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On the simultaneous equations
0.(2a> = pflqgl7 U(Sb) = pf2qg2’ 0'(50) = pf3q93*T

Tomohiro Yamada

Abstract

We shall solve the simultaneous equations ¢(2%) = pf1¢9, o (3%) =
pf2q92, 0—(50) — pf3qg3.

1 Introduction

We denote by o(N) the sum of divisors of N.

In the preprint [14], the author has shown that there are only finitely
many odd superperfect numbers (i.e. the number satisfying o(c(N)) = 2N)
with bounded number of distinct prime factors. In this preprint, we showed

that the simultaneous equation o(p&) = ¢/ - - -q,{’“' for 2k + 1 prime powers
pi(i=1,2,...,2k + 1) cannot have small solutions pi, - - , Poks1.

Here we use the method in the preprint to solve the simultaneous equa-
tions 0’(2“) = pfl q9, 0(35) = pf2q927 0—(50) - pfsqgs_

Wakulicz[12] has shown that all solutions of 2" — 5™ = 3 are (n,m) =
(2,0),(3,1) and (7, 3), from which Makowski and Schinzel[6] derived that
0(2%) = 0(5°) have only the solution (a,c) = (4,2). We note that it is easy
to show that ¢(2%) = ¢(3%) has no nontrivial solution and ¢(3%) = ¢(5°)
also has no nontrivial solution.

Bugeaud and Mignotte[3] has shown that neither of o(2¢),c(3%), 0(5¢)
can be perfect power except o(3%) = 112. Moreover, they have shown that

the only perfect powers £=! with z = 2%,z < 10 are £=! = 112 and
=1 _ 902
71 '
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2 PRELIMINARY LEMMAS

Now we shall state our result.
Theorem 1.1. The simultaneous equations o(2%) = p1¢%, 0(3°%) = pf2¢%2, 0(5°) =
pq% witha,b,c > 0, f1, f2, f3, 91, 92, g3 > 0 has only the following solutions:

1. (a,b,c) =(1,1,1).

2. (a,b,¢) = (4,1,2),

3. (a,b,¢c) = (4,4,2) and

4. (a,c) = (4,2) and o(3°) is prime.

Our results are related to the Nagell-Ljunggren equation

" -1

1 =y™zT>2,y>2,n2>3,q>2, (1)
.

which has been conjectured to have only finitely many solutions. Some of
recent remarkable results are [2], [3], [8] and [9].

Now we are led to conjecture that there exists an integer ng such that
the equation

" -1

— =y e 22,y 222> 2nmi>n (2)

has only finitely many solutions. Theorem 1.1 can be seen to support this
conjecture.

2 Preliminary Lemmas

In this section, we introduce some preliminary lemmas. One is Matveev’s
lower bound for linear forms of logarithms [7].

Lemma 2.1. Letaq,ao,...,a, be nonzero integers such thatloga,,...,loga,
are not all zero. For each j=1,...,n, let A; > max{0.16,loga;}.

Put
B = max{l, lbl' Al/An, |b2| AQ/An, ey |bn|};
O=A,A,... A,,
Co=1+1log3 —log?2, (3)

Ci(n) = i—?e"@n +3)(n +2)(4(n + 1))”+1(%en)(4.4n +5.5logn +7)



3 MAIN THEORY

and
A=biloga; +...+b,loga,. 4)

Then we have

log |A| > —Ci(n)(Co + log B) max {1, g} Q. (5)

The others concern to some arithmetical properties of values of cyclo-
tomic polynomials. Lemma 2.2 is a basic and well-known result of this area.
Lemma 2.2 has been proved by Zsigmondy[15] and rediscovered by many
authors such as Dickson[4] and Kanold[5]. See also Theorem 6.4A.1 in [11].
Lemma 2.3 is proved in [3], as mentioned above.

Lemma 2.2. Ifa > b > 1 are coprime integers, then a™ — b"™ has a prime
factor which does not divide a™ — b™ for any m < n, unless (a,b,n) =
(2,1,6) ora—b=n=1, orn=2 and a+b is a power of 2.

Lemma 2.3. Let a,e,z, f be positive integers with a,z,f > 1 and e >
2. The equation (a® — 1)/(a — 1) = z7 has no solution but (a,e,z, f)
(3,5,11,2),(7,4,20,2) in integers 2 < a < 10,e > 2,z > 1,f > 1.

Using Lemmas 2.2 and 2.3, we can prove the following lemma.

Lemma 2.4. If (a® — 1)/(a — 1) = pfig/ for some integers a, e, fi, f2 and
primep < q, then we have (a,e,p,q, f1, f2) = (2,6,3,7,2,1), e =r ore = r?
for some prime r. Moreover, in the case e = r, then we have p > r. In the

case e = 12, we have (p,q, fi. f2) = (@ — 1) /(0 — 1), (@ — 1)/(@ —1),1,1)
or (a,e,p, f1) = (2™ —1,4,2,m + 1) for some integer m.

3 Main Theory

For convenience, we put a; = 2,03 = 3,a3 = band e; = a+1,e3 = b+1,e3 =
c+1.

Lemma 3.1. For each i =1,2,3, we have
eiloga; < E; = C;logplog g(loglogp + Ciy3), (6)

where C; = 1.5x 101, Cy = 1.3x 102, C3 = 1.9x 1012, C, = 1.3x 10, C5 =
1.1 x 10'2,Cs = 1.6 x 10'2,
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3 MAIN THEORY

Proof. We may assume that e;, e3, e3 > 10%log g and ¢ > 10.

Let A; = filoga; + g1logq + log(a; — 1) — e;log2 = log(1 — a; *) for
i=1,2,3.

Matveev’s theorem gives
—log |A4] < C(3)(Cy + log(e log 2/ log q)) log 2log plog g, (7)

—log |As| < C(4)(Co + log(ezlog 3/ log q)) log2log3logplogg  (8)

and
—log |A3] < C(4)(Cy + log(eslog 5/ log q)) log2log5logplogg.  (9)
Now we shall show (6) in the case 7 = 1. Since 0 < |A;| = —log(1 —
271) < ==, we have —log|A;| > log(2* — 1) > (1 — 1071%)e; log 2.

Combining upper and lower bounds for A;, we obtain

Co + log(10°)
Co

e log?2

og ¢ -C(3) log 21og(e; log 2/ log q) log p. (10)

< (1+10719)

This gives (6) in the case ¢ = 1.

Next we shall prove (6) in the case ¢ = 2. Since 0 < |A;| = —log(1 -
37%2) < =, we have —log|Ag| > log(3%> — 1) > (1 — 1071%)e; log 3.

Combining upper and lower bounds for A;, we obtain

exlog3

Cy + log(10°)
C
logg

< (1+10719) 5
0

(4) xlog 2 log 3log(e2 log 3/ log q) log p.
(11)

Since 0 < |A| = —log(1 — 37%?) < 35—, we have —log |A;| > log(3%* —
1) > (1 — 1079e,log 3 and therefore

Co + log(10%9)
Co

exlog3
log g

< (1410719 C(4) log 2log 3log(ez log 3/ log q) log p.
(12)

This gives (6) in the case i = 2.
A similar argument yields (6) in the case ¢ = 3. This completes the
proof of the lemma. O

Next, we shall show that we cannot have all of a;*’s small.
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3 MAIN THEORY

Lemma 3.2. Let z be the smallest among a;'’s. Let hy = fyg3 — f3go, hy =
f391 — figs and h3 = fig, — fog1 and H = max |h;|. Then

logz < log(7TH/4) + C(3)(Cy + log((e1 + 2)H))log 2log 3log5.  (13)

Proof. We begin by observing that
32 —1
2

5% — 1

(2 = () () = (14

Now we put

A= (61h1 - hz — 2’13) log 2+ 62h2 10g3 + €3h3 log 5

2e1 3e2 5es (15)
= hllog261 7 + hs log e +h3lOg5e3 3
Then we have
1 1 1 TH
< < — 1
0<|A|“‘H(2‘31—1_|-362—1+5‘33—1)_4:3 (16)
and therefore
log [A| < —logz + log(7H/4). (17)

It follows from the assumption e; > 0 that A # 0. Hence Matveev’s
lower bound gives

log|A| > —C(3)(Cy + log((e; + 2)H)) log 2log 3 log 5. (18)
Combining (17) and (18), we obtain (13). O

The third step is to obtain upper bounds for each e;.
Lemma 3.3. We have e; < 1.1 x 10%°, e5 < 105 and e3 < 1.5 x 1063,

Proof. 'We begin by considering the case ¢ | z. In this case, we have logq <
logz < log(7H/4) + C(3)(Co + log((e1 + 2)H))log2log3log5. We note
that H < C3Cslogplogg(loglogp + Cs)(loglogp + Cs). By Lemma 3.1,
we have f; < Cilogg(loglogp + Ci13), g < C;logp(loglogp + C;,3) and
therefore H < C3Cs(log q)*(loglog g + Cs)(loglog ¢ + Cg). Hence we obtain
logp < logq < 5.8 x 1012;

Now we consider the case ¢ { x. Put i to be the index such that z =
(ai' —1)/(a; — 1), 7,k be the others and

A" = ejh;loga; + exhy log ay — hylog(a; — 1) — hylog(a; — 1) + hglogz
a’
= hj lOg + + hk lOg
G/J-J - ].

€k
Ay
ex
Cl,k -

(19)
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3 MAIN THEORY

Now Lemma 2.3 implies that (a® — 1)/(a — 1) = p/ with a € {2,3,5}
implies that f = 1 unless (a,e,p, f) = (3,5,11,2). Therefore we see that
z =p; or (p1,z) = (11,112), and (a; —1)/(a; — 1) and (aF — 1)/(ax — 1)
must be divisible by p,.

Then we have

1 1 3H
AN<H < —. 2
0<N < Hig—g+moy) S5, (20)
Similarly to the above, Matveev’s theorem now gives
log |A'| > —C(4)(Co + log(EsH/ log x)) log 2log 3log 5log z. (21)

Combining (20) and (21), we obtain
log q < log(3H/2) + C(4)(Cy + log(E3H/ log z)) log 2log 3log 5log z. (22)

Since F3 = C3logplogq(loglogp + Cs) < Cslogzlogg(loglog z + Cg) and
H < CyC3(log q)*(log log g+ Cs)(log log g+ Cs), combining (13) and (22), we
obtain logq < 6.0 x 10?%. Moreover, logp = logz < log(7TH/4) + C(3)(Co +
log((e; + 2)H))log 2log 3log 5 gives logp < 7.1 x 10'2.

Now we conclude that in both cases, we have logp < 7.1 x 102 and
logg < 6.0 x 10%. Observing that (e; —1)log2 < fi1logp + g1 logg, (€2 —
1)log3 < fylogp + gologgq and (e3 — 1)logh < fs3logp + g3log g, we have
er < 1.1 x 10%, ey < 10% and e3 < 1.5 x 1053, O

The last step is to reduce our upper bounds into feasible ones.

Lemma 3.4. £ < 1550712.

Since z > 2 — 1, we have

TH 7 x 28

b e _ 2).
|A| < < 271 exp(log H — H log2) (23)

Let M be the matrix defined by mjs = my3 = mg; = meg = 0 and
my; = mge = v and my; = |Cyloga;]. L be the reduced matrix of M.

Now we know that H < Hy = 1.5 x 10'?% and Lemma 3.7 of de Weger’s
book[13] with C = 103 v = 2 gives that X; > Hj and we see that (23)
has no solutions with X; > H > H, = 854. So that H < 854.
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4 CONSEQUENCES FROM THE ABC CONJECTURE

Iterating this argument with C = 10'°,y = 3 gives that X; > H;
and we see that H < H, = 30. Finally, iterating this argument with
C = 150000,y = 3 gives that X; > H, and we see that H < 19.

Now we have |A| > —15log2 + 8log 3 + log5 for H < 19. Since o
—15log2 + 8log 3 + logh = 0.001128 - - -, we conclude that z < 1550712.

The final step is checking all possibilities of z.

If = 2% — 1, then ¢; € {2,3,4,5,6,7,9,11,13,17,19}. If z = (3° —
1)/2, then e, € {2,3,4,5,7,9,11,13}. Moreover, if z = (5% — 1)/4, then
es € {2,3,5,7).

Here we exhibit only the proof of z # 2% — 1. If z = 2° — 1 = 7 x 73,
then (p,q) = (7,73). So that p must divide either 3¢2 — 1 or 5% — 1. If
p| (3% — 1), then 6 | ez, which is impossible by Lemma 2.4. If p | 5% — 1,
then 6 | e3, which contradicts 2.4 again. Thus z cannot be 2° — 1.

4 Consequences from the abc conjecture

In Aug. 31. 2012, Mochizuki[10] claims to prove the abc conjecture. If
Mochizuki’s proof is right, Mochizuki’s theorem gives that, if (z" —1)/(x —
1) =y™z! withn > 3,lm > 2 and y < z, then for any given € > 0, up to
only finitely many counterexamples, we have

1. (n,m,l) = (3,1,2),
2. (n,l) =(3,2),m > 2 and logy < elog z,
3. (n,m,1) =(3,1,3),(4,1,2) and logy < (1 +€)log z, or

4. l=1,m>2and logy < m)—}:f(n—_l)logz.

Moreover, Mochizuki’s theorem implies that for any fixed y, z, (z" —
1)/(z—1) = y™2' has at most two integer solutions. Another consequence of
Mochizuki’s theorem is that (z7*—1)/(z—1) = y™ 2" and (z52—1)/(z—1) =
y™22'2 have only finitely many solutions in (zq, 2,11, n2,y, 2, My, My, Iy, 1)
with y < z and ny,ny > 3,1;,1, > 1.
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