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1 Introduction

2 Pattem Generation
Let $\mathbb{R}$ be a set of real numbers, and a two dimensional plane is denoted by $\mathbb{R}\cross \mathbb{R}.$ $A$ set
$F\subseteq \mathbb{R}\cross \mathbb{R}$ is called a two dimensional figure, a set of all two dimensional figures is denoted
by $\mathcal{F}$, that is $\mathcal{F}=\{F|F\subseteq \mathbb{R}\cross \mathbb{R}\}.$ $A$ figure which is obtained with moving $F$ by $d\in \mathbb{R}\cross \mathbb{R}$

is denoted by $F+d=\{p+d|p\in F\}$, and a figure which is obtained with extending $F$ by
$a(a>0)$ times is denoted by $a\cdot F=\{a\cdot p|p\in F\}$ . We define mappings $S_{d}$ and $Z_{a}$ as follows
respectively,

$S_{d}(F)=F+d$ and $Z_{a}(F)=a\cdot F.$

We define a similarity relation $\sim$ on $\mathcal{F}$ using $S_{d}$ and $Z_{a}$ as follows.

For $F_{1},F_{2}\in \mathcal{F},$ $F_{1}\sim F_{2}\Leftrightarrow F_{2}=S_{d}Z_{a}(F_{1})(=aF_{1}+d)$ .
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The relation $\sim$ is an equivalence relation on two dimensional figures. We define a pattern
as a equivalence class using this relation as follows.

Definition 1
For a figure $F$, a pattern $[F]$ containing $F$ is defined by

$[F]=\{F’|F’\sim F\},$

and a set of pattern $\mathcal{P}$ is defined by

$\mathcal{P}=\mathcal{F}/\sim=\{P|P=[F],F\in \mathcal{F}\}.$

For any $m,n>0,$ $[0,m]\cross[0,n]\subseteq \mathbb{R}\cross \mathbb{R}$ is called a screen of size $m\cross n$, and it denoted by
$C_{m\cross n}$ , where $[a,b]$ is an interval $\{x|a\leq x\leq b\}.$

Definition 2
For a pattem $P\in \mathcal{P}$ assuming $P=[F]$ , a generation of $P$ on $C_{m\cross n}$ is to obtain a set

$D\subseteq C_{m\cross n}$ such that $D$ satisfies following conditions.

1. $\exists a,d$ $D=S_{d}Z_{a}(F)$ ,
2. $\forall e,e’>0$ $S_{d+e}Z_{a+\epsilon’}(F)\not\subset C_{m\cross n}.$

Following discussion, we assume that $m$ and $n$ are integers for simplicity. When we dis-
play a figure on a screen, the screen has to be discretized, so we discretize $C_{m\cross n}$ by dividing
the width by $m-1$ and dividing the length by $n-1$ . Then, a copy of a small screen of size
$1\cross 1$ is set at each lattice point. The small screen at the leftmost and the bottom position of
the discretized screen is $c_{0,0}$ , and a screen of size $1\cross 1$ which is positioned in the ith position
from the left side of the array and jth position from the bottom of the array is described by
$c_{i,;}$, that is $c_{i,;}=C_{[i-0.5,i+0.5]x\beta-0.5,j+0.5]}.$

We define the screen $C_{m,n}$ which is obtained by discretizing $C_{m\cross n}$ as follows,

$C_{m,n}=\{c_{i,j}|0\leq i\leq m,0\leq j\leq n, i,j\in N\}.$

We define the pattern generation on the discretized screen as follows.

Definition 3
For a pattern $P=[F]\in \mathcal{P}$ , a generation of $P$ on $C_{m,n}$ is to obtain the following set $D’\subseteq$

$C_{m,n\prime}$

$D’=\{c_{i,j}|c_{i,j}\cap D\neq\phi\}.$

3 Implementation with Cellular Automata

Two-dimensional cellular automata consist of copies of a finite automaton (cell) which are
positioned at lattice point. We call $a_{i,;}$ a cell at ith row and the jth column from the leftmost
lowest cell. Each cell changes its own state to the state which is determined according to
its own state and the adjacent cell’s states. We call the own and adjacent cells neighbors and
the function to determine the next state according to neighbor’s states a local mapping. $A$

configuration of $\mathcal{M}$ is a global state of $\mathcal{M}$ . The global state is determined by the distribution
of all cell’s states. For time $t$ , when $t=0$, the configuration is called initial configuration. The
interval of updating state is called a step.

Formally, a two-dimensional cellular automaton $\mathcal{M}$ is defined as follows,

$\mathcal{M}=(M,Q,\sigma,N)$ ,
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where $M\subset Z\cross Z$ is a coordinate set to express positions of cells (we assume it is connected),
and $Z$ means a set of integers. $Q$ is a set of states, $\sigma$ is $Q\cross Q^{|N|-1}arrow Q$ is a local mapping, $N$

is a set of neighbors.
In this paper, we investigate the automata which are placed $m$ cells widthways and $n$ cells

lengthways, we call them $m\cross n$ cellular automata, and we assume $N$ as Neumann neighbor-
hood, namely consisting of the own, upper, lower, right and left cells. In an initial configura-
tion of $\mathcal{M},$

$a_{0,0}$ is active, and all the other cells are in quiescen $t.$

By regarding each cell $a_{i,j}$ as $c_{i,;}$ in the discretized screen $C_{m,n}$ , the set $M$ can be regarded as
the discretized screen $C_{m,n}$ , and then, an $m\cross n$ cellular automaton can be denoted as follows,

$\mathcal{M}=(C_{m,n\prime}Q,\sigma,N)$ .

Therefore, we regard a problem to generate $P$ on $C_{m,n}$ as a problem to generate $P$ on a cellular
automaton $\mathcal{M}$ , that is, the problem is to construct $\mathcal{M}$ which generates $P.$

Here, to construct such a $\mathcal{M}$ is to provide $\sigma$ which specifies $D’\subseteq C_{m,n}$ by letting $a_{i,j}$ be in
a special state $s$ if $a_{i},;\in D’$ at a certain time, starting from the initial configuration.

4 Techniques for Circle Generation
We explain some techniques for a circle generation on a two-dimensional cellular array.

4.1 Basic Signal Propagation
Assume a cell is in state $s$ . Then, we call the signal specified by $s$ propagates at speed $1/k$ if
the next cell of the cell in $s$ changes its own state to $s$ at $k$ steps. $A$ cell can send signals to all
directions upper, lower, right, and left directions.

4.2 Signals to Count Square Steps
To draw a circle pattern, we need to count $i^{2}$ for any integer $i$ . We will explain how to count
square as follows[8].

Cell $a_{0}$ sends Signal $s$ with speed 1/1 to the right. $A$ cell which receives Signal $s$ for the first
time sends Signal $\overline{s}$ with speed 1/1 to the left, and Signal 5 moves to the left until reaching Cell
$a_{0}$ . Receiving Signal $\overline{s}$, Cell $a_{0}$ sends Signal $s$ to the right again. By repeating this procedure,
Cell $a$ ; receives Signal $s$ just in $i^{2}$ steps as shown in Figure 1.

By following argument, it is clear that this procedure counts $i^{2}$ steps for $i>0$ . Assume
that $a_{i}$ receives $s$ for first time at $i^{2}$ . Then $a_{i}$ send back $\overline{s}$ to $a_{0}$ . Receiving Signal 5, $a_{0}$ sends
Signal $s$ to the right direction again. And then, the next cell $a_{i+1}$ receives Signal $s$ with $2i+1$
steps after that $a_{j}$ receives Signal $s$ for the first time, that is, $a_{i+1}$ can receive Signal $s$ with
$i^{2}+2i+1=(i+1)^{2}$ steps. Therefore, we can count square steps by the procedure.

The procedure which counts square steps initialed from a cell $a$ by using $s$ and 5 is called
Square$(a, s)$ .

4.3 Firing Squad Synchronization
The Firing Squad Synchronization(FSS) Problem for one dimensional celular array was pro-
posed by J.Myhill. The end cells know that they are located at the end of the array, and the
all other cells don’t know their own location in the array. At $t=0$, a cell at the end of the
array is in general state, and all the other cells are in quiescent state. The goal of this problem is
to design a set of states and a local mapping that leads all cells to a special state calledfiring
simultaneously. At present, an optimal $2n-2$ steps algorithm is known for the cellular array
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Figure 1: $T_{1}me$-Space diagram of Square$(a_{0}, s)$

of length $n[10]$ . We use the algorithm for FSS for one dimensional array in order to draw a
circle in $O(r^{2})$ .

5 Circle Generation on Cellular automata
We investigate a method to generate a circle of radius $r(=n/2)$ of maximum size at the center
of a given $m\cross n$ cellular automaton. In the following example, we assume that $m>n$ . And
then the maximum square $ABCD$ at the center $O$ of the screen, cells at $L,$ $R,$ $H,$ $K$ can be
obtained by the method in [6] as shown in Figure 2.

5.1 A Method to Generate a Circle
As describe above, we can assume that cells $A,$ $B,$ $C,$ $D,$ $O,$ $L,$ $R,$ $H$ and $K$ are set as shown in
Figure 2 and that as the initial configuration of the circle generation, only cells at $O,$ $A,$ $B,$ $C,$

and $D$ are in active state.
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Figure 2: setting the center and comer cells on the screen

We explain process of the generation of a circle at the center of the screen. In the following
discussion, we explain how to draw the part of the circle in the first quadrant. We name cells
on $ORa_{i,0}(0<i\leq\gamma)$ (see Figure 3).

We consider cellular automata with two layers. The first layer $L_{a}$ is used for countin$g$

squares and another layer $L_{b}$ for FSS algorithm.

(1) Implementation of $Square\langle a_{0,0},$ $s),$ $Square1a_{i,0},$ $p)$ on $L_{a}$

On the layer $L_{a}$ , for $a_{i,j}(0\leq i,j\leq r)$ , we will check if $a_{i,j}$ is in a circle by counting $i^{2}+j^{2}.$

This countmg is performed by Square$(a_{0,0}, s)$ and Square$(a_{i,0}, p)$ , that is, first, Square$(a_{0,0}, s)$

counts $i^{2}$ , and then Square$(a_{i,0}, p)$ starts and contmues the counting.

$O(a_{0,0})$ $a$ $i.0$
$S$ $R(a_{r,0})$

Figure 3: implementation of Square$(a_{0,0}, s),$ $Square(a_{i,0}, p)$ on $L_{a}$

(2) Implementation of FSS algorithm on $L_{b}$

On the layer $L_{b}$ , we will implement the FSS algorithm which fires just at $r^{2}$ steps, for the cell
in the first quadrant. As the number of cells in the first quadrant is $(r+1)\cross(r+1)$ , we need
some tricks. First, we use the FSS algorithm tor one-dimentional version instead of the faster
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algorithm for two-dimensional one. To implement it, we make a path as shown in Figure 4.
Then, we get two generals at $O$ and $A$ to reduce the steps by factor 2. At last, we adjust two
steps by sending signals from $O$ to $a_{1,1}$ , and by letting $A$ to wait for two steps to start the
algorithm. Then, by applying the FSS algorithm, we can fire on the area of $(r+1)\cross(r+1)$

cells just at $r^{2}$ steps on $L_{b}.$

$O(a_{0.0}) R(a_{r,0})$

Figure 4: implementation of FSS algorithm on $L_{b}$

(3) Circle Generation

Conbining (1) and (2), we can draw a circle. When the FSS finishes on the layer $L_{b}$, only
cells which have received Signal $p$ on the layer $L_{a}$ become firing states.

To genrate whole circle, the method described above is performed on all four quadrants.
The axes which are between two quadrants turn the firing state after the two quadrants be-
come the firing state on the layer $L_{b}$, and then we can obtain the whole circle.

6 Conclusion
In this paper, we review the definition of a pattem and a pattern generation on a screen, and
a pattem generation on a discretized screen. Next, we consider a correspondence between
the discretized screens and cellular automata, and we defined the pattern generation on the
cellular automata. Furthermore, we review FSS problem and its $2n-2$ steps algorithm, and
we intoroduce the method Square$(a, s)$ to count square to draw a circle. In the last part, we
show an $O(r^{2})$ time algorithm to draw a circle of a radius $r$ of maximum size at the center of
the screen by combiming Square$(a, s)$ and FSS algorithm. We implemented this algorithm on
the cellular automata with two-layer structure. As a result, the algorithm can be described
easily. In layer $L_{a},$ $8$ states are needed to perform Square$(a_{0,0}, s)$ and Square$(a_{i,0}, p)$ . In layer
$L_{b},$ $20$ states are needed to perform the FSS algorithm. By simple multiplication of those
numbers, we consider that about 160 states are needed to draw a circle, and we also consider
that it is possible to reduce the number of the states by carefull implementation of algorithms
on cellular automata.
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