On the simultaneous equations $\sigma(2^a) = p^{f_1}q^{g_1}, \sigma(3^b) = p^{f_2}q^{g_2}, \sigma(5^c) = p^{f_3}q^{g_3*\dagger}$

Tomohiro Yamada

Abstract

We shall solve the simultaneous equations $\sigma(2^a) = p^{f_1}q^{g_1}$, $\sigma(3^b) = p^{f_2}q^{g_2}$, $\sigma(5^c) = p^{f_3}q^{g_3}$.

1 Introduction

We denote by $\sigma(N)$ the sum of divisors of N.

In the preprint [14], the author has shown that there are only finitely many odd superperfect numbers (i.e. the number satisfying $\sigma(\sigma(N)) = 2N$) with bounded number of distinct prime factors. In this preprint, we showed that the simultaneous equation $\sigma(p_i^{e_i}) = q_1^{f_{1i}} \cdots q_k^{f_{ki}}$ for 2k+1 prime powers $p_i^{e_i} (i=1,2,\ldots,2k+1)$ cannot have small solutions p_1,\cdots,p_{2k+1} .

Here we use the method in the preprint to solve the simultaneous equations $\sigma(2^a) = p^{f_1}q^{g_1}$, $\sigma(3^b) = p^{f_2}q^{g_2}$, $\sigma(5^c) = p^{f_3}q^{g_3}$.

Wakulicz[12] has shown that all solutions of $2^n - 5^m = 3$ are (n, m) = (2, 0), (3, 1) and (7, 3), from which Makowski and Schinzel[6] derived that $\sigma(2^a) = \sigma(5^c)$ have only the solution (a, c) = (4, 2). We note that it is easy to show that $\sigma(2^a) = \sigma(3^b)$ has no nontrivial solution and $\sigma(3^b) = \sigma(5^c)$ also has no nontrivial solution.

Bugeaud and Mignotte[3] has shown that neither of $\sigma(2^a)$, $\sigma(3^b)$, $\sigma(5^c)$ can be perfect power except $\sigma(3^4)=11^2$. Moreover, they have shown that the only perfect powers $\frac{x^n-1}{x-1}$ with $x=z^t, z\leq 10$ are $\frac{3^5-1}{3-1}=11^2$ and $\frac{7^4-1}{7-1}=20^2$.

^{*2000} Mathematics Subject Classification: 11A05, 11A25.

[†]Key words and phrases: Odd perfect numbers.

2 PRELIMINARY LEMMAS

Now we shall state our result.

Theorem 1.1. The simultaneous equations $\sigma(2^a) = p^{f_1}q^{g_1}$, $\sigma(3^b) = p^{f_2}q^{g_2}$, $\sigma(5^c) = p^{f_3}q^{g_3}$ with a, b, c > 0, $f_1, f_2, f_3, g_1, g_2, g_3 \ge 0$ has only the following solutions:

- 1. (a, b, c) = (1, 1, 1).
- 2. (a, b, c) = (4, 1, 2),
- 3. (a, b, c) = (4, 4, 2) and
- 4. (a, c) = (4, 2) and $\sigma(3^b)$ is prime.

Our results are related to the Nagell-Ljunggren equation

$$\frac{x^n - 1}{x - 1} = y^m, x \ge 2, y \ge 2, n \ge 3, q \ge 2,\tag{1}$$

which has been conjectured to have only finitely many solutions. Some of recent remarkable results are [2], [3], [8] and [9].

Now we are led to conjecture that there exists an integer n_0 such that the equation

$$\frac{x^n - 1}{x - 1} = y^m z^l, x \ge 2, y \ge 2, z \ge 2, n, m, l \ge n_0$$
 (2)

has only finitely many solutions. Theorem 1.1 can be seen to support this conjecture.

2 Preliminary Lemmas

In this section, we introduce some preliminary lemmas. One is Matveev's lower bound for linear forms of logarithms [7].

Lemma 2.1. Let a_1, a_2, \ldots, a_n be nonzero integers such that $\log a_1, \ldots, \log a_n$ are not all zero. For each $j = 1, \ldots, n$, let $A_j \ge \max\{0.16, \log a_j\}$.

Put

$$B = \max\{1, |b_1| A_1/A_n, |b_2| A_2/A_n, \dots, |b_n|\},$$

$$\Omega = A_1 A_2 \dots A_n,$$

$$C_0 = 1 + \log 3 - \log 2,$$

$$C_1(n) = \frac{16}{n!} e^n (2n+3)(n+2)(4(n+1))^{n+1} (\frac{1}{2}e^n)(4.4n+5.5\log n+7)$$
(3)

and

$$\Lambda = b_1 \log a_1 + \ldots + b_n \log a_n. \tag{4}$$

Then we have

$$\log |\Lambda| > -C_1(n)(C_0 + \log B) \max\left\{1, \frac{n}{6}\right\} \Omega. \tag{5}$$

The others concern to some arithmetical properties of values of cyclotomic polynomials. Lemma 2.2 is a basic and well-known result of this area. Lemma 2.2 has been proved by Zsigmondy[15] and rediscovered by many authors such as Dickson[4] and Kanold[5]. See also Theorem 6.4A.1 in [11]. Lemma 2.3 is proved in [3], as mentioned above.

Lemma 2.2. If $a > b \ge 1$ are coprime integers, then $a^n - b^n$ has a prime factor which does not divide $a^m - b^m$ for any m < n, unless (a, b, n) = (2, 1, 6) or a - b = n = 1, or n = 2 and a + b is a power of 2.

Lemma 2.3. Let a, e, x, f be positive integers with a, x, f > 1 and e > 2. The equation $(a^e - 1)/(a - 1) = x^f$ has no solution but (a, e, x, f) = (3, 5, 11, 2), (7, 4, 20, 2) in integers $2 \le a \le 10, e > 2, x > 1, f > 1$.

Using Lemmas 2.2 and 2.3, we can prove the following lemma.

Lemma 2.4. If $(a^e - 1)/(a - 1) = p^{f_1}q^{f_2}$ for some integers a, e, f_1, f_2 and prime p < q, then we have $(a, e, p, q, f_1, f_2) = (2, 6, 3, 7, 2, 1)$, e = r or $e = r^2$ for some prime r. Moreover, in the case e = r, then we have $p \ge r$. In the case $e = r^2$, we have $(p, q, f_1, f_2) = ((a^r - 1)/(a - 1), (a^{r^2} - 1)/(a^r - 1), 1, 1)$ or $(a, e, p, f_1) = (2^m - 1, 4, 2, m + 1)$ for some integer m.

3 Main Theory

For convenience, we put $a_1 = 2$, $a_2 = 3$, $a_3 = 5$ and $e_1 = a+1$, $e_2 = b+1$, $e_3 = c+1$.

Lemma 3.1. For each i = 1, 2, 3, we have

$$e_i \log a_i < E_i = C_i \log p \log q(\log \log p + C_{i+3}), \tag{6}$$

where $C_1=1.5\times 10^{10}, C_2=1.3\times 10^{12}, C_3=1.9\times 10^{12}, C_4=1.3\times 10^{10}, C_5=1.1\times 10^{12}, C_6=1.6\times 10^{12}.$

Proof. We may assume that $e_1, e_2, e_3 > 10^{10} \log q$ and q > 10.

Let
$$\Lambda_i = f_1 \log a_i + g_1 \log q + \log(a_i - 1) - e_i \log 2 = \log(1 - a_i^{-e_i})$$
 for $i = 1, 2, 3$.

Matveev's theorem gives

$$-\log |\Lambda_1| < C(3)(C_0 + \log(e_1 \log 2/\log q)) \log 2 \log p \log q, \tag{7}$$

$$-\log |\Lambda_2| < C(4)(C_0 + \log(e_2 \log 3/\log q)) \log 2 \log 3 \log p \log q \qquad (8)$$

and

$$-\log |\Lambda_3| < C(4)(C_0 + \log(e_3 \log 5/\log q)) \log 2 \log 5 \log p \log q. \tag{9}$$

Now we shall show (6) in the case i = 1. Since $0 < |\Lambda_1| = -\log(1 - 2^{-e_1}) < \frac{1}{2^{e_1} - 1}$, we have $-\log |\Lambda_1| > \log(2^{e_1} - 1) \ge (1 - 10^{-10})e_1 \log 2$.

Combining upper and lower bounds for Λ_1 , we obtain

$$\frac{e_1 \log 2}{\log q} < (1+10^{-10}) \frac{C_0 + \log(10^{10})}{C_0} C(3) \log 2 \log(e_1 \log 2/\log q) \log p. \tag{10}$$

This gives (6) in the case i = 1.

Next we shall prove (6) in the case i=2. Since $0<|\Lambda_2|=-\log(1-3^{-e_2})<\frac{1}{3^{e_2}-1}$, we have $-\log|\Lambda_2|>\log(3^{e_2}-1)\geq (1-10^{-10})e_2\log 3$.

Combining upper and lower bounds for Λ_1 , we obtain

$$\frac{e_2 \log 3}{\log q} < (1+10^{-10}) \frac{C_0 + \log(10^{10})}{C_0} C(4) \times \log 2 \log 3 \log(e_2 \log 3/\log q) \log p.$$
(11)

Since $0 < |\Lambda_2| = -\log(1 - 3^{-e_2}) < \frac{1}{3^{e_2} - 1}$, we have $-\log |\Lambda_2| > \log(3^{e_2} - 1) \ge (1 - 10^{-10})e_2 \log 3$ and therefore

$$\frac{e_2 \log 3}{\log q} < (1 + 10^{-10}) \frac{C_0 + \log(10^{10})}{C_0} C(4) \log 2 \log 3 \log(e_2 \log 3 / \log q) \log p.$$
(12)

This gives (6) in the case i = 2.

A similar argument yields (6) in the case i=3. This completes the proof of the lemma.

Next, we shall show that we cannot have all of $a_i^{e_i}$'s small.

Lemma 3.2. Let x be the smallest among $a_i^{e_i}$'s. Let $h_1 = f_2g_3 - f_3g_2$, $h_2 = f_3g_1 - f_1g_3$ and $h_3 = f_1g_2 - f_2g_1$ and $H = \max |h_i|$. Then

$$\log x \le \log(7H/4) + C(3)(C_0 + \log((e_1 + 2)H))\log 2\log 3\log 5. \tag{13}$$

Proof. We begin by observing that

$$(2^{e_1} - 1)^{h_1} \left(\frac{3^{e_2} - 1}{2}\right)^{h_2} \left(\frac{5^{e_3} - 1}{4}\right)^{h_3} = 1.$$
 (14)

Now we put

$$\Lambda = (e_1 h_1 - h_2 - 2h_3) \log 2 + e_2 h_2 \log 3 + e_3 h_3 \log 5
= h_1 \log \frac{2^{e_1}}{2^{e_1} - 1} + h_2 \log \frac{3^{e_2}}{3^{e_2} - 1} + h_3 \log \frac{5^{e_3}}{5^{e_3} - 1}.$$
(15)

Then we have

$$0 < |\Lambda| \le H(\frac{1}{2^{e_1} - 1} + \frac{1}{3^{e_2} - 1} + \frac{1}{5^{e_3} - 1}) \le \frac{7H}{4x}$$
 (16)

and therefore

$$\log |\Lambda| \le -\log x + \log(7H/4). \tag{17}$$

It follows from the assumption $e_i > 0$ that $\Lambda \neq 0$. Hence Matveev's lower bound gives

$$\log |\Lambda| \ge -C(3)(C_0 + \log((e_1 + 2)H)) \log 2 \log 3 \log 5.$$
 (18)

Combining (17) and (18), we obtain (13).
$$\Box$$

The third step is to obtain upper bounds for each e_i .

Lemma 3.3. We have $e_1 < 1.1 \times 10^{59}$, $e_2 < 10^{63}$ and $e_3 < 1.5 \times 10^{63}$.

Proof. We begin by considering the case $q \mid x$. In this case, we have $\log q < \log x < \log(7H/4) + C(3)(C_0 + \log((e_1 + 2)H)) \log 2 \log 3 \log 5$. We note that $H \leq C_2C_3 \log p \log q (\log \log p + C_5)(\log \log p + C_6)$. By Lemma 3.1, we have $f_i \leq C_i \log q (\log \log p + C_{i+3})$, $g_i \leq C_i \log p (\log \log p + C_{i+3})$ and therefore $H < C_2C_3(\log q)^2(\log \log q + C_5)(\log \log q + C_6)$. Hence we obtain $\log p < \log q < 5.8 \times 10^{12}$.

Now we consider the case $q \nmid x$. Put i to be the index such that $x = (a_i^{e_i} - 1)/(a_i - 1)$, j, k be the others and

$$\Lambda' = e_j h_j \log a_j + e_k h_k \log a_k - h_j \log(a_j - 1) - h_j \log(a_j - 1) + h_3 \log x$$

$$= h_j \log \frac{a_j^{e_j}}{a_j^{e_j} - 1} + h_k \log \frac{a_k^{e_k}}{a_k^{e_k} - 1}.$$
(19)

Now Lemma 2.3 implies that $(a^e - 1)/(a - 1) = p^f$ with $a \in \{2, 3, 5\}$ implies that f = 1 unless (a, e, p, f) = (3, 5, 11, 2). Therefore we see that $x = p_1$ or $(p_1, x) = (11, 11^2)$, and $(a_j^{e_j} - 1)/(a_j - 1)$ and $(a_k^{e_k} - 1)/(a_k - 1)$ must be divisible by p_2 .

Then we have

$$0 < \Lambda' < H(\frac{1}{a_1^{e_1} - 1} + \frac{1}{a_2^{e_2} - 1}) \le \frac{3H}{2q}. \tag{20}$$

Similarly to the above, Matveev's theorem now gives

$$\log |\Lambda'| \ge -C(4)(C_0 + \log(E_3H/\log x))\log 2\log 3\log 5\log x. \tag{21}$$

Combining (20) and (21), we obtain

$$\log q \le \log(3H/2) + C(4)(C_0 + \log(E_3H/\log x))\log 2\log 3\log 5\log x.$$
 (22)

Since $E_3 = C_3 \log p \log q (\log \log p + C_6) \le C_3 \log x \log q (\log \log x + C_6)$ and $H < C_2 C_3 (\log q)^2 (\log \log q + C_5) (\log \log q + C_6)$, combining (13) and (22), we obtain $\log q < 6.0 \times 10^{25}$. Moreover, $\log p = \log x < \log(7H/4) + C(3)(C_0 + \log((e_1 + 2)H)) \log 2 \log 3 \log 5$ gives $\log p < 7.1 \times 10^{12}$.

Now we conclude that in both cases, we have $\log p < 7.1 \times 10^{12}$ and $\log q < 6.0 \times 10^{25}$. Observing that $(e_1 - 1) \log 2 < f_1 \log p + g_1 \log q$, $(e_2 - 1) \log 3 < f_2 \log p + g_2 \log q$ and $(e_3 - 1) \log 5 < f_3 \log p + g_3 \log q$, we have $e_1 < 1.1 \times 10^{59}$, $e_2 < 10^{63}$ and $e_3 < 1.5 \times 10^{63}$.

The last step is to reduce our upper bounds into feasible ones.

Lemma 3.4. $x \le 1550712$.

Since $x \ge 2^H - 1$, we have

$$|\Lambda| < \frac{7H}{4x} < \frac{7 \times 2^H}{4(2^H - 1)} \exp(\log H - H \log 2).$$
 (23)

Let M be the matrix defined by $m_{12} = m_{13} = m_{21} = m_{23} = 0$ and $m_{11} = m_{22} = \gamma$ and $m_{3i} = \lfloor C\gamma \log a_i \rfloor$. L be the reduced matrix of M.

Now we know that $H < H_0 = 1.5 \times 10^{126}$ and Lemma 3.7 of de Weger's book[13] with $C = 10^{380}$, $\gamma = 2$ gives that $X_1 > H_0$ and we see that (23) has no solutions with $X_1 > H > H_1 = 854$. So that $H \le 854$.

4 CONSEQUENCES FROM THE ABC CONJECTURE

Iterating this argument with $C=10^{10}, \gamma=3$ gives that $X_1>H_1$ and we see that $H\leq H_2=30$. Finally, iterating this argument with $C=150000, \gamma=3$ gives that $X_1>H_2$ and we see that $H\leq 19$.

Now we have $|\Lambda| \ge -15 \log 2 + 8 \log 3 + \log 5$ for $H \le 19$. Since $\frac{7H}{4x} > -15 \log 2 + 8 \log 3 + \log 5 = 0.001128 \cdots$, we conclude that $x \le 1550712$.

The final step is checking all possibilities of x.

If $x = 2^{e_1} - 1$, then $e_1 \in \{2, 3, 4, 5, 6, 7, 9, 11, 13, 17, 19\}$. If $x = (3^{e_2} - 1)/2$, then $e_2 \in \{2, 3, 4, 5, 7, 9, 11, 13\}$. Moreover, if $x = (5^{e_3} - 1)/4$, then $e_3 \in \{2, 3, 5, 7\}$.

Here we exhibit only the proof of $x \neq 2^9 - 1$. If $x = 2^9 - 1 = 7 \times 73$, then (p,q) = (7,73). So that p must divide either $3^{e_2} - 1$ or $5^{e_3} - 1$. If $p \mid (3^{e_2} - 1)$, then $6 \mid e_2$, which is impossible by Lemma 2.4. If $p \mid 5^{e_3} - 1$, then $6 \mid e_3$, which contradicts 2.4 again. Thus x cannot be $2^9 - 1$.

4 Consequences from the abc conjecture

In Aug. 31. 2012, Mochizuki[10] claims to prove the abc conjecture. If Mochizuki's proof is right, Mochizuki's theorem gives that, if $(x^n - 1)/(x - 1) = y^m z^l$ with $n \ge 3$, $lm \ge 2$ and y < z, then for any given $\epsilon > 0$, up to only finitely many counterexamples, we have

- 1. (n, m, l) = (3, 1, 2),
- 2. $(n, l) = (3, 2), m \ge 2$ and $\log y < \epsilon \log z$,
- 3. (n, m, l) = (3, 1, 3), (4, 1, 2) and $\log y < (1 + \epsilon) \log z$, or
- 4. $l=1, m \geq 2$ and $\log y < \frac{1+\epsilon}{(n-2)m-(n-1)} \log z$.

Moreover, Mochizuki's theorem implies that for any fixed y,z, $(x^n-1)/(x-1)=y^mz^l$ has at most two integer solutions. Another consequence of Mochizuki's theorem is that $(x_1^{n_1}-1)/(x-1)=y^{m_1}z^{l_1}$ and $(x_2^{n_2}-1)/(x-1)=y^{m_2}z^{l_2}$ have only finitely many solutions in $(x_1,x_2,n_1,n_2,y,z,m_1,m_2,l_1,l_2)$ with y< z and $n_1,n_2\geq 3, l_1,l_2\geq 1$.

REFERENCES

References

- [1] A. S. Bang, Taltheoretiske Undersøgelser, Tidsskrift Math. 5 IV (1886), 70–80 and 130–137.
- [2] Yann Bugeaud, Guillaume Hanrot and Maurice Mignotte, Sur l'équation diophantienne $\frac{x^n-1}{x-1}=y^q$, III, Proc. London Math. Soc. **84** (2002), 59–78
- [3] Y. Bugeaud and M. Mignotte, On integers with identical digits, Mathematika 46 (1999), 411–417.
- [4] L. E. Dickson, On the cyclotomic function, Amer. Math. Monthly 12 (1905), 86–89.
- [5] H.-J. Kanold, Sätze über Kreisteilungspolynome und ihre Anwendungen auf einige zahlentheoretische Probleme, I, J. Reine Angew. Math. 187 (1950), 169–182.
- [6] A. Makowski and A. Schinzel, Sur l'équation indéterminée de R. Goormaghtigh, Mathesis 68 (1959), 128–142.
- [7] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125–180, Eng. trans., Izv. Math. 64 (2000), 127–169.
- [8] Preda Mihailescu, New bounds and conditions for the equation of Nagell-Ljunggren, J. Number Theory 124, 380–395.
- [9] Preda Mihailescu, Class number conditions for the diagonal case of the equation of Nagell-Ljunggren, preprint, available at http://www.uni-math.gwdg.de/preprint/meta/mg.2006.04.html.
- [10] Shinichi Mochizuki, Inter-universal Teichmüller Theory IV: Log-volume Computations and Set-theoretic Foundations, available in http://www.kurims.kyoto-u.ac.jp/~motizuki/papers-english.html.
- [11] Harold N. Shapiro, *Introduction to the Theory of Numbers*, John Wiley and Sons, New York, 1983.
- [12] A. Wakulizc, Sur la question 3569, Mathesis 67 (1958), 133.
- [13] B. M. M. de Weger, Algorithms for diophantine equations, CWI Tract 65, Stichting Mathematisch Centrum, Amsterdam, 1989, now available at http://www.win.tue.nl/~bdeweger/getaltheorie.html.
- [14] T. Yamada, Unitary super perfect numbers, Math. Pannon., submitted.

REFERENCES

[15] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. für Math. 3 (1882), 265–284.

Tomohiro Yamada
Center for Japanese language and culture
Osaka University
562-8558
8-1-1, Aomatanihigashi, Minoo, Osaka
Japan
e-mail: tyamada1093@gmail.com