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Introduction.

Let 2 be an exterior domain in R? with smooth boundary Q € C*. We consider the stationary
Navier-Stokes equations in §2:

-Au+u-Vu+Vp=f inQ,
divu=0 inQ,
u=0 on 909,

u(z) = u>® as |z| — oo,

(N-S)

where u = u(z) = (u1(z), uz(x), us(x)) and p = p(x) denote the unknown velocity vector and
the unknown pressure at « = (21,23, z3) € Q, while f = f(z) = (f1(z), f2(), f3(z)) is the given
external force, and u® = (u$°, u$°, u$°) is the prescribed constant vector in R3 at infinity. In
the pioneer work of Leray [14], it was shown that for every f € H~12(Q) = H&’z(Q)* and for

every u™ € R3, there exists at least one weak solution u of (N-S) with [Vu(z)|?dz < oo such
Q

that
/; fu(z) — u™|8dz < oo.
Q

Here and in what follows, H&’q(ﬂ) denotes the closure of C§°(2) with respect to the homogeneous
norm ||Vu||ze for 1 < ¢ < co. Leray named such a weak solution u D-solution of (N-S) because
it has a finite Dirichlet integral in §). The asymptotic behavior of D-solution u at infinity had
been improved by Finn [3], Fujita [4] and Ladyzhenskaya [13] in such a way that

u(z) — u™ uniformly as |z| — oo,



20

provided f has a compact support in . In his paper [14}, Leray proposed the problem whether
every D-solution u satisfies the energy identity

(EI) /Vu-V(u—a)da:+/ﬂu-Va‘(u—a)d:n=(f,u—a)

for all @ € C1(Q) such that diva =01in §, alsg =0, a(z) = u*™ for all z € Q satlsfymg |z| > R
with some large R > 0. Here (,-) denotes the duality pairing of H~12(Q) and H0 (). The
second important question is a uniqueness problem of D-solutions. It is still an open question
whether there exists a small constant & such that if || f]| 1,2 + [u*| < 6, then the D-solution u of
(N-S) is unique. This is so-called a uniqueness theorem of D-solutions for arbitrary small given
data f € H™12(2) and u*® € R3.

In this article, we shall give final affirmative answers to these two questions provided u® #
0. It should be noted that the corresponding results to those in the case u® = 0 are still
open questions. See e.g., Nakatsuka [15]. There is another notion of physically reasonable(PR)
solutions introduced by Finn [2], [3]. We call the solution u of (N-S) physically reasonable if it
holds

(PR) u(z) —u® =0(|z["%) as [z] — 00

for some a > 1/2. If u is a PR-solution of (N-S) with f € C§°(£2), then u behaves like
00 -1 -1 - T-u®

(WR) u(z) —u® =0(z| 'L+ 82)7"), 8z =|z[— T as |z| — oo,

which exhibits a parabolic wake region behind the obstacle. It had been shown by Finn [3]
that in the case when f € C§°(R2), every PR-solution u becomes necessarily a D-solution. The
converse assertion was treated by Babenko [1] who proved that if f = 0, then every D-solution
u of (N-S) satisfies (PR) with o = 1. As a result, it turns out that every D-solution with
f =0 has a parabolic wake region such as (WR). Later on, Galdi [6], [7], [8], [9] and Farwig [5]
succeeded to handle more general f by introducing anisotropic weight. functions, and obtained
more precise asymptotic behavior of u than (WR) in the class of PR-solutions. Furthermore,
Kobayashi-Shibata [11] showed the stability of PR-solutions for small f and 4 in terms of the
Oseen semi-group in LP-spaces.

1 Results.

Before stating our results, let us introduce some notation and then give our definition of D-
solutions of (N-S). C§% () is the set of all C*-vector functions ¢ = (1, P2, p3) with compact
support in 2, such that div ¢ = 0. For 1 < ¢ < oo, LI(f) stands for all LI-summabel vector
functlons on Q with the norm || - ||zs. We denote by (-,-) the duality paring between L)
and LY (Q), where 1/¢+ 1/¢ = 1. H 1’q(Q) denotes the closure of C§°(§) with respect to the
-
Z’)%)’ i,j = 1,2,3. H 19(Q) is the dual space
J
of Hé’q (), and (f,#) denotes the duality pairing between f € H=19(Q) and ¢ € Hé’q Q).
Finally, for u® € R3, we define the space A(u®) by

homogeneous norm ||V||Le, where Vo =

A(u®) = {a € C}(Q);div a = 0,alsn = 0,a(z) = u™ for all x € R satisfying |z| > R}



with some R > 0.
Our definition of D-solutions to (N-S) reads as follows.

Definition. Let f € H~12(Q2) and 4™ € R3. A measurable function u on Q is called a
D-solution of (N-S) if the following conditions (i), (i) and (iii) are satisfied.

(i) Vu e L) with divw =0 in Q and « = 0 on A;
(i) u() —u™ € L(Q);
(iif) it holds that
(E) (Vu, Vo) + (u- Vu,) = (f,p) forall p € 5o (€).

Remark. For every D-solution u of (N-S), there exists a unique scalar function p € L2 () up
to an additive constant such that

(E) (Vu, Vo) + (u- Vu,¢) + (p,div ¢) = (f,¢) forall ¢ € C§e ().
Our first result on the energy identity (EI) now reads:

Theorem 1.1 Assume that f € H‘lvz(ﬂ) and u® € R3 with u® # 0. Then every D-solution
u of (N-S) satisfies

(1.1) (Vu, Vu) — (Vu,Va) + (u- Va,u —a) = (f,u—a) for all a € A(u®).

Moreover, if in addition f € H~Y2(Q) N LI(Q) for some 1 < q < 2, then it holds that

(1.2) /Q|Vu|2dw + u® - /an T(u,p) - vdS = (f,u — u™),

where T'(u, p) = (g%; g—zl - Jijp) L<ii<s denotes the stress tensor and where v is the unit outer
¢ <6J<

normal to ON).

Remarks. (i) Galdi [8] and Farwig [5] showed a similar result to that of Theorem 1.1 under
the assumption that f € H~12(Q) N L3 @n L%(Q) On the other hand, for the validity of the
energy identity (1.1), we do not need any condition on f except for f € H —12(Q).

(ii) The corresponding problem for u® = 0 is still open. Indeed, up to the present, the
energy identity (1.1) is shown under the hypothesis that u € Hb2(Q) N L3*(£2), where L9 (L)
denotes the Lorentz space on 2. For instance, see Kozono- Yamazaki [12].

Next, we consider the uniqueness of D-solutions under the smallness assumption on the given
data.

Theorem 1.2 There is a constant 6, = §1(Q) > 0 such that if u® # 0 and f € H‘_1'2(Q) satisfy

(1.3) 11l =12 + 0] < 61]u|2,
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then there ezists a unique D-solution u of (N-S). Moreover, such a solution u is necessarily
subject to the estimate

(1.4) w4 [lu — ul| s + [ Vull 1z < CUIF | g-ra + [u™)),
where C = C(9).
Remarks. (i) Galdi [8] showed that if u® # 0 and f € L3 @)n L3 () satisfy

11 g + ™| < 6

then there exists a unique D-solution. Since Lg(ﬂ) c H12(Q), our result covers that of
Galdi [8]. Furthermore, we do not need any redundant assumption such as f € L%(Q) Hence,
Theorem 1.2 seems to be a final answer to Leray’s question on uniqueness of D-solutions for

small data.

(ii) The case when u® = 0, such a uniqueness result as in Theorem 1.2 is known in more
restrictive situations. For instance, Nakatsuka [15] treated the case u®® = 0, and proved that
for every 3 < r < oo there is a constant § = &(r) > 0 such that if {u,p} and {v,q} with

Vu,Vv,p,q € L%’°°(Q) satisfy (E’) and if
lullgae <6, veL¥(Q)+LT(9),
then it holds that
{uw, p} = {v, q}.

In his result, it is necessary to assume the smallness of one solution u and some redundant
regularity on another solution v. It is still an open question whether any norm of solutions u of
(N-S) with u® = 0 can be controlled by f. For details, we refer to Kim-Kozono [10].

2 Oseen equations.

In this section, we investigate the following Oseen equations.

—Av+u®-Vv+Vr=f inQ,
divv=0 inQ,

v=0 on 09,

v(z) = 0 as |z| — oo.

(Os)

Let us introduce the two function spaces H9(€2) and H?%(Q) defined by
HYMQ) = {ve L&(Q);VU € L1(Q)}, 1<q<4,
~ ~ 4
A29(Q) = {ve B &a(Q); Vv e LI(Q)}, 1<g<2
Then we have the following results on unique solvability of (Os).

Lemma 2.1 Let u™® # 0. Assume that 1 < q1,q2 < 4. The solution {v,7} € ﬁl’ql(ﬂ) +
HY%2(Q) x L} (Q) of (Os) is unique.
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Lemma 2.2 (i) For f € H 19(Q) with 3 < g < 4, there exists a unique solution {v,7} €
HY(Q) x LI(Q) of (Os). Moreover, for every % < ¢ < 3 and every M > 0 there is a constant
C = C(q, M, Q) such that if {v, 7} € HY(Q) x LI(Q) is a solution of (Os) with [u®| < M, then
it holds that

Fullvll ga. +1V0llze + l17llze < Clfllg-10,

where k1 = min.{1, |u°°|%} )
(ii) For every f € LI(Q) with 1 < q < 2, there ezists a unique solution {v,7} € H>I() x

L% (Q) of (Os) with Vr € LI(QQ), where 51: = é— — 1. Moreover, for every 1 < ¢ < 3 and every

M > 0 there is a constant C = C(q, M, Q) such that if {v,7} € HY(Q) x LYQ) is a solution
of (0s) with |u®| < M, then it holds that

kallvll 2o + Bl VoIl aa + 1V20lla + [I7llLe- + 17 ll2e < ClIfllza,

where kg = k? = min.{1, |u°°|%}

3 Proof of Theorems.

The following lemma, is based on Lemma 2.2 and plays a key role for the proof of Theorem 1.1.
Lemma 3.1 Let u® # 0 and f € H™Y2(Q). Let u be a D-solution of (N-S).
(i) If in addition f € H=Y2(Q) N H-19(Q) for & < g < 4, then it holds that
u—u® € Liq?(ﬂ), u™ - Vu € H19(Q),
Vu e L), p—po € LIYQ) for some constant peo.
(i) If in addition f € H=12(Q) N LI(Q) for 1 < q < 2, then it holds that
u—u® e L74(Q), Vue Lie(Q)nLiaQ),
P Poo € LT{%(Q) for some constant poo,
V3u, Vp,u™ - Vu € LI(S).
By taking ¢ = 2 in this lemma, we have
Corollary 3.1 Every D-solution u of (N-S) with u® # 0 and f € H12(Q) satisfies
u—u® e LY(N), u®-Vue H (), p-—pe € L)
for some constant po.
To deal with the nonlinear term, we need

Proposition 3.1 Let v,w € Hé’Q(Q) N LA(9).
(i) If u € L) with div u = 0 in §, then it holds that

(u-Vo,w) = —(u - Vw,v).
(i) If u™® - Vv € H~12(Q) and u® - Vw € H-12(Q), then it holds that
(u® - Vo,w) = —(u™ - Vw,v),

(a@-Vv,w) = —(a - Vw,v) forallae A(u®).
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3.1 Proof of Theorem 1.1.

By Definition of D-solutions, we have

<f» ¢) = (Vus V¢) + (’U, - Vu, d)) - (pa div ¢)

(3.1) = (Vu,V¢)+ ((u—a) Vu,¢) + (a- Vu,¢) — (p — Poo, div ¢)
for all ¢ € C§°(R2) Since C§°(S2) is dense in Hé’z(ﬂ) N L4(Q), we have
(3.2) (fi¢) = (Vu, V) + ((u—a) - Vu, ) + (a - Vi, ) — (9 — Poc, div ¢)

for all ¢ € Hy?(2) N L*(Q). By Corollary 3.1 it holds that u —a = u — u® + u® —a €
Hé’Z(Q) N L*(). Hence, taking ¢ = u — a in (3.2), we have

(3.3) (fyu—a)=(Vu,V(u—a))+ (u—a) Vuy,u—a)+ (a- Vu,u —a).
Furthermore by Proposition 3.1, it holds that
((u—-a)-Vu,u—a)+ (a-Vu,u—a)
= ((u—a)-Vu—a),u—a)+ {(a-V(u—a),u—a)
+((u—a)-Va,u—a)+ (a-Va,u — a)
= (u-Va,u—a),
from which and (3.3) we obtain

Vull22 — (Vu, Va) + (u- Va,u — a) = (f,u— a).

This proves (1.1).
Assume in addition that f € H~12(Q) N LI(Q) for some 1 < g < 2. By Lemma 3.1 (ii), we
have
—Au+u-Vu+Vp=f ae. in

Note that
a—u®€C (R, a—u®=0 onoQ.

By integration by parts, we have

(fra—u®) = (-Au+u-Vu+ Vp,a—u™)
= (=div (T'(u,p),a — u*>) + (u - Vu,a — u*>°)

(3.4) = (Vu,Va) +u>- / T(u,p) - vdS — (u- Va, ).
an
Addition of (3.4) and (1.1) yields that
(3.5) IVuls +w [ Tup)vdS - (u: Va,0) = (f,u= ).
on

Since supp Va is compact, we see easily
(u-Va,a) =0,
from which and (3.5) we obtain the desired identity (1.2). This proves Theorem 1.1.
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3.2 Proof of Theorem 1.2.

Step 1. We first show that there are constants d, = 8,(Q) and C«(Q) > 0 such that if

(3.6) 1l -r + 1] < 8],

then every D-solution u of (N-S) satisfies

(3.7) [l u = all s + [ Vullzz < Culllfll -1 + [u])

for some a € A(u*). Indeed, taking 0 < Ry < R; < 0o and a € A(u®) in such a way that
Q°=R3\Q C Bg,(0), supp VaC {Ro < |z| < Ri}.

we have

(3.8) lallze + IVall iz < Clu™|  with C' = C(9).
By (1.1), we see that
”VUH%Z = <f,’lL - a> + (V’U,, V(l) + (U ' Va,u - a)>

from which and (3.8) with the aid of the Young inequality it follows that

1
IVullie < (5 + Clul ) IVulZe + Ol -2 + Cu™ + [u).
2

Hence, under the assumption

(3.9) w| < 6 = min.{1, %},

we have

VAN

1
7IIVullz: Ol -2 + C([u® + [u™]*)

CUNFr + 1),

IA

which yields that
(3.10) IVullze < CUIFll -1 + [u™)).

Next, we show the bound of |[u — a||z4. Define v = u '~ a, and we have by (3.8) and (3.9) that

(3.11) ve Hy"(Q), [Vollzz < CUUIfll sz + 1u™)),
and that
—Av+u*® -Vuv+Vr=f-Q(v) inQ,
divv=0 inQ,
v=0 on 09,

v(z) =0 as |z| — oo,

where
Qv)=v-Vv+(a—u>®) - Vv+v-Va—Aa+a- Va.
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By (3.8) and (3.11), it holds that

lv- VU“L% < vllallVollzz < CUIf Nl g-1.2 + [u™])]|vl| L4

1Q(v) =v- Voll -1z
=|l(a—v*)-Vv+v-Va—Aa+a-Va| g1,
< C(IVollgz + [w™))

< CUIfll -2 + [w>))-

Hence, it follows from Lemma 2.1 and Lemma 2.2 with ¢ = 2 in (i) and with ¢ = # in (ii) that

1 1
ol < C(Hllf—Q(v)—v-Vvlly-l.z+Ellv~Vvlng>

(3.12)

IN

0 (0o 4 D+ 1l + Dol ).

Hence, under the assumption

1

1 oo — i s
. - - < 6 =min{6, ', —},
(3.13) £ (1o + i) < 8, = min (6, 25)
we have o
(3.14) lu—allgs = [lvllze < k—l(llfllg-m + [u®l).

Since the assumption (3.13) necessarily implies the assumption (3.9), we see by (3.10) and (3.14)
that if .
Il gr-r.2 + [u] < 6™z,

then it holds that .
[u*|2]lu = al|ga + [Vullza < (1fllg-12 + ™)),

which implies (3.7)

Step 2. We next show uniqueness. Let u; and up be two D-solutions of (N-S). Define
v1 = u; —a and v = uz — a with a € A(u®) as in Stepl. Then v = v; — v3 = u; — ug fulfills

—Av+u® -Vv+Vr=—-v;-Vv—v-Vug in Q,
dive=0 in§,

v=0 on 09,

v(z) = 0 as|z| — oo,

Hence it follows from Lemmata 2.1 and 2.1 with

f=-v1-Vv=div (v1®v) forg=2in (i),
f=-v-Vuy forg=3in (ii)
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that
1., 1
lolie < € (gl (1 ®0)losa + ol Va4
1 1
< 0 (gl vl + ool Vual
1 2
1 1
(3.15) < 0 (Fholls+ o I9ulza) e
1 2

By Stepl, under the assumption
1
(-2 + [u™] < 6:fu™|z,

we have o
lvillze < k—l(HfHH-l.z +[wl),  Vuallgz < C(Ifll g-12 + ™)),

from which and (3.15) with k? = ky it follows that

C
(3.16) Iollzs < 2 (f =12+ Fu™Dllo ] e
Now, define é; = §;(Q) so that

01 = min.{d,, %}

Then under the assumption
1
Il =12 + [u] < d1]u]z,

it follows from (3.16) with the aid of the relation ks = min.{1, ]u°°|%} that
ol <0,

which yields the desired uniqueness result. This completes the proof of Theorem 1.2.
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