2.043617 0. —4.19408:/

So we have the normalized period matriz

Qo = 91_192 _ ( 1.25352¢ 0.7558521 ) '

0.755852¢ 0.+ 1.25352:

By substituting Qo in the formula, we have the approzimate values
A; = 0.25 — 4.13826 x 10734, Ay = 0.5 — 8.27652 107344, \3 = 0.75 + 0%,
here we used the same trancation of the theta constants.
3.2 Quartic Kummer surface by Kumar
We use (a, b, c) instead of (A1, A2, A3). Consider a curve C' of genus 2
C = C(a,b,c): y* = z(z - 1)(z — a)(z — b)(z — ¢).
Corresponding quartic Kummer surface is given by

3(a, b, C) : ngf + Kiz4+ Ko =0, (3.2)
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with
Ky = z22 —4z123
Ky =(-2z+4(a+b+c+ 1)z1)z§
+(=2(bc+ ac+ ¢+ ab+ b+ a)z 2o + 4(abe + be + ac + ab)2?)z3 — 2abcz?zy,
Ko =23 —2(bc + ac+ c + ab+ b+ a)z1 23 + 4(abe + be + ac + ab)zy 29
+(a® 4+ b° + ¢® — 2ab(a + b+ 1) — 2bc(b + ¢ + 1) —2ac(a+c+1)
+a%b% + b2c? + a’c® — 2abs(a + b+ c + 4))z3) 22
+(—4abczy 25 + dabe(c + a + b+ 1)22) 252
—2abc(be+ac+c+ab+b+a)zd)z
+a?b%c? 22,
£(a, b, ¢) contains 16 ordinary double points (nodes). There are 16 PL’s each of them is coming

as the intersection with a tangent (tropes).
List of nodes

n1=(0:0:0:1),n2=(0:1:0:0),n3=(0:1:1:1),n4=(0:1:a:d?),
n5=(0:1:b:b2),n6=(0:1:c:c2),n12:(1:1:0:abc),n13=(1:a:O:bc),
nig=(1:5:0:ca),ms=(1:c:0:ab),nez=(l:a+1:a:a(b+c)),
ngg=(1:0+1:b:b(c+a)),

ngs = (l:ic+1:c:cla+b)),nza = (1,a+ b,ab,ab(c+1)),

n3s = (1,a+¢,ca,ac(b+1)),n45 = (1 : b+c: be: be(a + 1))

List of tropes
To=(1:0:0:0),T1=(0:0:1:0),Ta=(1:-1:1:0),T3=(a®: —a:1:0),
T4:<b2Z—b:lZO),Tg,‘—*(CzZ—CZ 1:0),Tig = (—abc:0:-1:1),Ti3=(=bc:0: —a:1),
Tiy=(~ca:0:-b:1),Tis=(—ab:0: —c: 1),
To3=(—-a(b+c):a:—(a+1):1),Toa = (=b(c+a):b: —(b+1):1),

Tys = (—cla+b):c:—(c+1):1), T3y = (—ablc+1) :ab: —(a+b): 1),
Tss = (—ca(b+1):ca: —(c+a):1),Tus = (~be(a+1) :bc: —(b+¢) : 1).

Here, the notation T3 means T3 : a®z; — azp + 23 = 0 and so on.

4 Some elliptic fibrations according to Kumar

We use Kumar’s fibration in [K1] and [K2].

4.1 Kumar’s first fibration R;:

Sk1:n° =4t(E—t—1)(al —t — a®)(b€ — t — b*)(c€ — t — &) (4.1)
t= 23/2’1
§=2/z

n=(2a/21)(% = 4t) —£(t? + (a + b+ c + ab + bc + ca)t + abe)
+2t((a+ b+ c+ 1)t + (ab+ be + ca + abe)).
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4.2 The 18th fibration Rs:

Sk1s(a,b,c) : y? = x3 + ((—4(2abc? — bc? — ac? — ab?c + 2b%c — a%bc — be — a®c + 2ac
—ab? + 2a%b — ab)t® + 8(bc + ac — ¢ — ab+ b — a)t — 8)z? (4.2)
—16(bt — at — 1)(act — at — 1)(act — ct — abt + bt — 1)(bct — abt — 1)(bet — ct — 1)z

Elliptic fibration 7 : (¢,z,y) — ¢t. The singular composition is given by Iy + 5I3 + I, + IIT*
with a two-torsion section {z =y = 0}.

7 10) 7 L(ty) 7w W(tz) w l(t3) w Uts) 7 l(ts) ml(to) wl(o00)

N I, I I I I I IIr
A3 Al A1 Al Al Al - E7
with

to = (—a2b? + 2a2b® — a2b* 4 2a3be + 2ab%c — 4a%b*c — 2abic + 2a2b3c
—2a%b3¢ + 2a2b%c — a*c® — 4a3bc® + 2a%bc? — b2c? + 2ab?c? + 4a?b3c?
+2a3b2c? — a*b?c? — 4a?b3c? + 2a3b3c? — a?bic? + 2a3¢3 — 2abc® + 2a%bc®  (4.3)
—2a3bc3 + 2023 — 4ab®c® + 2ab3c® — a®ct + 2abct — b3ct)
/(4abe(a = 1)(b—1)(c — 1)(a = b)(b — ¢)(c — a)),

and

1,1 - 1 A S
b—a' 2 bc—a) " (a-1)(c—0) " alc—1)° cb-1)

t =

Proposition 4.1. Sk1s € Fn if and only if to = 0.

Remark 4.1. Hashimoto-Murabayashi [H-M] (Theorem 2.9 p. 285) showed the condition
Cuum(a,b,c) = 0 that the Kummer surface Sk is coming from an abelian variety with NG
action, where

Crum(a, b, c) = 4(a?bc — ab®c)(b — b* — c+ a’c+ (1 — a)c?) — (a(b—c)
+a2(1 +b)c+ (1 — a)bc? — b*(a +c))?.

In fact, it holds Cyps(a, b, c) = the numerator of ty up to a rotation of parameters.

4.3 The 23rd fibration Rj3:

I L1, — 31 I 11, — 31
2 03 3_-4 _2__L_6 2 3_ 4 2274 7 96
yr =z —2(t t+ Yz + ((t 12t+ 0

I
2 _ 2
12 108 Y2 + Ip(t 24)):16. (4.4)

The singular composition is given by Iz +613+1I1, where Iy, I4, Is, I1o are Igusa-Clebsch invariants
those are described as symmetric polynomials in a, b, c.
5 Construction of an explicit period vector

In this section we give an explicit construction of the period map for the family Fr,. For the
moment we fix a reference surface Sg that is a member of the family F7, = {S(e, 8,7,0)}. We
put (, 3,7v,0) = (4,1,5,18). Then we get

Sp:y? =28+ (—12t* — 5t%)z + 5 — 265 + 184 (5.1)



Set F(z,t) = 23+ (—12t* — 5t5)z + t° — 2t% +- 18t". The discriminant A(z) of F(z,t) with respect
to z is given by

A(t) = —t"%(=27 + 108t + 5832¢> + 10584¢> — 5148t + 500t5).
The roots of A(t) = 0 are given by real simple ones

(a1, 00, 03, a4, a5) = (—0.422264, —0.0862632, 0.0569883, 3.68146, 7.06608)

together with ap = 0 that is a root of multiplicity 10. So we have a singular fiber of type IT* at
¢ = 0 and five singular fibers of type I at t = a;(i = 1,...,5). At ¢ = co we have a singular fiber
of type I1I*. The sublattice Lg is realized by the components of 7~1(0) and 71 (c0) together
with the section. sg and the general fiber f.

As a first step, we make a table of local monodromies of a fixed generic fiber By = w~1(/=1)
of the elliptic surface (Sg,n, P!) equipped with a projection 7 : (z,y,t) = t.

The elliptic curve at the base point b = \/—1 is given by

Ey=n"):9y* =2~ (124 5vV=1)z + (2 — 17vV/~1).
As a double cover of the z-sphere, it has four ramification points
(br1,bra, brs, bro) = (—3.5396 — 0.02728024, —0.244328 — 1.191644, 3.78392 + 1.218924, 00).

We make two l-cycles 1, (72 resp. ) that projection goes around br; and bry in the negative
sense (brg and brs in the negative sense, resp.) so that we have the intersection Y12 =1 (see
Fig. 5.1).

72 br 3

br1 broo

br;

Fig.5.1: Basis of Hi(r™1(i), Z)

Let 6; (2 = 0,1,2,3,4,5,00) be a closed oriented arc on the ¢ plane starting at b = /—1
and going around ¢ = ¢ in the positive sense (see Fig. 5.2). The loop d; induces a monodromy
transformation of the system {v;,72}. Let us denote it by M; as a left action. We call them

local monodromies.
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Fig.5.2: Singular fibers of Sg and §;

Proposition 5.1. The local monodromies are given by the following table:

t aq Q2 Qo Qs (s7) (873 o
M, <1 —1) <1 —1) (0 1> (1 0) (1 0) (1 0) (1 1)
0 1 0 1 -1 1 11 11 11 -2 -1
type I I 1r I I I Iir ‘
inv. cycle ¥2 Y2 04! 04! 24!
Table 5.1

Note that for the singular fiber of type I, it appears a cycle on Ey that is invariant under
the local monodromy which is indicated in the Table 8.1.

Next we construct a basis {I'},...,I't} of the transcendental lattice Tr(Sg). Let 6 be an
oriented arc starting from the base point v/~1 on the ¢-plane and set j € {1,2}. We make a
2-chain T'(6, j) obtained by the continuation of v; along d. We define the orientation of I'(9, 5)
by the ordered pair of those of 6 and +;. If § is a loop returning back to the starting cycle v;, it
becomes to be a 2-cycle on Si. According to this notation we define the following 2-cycles on
Sr (see Fig. 5.3):

G} =T(6:16;1,m), G5 = T'(6280, 1), G5 = I'(6003,72)
Gi =T(d30;",72), G5 = T(8485 ", 12).

Qoo
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Fig.5.3: Basis of Tr(Sg)

By a direct calculation we obtain
Proposition 5.2. The intersection matriz of the system {G} ..., Gt} is given by

-2 -1 0 0 O

-1 0 0 0 0
B=|l0 0 0 -1 o0

0 0 -1 -2 1

0 0 0 1 -2

Set

0 0 1 0 1

1 =10 0 0
Tn=]0 -1 0 0 0

0 0 1 0 0

0 0 1 =10

By a base change "(T'}, ..., T%) = T,X (G} ..., GE), the intersection matriz of the system {T%,..., Tt}
becomes to be By = (—2) @ U @ U, the expected one. So, {I},..., Tt} is a system of generators
of Tr(SR), the generic transcendental lattice.

Let £;(i = 1,2,3,4,5) be an oriented line segment in the upper half plane starting from
t = oo terminating at br;. We make another system of 2-cycles on Sg:

Ccy =T'(41,72),Cca =T'(42,v2)
Cez =T'(¢3,71), Ccq = T4y, 11), Ces = T'(¥5,11).

We have the following intersection matrix M, = (G} - Ccj)i<ij<s:

-1 1 0 0 0
0 -1 0 0 0
Me=]0 0 1 0 0
0O 0 1 -1 o0
0O 0 0 1 -1
Set
1 0 0 0 0
-1 -1 0 0 O
Pecec=| 0 0 1 1 1
0 0 0 -1 -1
0O 0 0 0 -1
We define a system
t(Gl, Gz, G3, G4, G5) = PCCt(CCI, CCQ, 003, CC4, 005). (52)

By an easy matrix calculation, we obtain.

Proposition 5.3. It holds
Gi-Gj=10;5(1<4,5<5),
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Recall that we defined
§ry,..., T = TG} ..., GY).

Setting Y(T'y,...,[5) = T, (GY ..., GE), it holds

0 -1 0 0
Tg='T; "B '=|1 -1 0 0 0

0 0 1 -1 0

0 0 1 0 0

Proposition 5.4. The systems {T'1,...,I's} and {I'],...,T;} are mutually dual systems in the
sense I'; - I'; = 6;; (1 <4,5 <5).

We have an alternative expression of the system {Gj, ..., Gt}. Recall that we denoted the
generic Picard lattice of S(e, 8,7,6) by Le.

Proposition 5.5. It holds the following equalities modulo Lo( see Fig. 5. 4).
G} = —T[[ery, era], 72), G5 = —T[[ere, 0], 2], G = —-T[0,, cr3], 11,
GZ = FHCT& ) CT4]’ 71], Gg = F[[CT‘4, ) CT5], 71]

NGy 4, |02y vV 4
1 N 78 N i %) [e2 s [ee]
y_"/y \_J 0 6 Gy Gs
=72

Fig. 5.4: Transformed basis of Tr(Sg)

Put
i =/Fiw (i=1,...,58), n=(Mm,...,05).
The Riemann-Hodge period relation is given by
nBo'n = 0, nBo'7 > 0.
By putting
7 =/G;<p i=1,...,5).

These relations are translated to the relation
(", ) B, nst) = 0, (., ) BT (T, ., 15T > 0.
Remark 5.1. (Numerical evidence) By using MATHEMATICA we can obtain the following

approzimate values of the period vector of Sg. By making an approzimation of the double
integrals we obtain

1
—l/ <p=2.11,——/ cp=—7.8,——/ @ =711,
2 Ty fer1 era]] 2 Jrfyz,fera 0] 2 Jrm,o.ers]]

1 1
—/ @ = —5.161, —/ p = —0.628i.
2 Cly1,lers,cral] 2 T{y1.[era,crs)]



According to Prop. 5.5 we have the period vector
(5 ™ ™, ™, ™) = 2(2.11, 7.8, 7.14, —5.164, —0.637)

for our reference surface Sp = S(4,1,5,18). We see the period relation is approzimately satisfied.

6 Modular map

For a curve of genus two:

¥ =z(z — 1)(z — M)(x — A)(z — A3), (6.1)
the Igusa-Clebsch invariants are given by
Proposition 6.1.

(I, = 2(352 — 2(sy + 453)s1 + 352 — 852 + 1253),
Iy = 4(—3s35% + (53 — 5380 + s% + 3s3)8%

+(—583 + 11s355 — 3s3)s1 — 353 + (353 + 1)s3 — 35259 — 1852),
<~16:—245§+4&sg+245‘1*33+1043353+53s§ae3—3fss§+168325§+.199335§-18053
—425953 — 3654 + 53(—852 — 2453 + 3075953 — 7352)
+57(853 — 3653 + 1235253 + 4505353 — 5353 + 3965952 + 7253)
+51(2083 + 765253 + 3285353 + 1895353 — 1685% + 8265753 + 189532 + 29453)
(710 = APA3A (01 — 1)%(A2 — 1)2(A3 — 1)2(\1 — A2)2 (A2 — A3)%(A3 — A1),

where s1 = A\ + Ao + A3, 82 = A1Ag + A2A3 + A3, 83 = A1 A2 3.

(6.2)

By comparing (2.3) and (4.4) we obtain
Theorem 6.1. [t holds
, 1 1 2
(a By 6) = (514 : 5—7—(—]2]4 + 31g) : 8119 : 512110). (6.3_)
Proposition 6.2. We have an alternative representation of Si1s:
22 = 2% + po(t)2® + qo(t)z,
with (6.4)
po(t) = ap + art + agt? '
qo(t) = %a% + %alaot + %(a% + 2a2a0)t2 + %alagt?’ + b4t4 + b5t5.
It has a /5 action if and only if 4by = a?.
By comparing (2.5) and (6.4 )we obtain

Theorem 6.2. The affine parameter X = %,Y = A% have the expression

X = 502
E%' (6.5)
Y =215°9,
az
where
ag = —8,
a; = —-8(a—b+ab+ c—ac— be), (6.6)

az = 4(ab — 2a%b + ab® — 2ac + a’c + be + a®be — 2b%c + abc + ac® + b — 2abc?).
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