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Fast decomposition of p-groups
in the Roquette category, for p > 2

Serge Bouc

Abstract : Let p be a prime number. In [9], I introduced the Roquette category Ry of
finite p-groups, which is an additive tensor category containing all finite p-groups among
its objects. In Ry, every finite p-group P admits a canonical direct summand &P, called
the edge of P. Moreover P splits uniquely as a direct sum of edges of Roquette p-groups.

In this note, I would like to describe a fast algorithm to obtain such a decomposition,

when p is odd.
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1. Introduction

Let p be a prime number. The Roquette category R, of finite p-groups,
introduced in [9], is an additive tensor category with the following properties :

e Every finite p-group can be viewed as an object of R,. The tensor
product of two finite p-groups P and @ in R, is the direct product
P x Q.

e In R,, any finite p-group has a direct summand AP, called the edge

of P, such that

P= @ o(P/N) .

Moreover, if the center of P is not cyclic, then P = 0.

e In R, every finite p-group P decomposes as a direct sum

P= @ OR ,
RES
where S is a finite sequence of Roquette groups, i.e. of p-groups of
normal p-rank 1, and such a decomposition is essentially unique. Given
the group P, such a decomposition can be obtained explicitly from the
knowledge of a genetic basis of P.

e The tensor product 9P x 9Q of the edges of two Roquette p-groups P
and () is isomorphic to a direct sum of a certain number vpg of copies
of the edge O(P ¢ Q) of another Roquette group (where both vpg and
P o @) are known explicitly.
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e The additive functors from R, to the category of abelian groups are
exactly the rational p-biset functors introduced in [4].

The latter is the main motivation for considering this category : any struc-
tural result on R, will provide for free some information on such rational
functors for p-groups, e.g. the representation functors Ry, where K is a field
of characteristic 0 (see [2], [3], and L. Barker’s article [1]), the functor of
units of Burnside rings ([6]), or the torsion part of the Dade group ([5]).

The decomposition of a finite p-group P as a direct sum of edges of
Roquette p-groups can be read from the knowledge of a genetic basis of P.
The problem is that the computation of such a basis is rather slow, in general.
For most purposes however, the full details encoded in a genetic basis are
useless, and it would be enough to know the direct sum decomposition.

Hence it would be nice to have a fast algorithm taking any finite p-group
P as input, and giving its decomposition as direct sum of edges of Roquette
groups in the category R,. This note is devoted to the description of such
an algorithm, when p > 2.

2. Rational p-biset functors

2.1. Recall that the characteristic property of the edge P of a finite p-group
in the Roquette category R, is that for any rational p-biset functor F

dF(P) = F(0P) ,

where OF (P) is the faithful part of F((P), and F' denotes the extension of F'
to Rp. Also recall the following criterion ([7], Theorem 3.1):

2.2. Theorem : Let p be a prime number, and F be a p-biset functor.
Then the following conditions are equivalent:

1. The functor F is a rational p-biset functor.

2. For any finite p-group P, the following conditions hold:

o if the center of P is non cyclic, then OF (P) = {0}.
e if E<P is a normal elementary abelian subgroup of rank 2, and
if Z < E is a central subgroup of order p of P, then the map

Rest, gz ® Defp); : F(P) = F(Cp(E)) ® F(P/Z)

18 injective.
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2.3. Let K be a commutative ring in which p is invertible. When P is a
finite group, denote by CFx(P) the K-module of central functions from P
to K. The correspondence sending a finite p-group P to CFx(P) is a rational
p-biset functor:

2.4. Proposition : If P and Q are finite p-groups, if U is a finite (Q, P)-
biset, and if f € CFx(P), define a map CFg(U) : CFg(P) — CFx(Q) by

Vs € Q, CFx(U)(f)(s) = |p| Z fl=

uelU, zcP
SU=ux

With this definition, the correspondence P + CFy(P) becomes a rational

J p-biset functor, denoted by CF.

Proof : A straightforward argument shows that CFg(U)(f) is indeed a cen-
tral function on @, hence the map CFx(U) is well defined. It is also clear
that this map only depends on the isomorphism class of the biset U, and
that for any two finite (H, G)-bisets U and U’, we have

CFx(U UU') = CFx(U) + CFx(U") .

Moreover if U is the identity biset at P, i.e. if U = P with biset structure
given by left and right multiplication, then for f € CFx(P) and s € P

Fx@NE& = Y @)= &S 56 = £(5) |
uel, zcP ueP
hence CFg(U) is the identity map.
Now if R is a third finite p-group, and V' is a finite (R, Q)-biset, then for
any ¢t € R, setting A = CFg (V') o CFg(U)(f)(t), we have that

Y= D w2 @

vEV, s€Q uelU, zeP
tv=vs Su=ux

= @m 2, [f@

(vu)evVxU
s€EQ, xzeP
tv=vs, su=ux

= _Qﬁi;l Z {s € Q| tv =vs, su=uz}| f(z)
(vyu)eVxU,zecP
t(v,Qu)z(v,Qu).’z
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A = o 3 1Q : QN WP||Qs NP f(z)

(v,Q u)€Vx,U,zeP
t(v.g u)=(v,Qu)z

— LY @)= CFalV x U)W -

(v,Qu)erQ U,zeP
t(v,Q u)=('u,Qu):c

Hence CFx (V) o CFx(U) = CFx(V xg U), and CFg is a p-biset functor.

To prove that this functor is rational, we use the criterion given by Theo-
rem 2.2. Suppose first that the center Z(P) of P is non-cyclic. Let E denote
the subgroup of Z(P) consisting of elements of order at most p. Then saying
that OCFx(P) = {0} amounts to saying that for any f € CFx(P), the sum

S=" u(1,2)Inf} ;Defp, f
Z<E

is equal to 0, where u denotes the Mobius function of the poset of subgroups
of P (or of E). Equivalently, for any s € P

S(s)=Y w1, D Y, fl@)=0.

Z<FE aZeP/Z,zeP
saZ=aZx

This also can be written as

SGs) = Y wL,2DFg >, f@

Z<E ac€P,zeP
saZ=aZzx
_ 1 I"(l’Z) a
= |P|Z 2] Z f(s*.2)
Z<E a€P,zeZ
_ 1 ©(1,2) a
= B2 w2 f(2))
Z<E a€P,z€Z
_ ©(1,2)
= D B fs2)
Z<E 2€2Z

z€E 2z2€Z<FE

2.5. Lemma : Let E be an elementary abelian p-group of rank at least 2.
Then for any z € E
nw(1,2z)
Z 1zl 0.

2€Z<FE
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Proof : For 2z € E, set o(z) = Y ﬂllz—fz Assume first that z # 1, i.e.
z2€Z<FE

|2| = p. If Z 5 z is elementary abelian of rank r, then (1, Z) = (—l)rp(;),
hence %Z-) = (~1)"p(r51)‘1 = — % u(1,Z/<z>). Hence setting Z = Z/<z>
and E = E/<z>,

o) ==> Y ut2)=0,

1<Z<E

since |E| > 1. Now

Yo =c)+ Y x=> Y = 3 u1,2)=0

2€E e€E—{1} 2€Z 2€Z<E 1<Z<E

hence 0(1) = 0, completing the proof of the lemma. 0

It follows that S(s) = 0, hence S = 0, as was to be shown.

For the second condition of Theorem 2.2, suppose that F is a normal
elementary abelian subgroup of P of rank 2, and that Z is a central subgroup
of P of order p contained in E. Let f € CFx(P) which restricts to 0 to Cp(E),
and such that

VsZ € P/Z, (Defp),f)(sZ) = Tll’—l Zf(sz) =0 .

2€Z

Thus f(s) = 0 if s € Cp(E). Assume that s ¢ Cp(E). Then for e € E,
the commutator [s,e] lies in Z. Moreover the map e € E + [s,e] € Z is
surjective. it follows that for any 2z € Z, there exists e € E such that s® = sz.
Thus f(sz) = f(s¢) = f(s). Hence Defg/zf(s) = f(s) = 0. Hence f =0, as
was to be shown. 0

3. Action of p-adic units

Let Z, denote the ring of p-adic integers, i.e. the inverse limit of the rings
Z[p"Z, for n € N — {0}. The group of units Z, is the inverse limits of
the unit groups (Z/p"Z)*, and it acts on the functor CFx in the following
way: if ¢ € Z; and P is a finite p-group, choose an integer r such that p"
is a multiple of the exponent of P, and let (,» denote the component of ¢ in

(Z/p"Z)*. For f € CFx(P), define (p(f) € CFx(P) by

Vs € P, (p(f)(s) = F(s%) .
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Then clearly E p(f) only depends on ¢, and this gives a well defined map
(p : CFx(P) = CFg(P) .

One can check easily (see [8] Proposition 7.2.4 for details) that if @ is a finite
p-group, and U is a finite (Q, P)-biset, then the square

CFK(P) L~ CFg(P)
CFK(U)l lCFK(U)
CFK(Q) —> CFk(Q)

is commutative. In other words, we have an endomorphism Zof the functor
CFg. It is straightforward to check that for ¢,{’ € Z;, we have (C’ C C’

and that 1 is the identity endomorphism of CFg. So thls yields an action of
the group Z; on CFg.

It follows in particular that when n € N — {0}, and P is a finite p-group,
if we set

Fo(P) ={f € CFk(P) | Vs € P, f(s"*"") = f(s)} ,

then the correspondence P — F,(P) is a subfunctor of CFg: indeed F, is
the subfunctor of invariants by the element 1 + p" of Z;.

It follows that F), is a rational p-biset functor, for any n € N— {0}, hence
it factors through the Roquette category R,. In particular, for any finite
p-group P, if P splits as a direct sum

P= ©® OR
RES

of edges of Roquette groups in R, then there is an isomorphism

Fu(P) = @ OF(R) .

3.1. Notation : For a finite p-group P, and an integer n € N — {0}, let
1,(P) denote the number of conjugacy classes of elements s of P such that
1P is conjugate to s in P. Also set lo(P) = 1.

With this notation, for any finite p-group P, and any n € N — {0}, the
K-module F,(P) is a free K-module of rank [,(P). In particular, if P = Cpm
is cyclic of order p™, then F,,(P) has rank I,(P) = p™in(mn)  Thus if m > 0
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then 8 Fn(Cpm ) has rank pmin(m,n) _ pmin(m—l,n), since Cpym = 8C’pm a5 C’pm_l
in R,.
(3.2. Theorem : Assume that a p-group P splits as a direct sum
o
P=1® & a,0Cm
m=1

of edges of cyclic groups in the Roquette category R,, where a,, € N. Then

I(P) = Lu_1(P)
p-1)

Vm>1, a, =

Proof : For any n € N — {0}, we have

ln(P) =1+ Z am(pmin(m,n) _pmin(m—l,n)) — 1+ Z am(pm _pm-l) .

m=1 m=1
For n € N — {0}, this gives [,(P) — l,—1(P) = a,(p" — p™ ). 0
[—3.3. Corollary : Suppose p > 2. If P is a finite p-group, then

P16 & ———l’"(ﬁ? f('; ;gp) 8C,m
m=1

j in the Roquette category R,,.

Proof : Indeed for p odd, all the Roquette p-groups are cyclic, hence the
assumption of Theorem 3.2 holds for any P. O

Appendix

3.1. A GAP function : The following function for the GAP software ([10])
computes the decomposition of p-groups for p > 2, using Corollary 3.3:

#

# Roquette decomposition of an odd order p-group g

# output is a list of pairs of the form [p~n,a_n]

# where a_n is the number of summands of g

# isomorphic to the edge of the cyclic group of order p°n
#



roquette_decomposition:=function(g)

local prem,cg,s,i,x,y,z,pn,u;
if IsTrivial(g) then return [[1,1]];fi;
prem:=PrimeDivisors(Size(g));
if Length(prem)>1 then

Print ("Error : the group must be a p-group\n");

return fail,;
fi;
prem:=prem[1];
if prem=2 then
Print ("Error : the order must be odd\n");
return fail;
fi;
cg:=ConjugacyClasses(g) ;
:=[1;
for i in [2..Length(cg)] do
x:=cglil;
y:=Representative(x);
pn:=1;
u:=y;
repeat
pn:=pn*prem;
u:=u"prem;
zZ:=y*u;
until z in x;
Add(s,pn);
od;
s:=Collected(s);
s:=List(s,x->[x[1],x[2] *prem/ (prem-1)/x[111);
s:=Concatenation([[1,1]],8);
return s;
end;

3.2. Example :

gap> 1:=A11Groups(81);;

gap> for g in 1 do

> Print (roquette_decomposition(g),"\n");
> od;

(ri1,13,03,11, 09,11, (27,11, [81,11]
[C1,11,03,4]1,[9,121]]1

(01,131, 03,71,09,311

[C1,13, 03,71, 09,311
([1,11,03,41,09,31,[27,31]1
[r1,11,03,41,09,41]]
([1,11,[03,81]1

([1,13,03, 53,009,111
(rC1,11,038,51,[9,11]1
[r1,11,03,51,[9,111
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[C01,11,03,131,0[9,91]1
([1,11,0[3, 1611
(01,11, ([3,161]]
(01,11, (3,131, [9, 111
L 01,11, [3, 401 1]

For example, the group on line 6 of the previous list, isomorphic to the
semidirect product Cy; X Cs, is isomorphic to 1 @ 40C; & 40C, in Rs.
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