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STOCHASTIC NONPARABOLIC DISSIPATIVE SYSTEMS MODELING THE
FLOW OF LIQUID CRYSTALS: STRONG SOLUTION

ZDZISLAW BRZEZNIAK, ERIKA HAUSENBLAS, AND PAUL RAZAFIMANDIMBY

1. INTRODUCTION

Nematic liquid crystal is a state of matter between that has properties between amorphous
liquid and crystalline solid. Molecules of nematic liquid crystals are long and thin, and they tend
to align along a common axis. This preferred axis indicates the orientations of the crystalline
molecules, hence it is useful to characterize its orientation with a vector field d which is called
the director. Since its magnitude has no significance, we shall take d as a unit vector. We
refer to [8] and [12] for a comprehensive treatment of the physics of liquid crystals. To model
the dynamics of nematic liquid crystals most scientists use the continuum theory developed by
Ericksen [15] and Leslie [23]. From this theory F. Lin and C. Liu [24] derived the most basic
and simplest form of dynamical system describing the motion of nematic liquid crystals filling
a bounded region O C R*(n = 2,3). This system is given by

vi+(v:-V)v—Av+Vp = —-AV.(Vd® Vd), (1.1)
divv = 0, (1.2)

d:+(v-V)d = ~v(Ad+ |Vd|*d), (1.3)

d? = 1. (1.4)

Here p represents the pressure of the fluid and v its velocity. By the symbol Vd ® Vd we mean
a square n X n-matrix with entries defined by

n k k
od”* dd
Vd®Vd-~=E ———, foranyi,j=1,...,n.
[ Jij P dz; Oz, Y

In the present work we assume that the boundary of © is smooth and the system stated above
is subjected to the following boundary conditions

v =10 and g—g =0 on 00. (1.5)
The vector n(z) is the outward unit and normal vector at each point z of O.

Although the system (1.1)-(1.5) is the most basic and simplest form of equations from the
Ericksen-Leslie continuum theory, it retains the most physical significance of the nematic liquid
crystals. Moreover it offers many interesting mathematical problems. In fact, the system (1.1)-
(1.5) is basically a coupling of the Navier-Stokes equations (NSEs) and the heat flow of harmonic
maps (HFHM) onto 2-dimensional sphere S2. On the one hand it is a coupling of constrained
initial-boundary value problems involving gradient nonlinearities. On other hand, a number of
challenging questions about the solutions to Navier-Stokes equations and heat flow of harmonic
maps are still opened. Therefore we must encounter difficult problems and we should not expect
better results than those obtained for the NSE or HFHM when they are coupled together.

In 1995, F. Lin and C. Liu [24] proposed an approximation of the system (1.1)-(1.5) to relax
the constraint |d|? = 1 and the gradient nonlinearity |[Vd|?d. More precisely, they studied the
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following system of equations

vi+(v-V)v—pAv+Vp = -V.(Vd®Vd), (1.6)
divv = 0, (1.7)
di+(v-V)d = Ad—;—z(ldlz—l)d. (1.8)

Problem (1.6)-(1.8) with (1.5) is much simpler than (1.1)-(1.4) with (1.5), but it is still a
difficult and interesting problem. Since the pioneering work [24] the systems (1.6)-(1.8) and
(1.1)-(1.4) have been the subject of intensive mathematical studies. ‘We refer, among others, to
(16, 18, 24, 25, 26, 27, 34] and references therein for the relevant results.

In this paper we are interested in the mathematical analysis of a stochastic version of (1.6)-
(1.8). Basically, we will investigate a system of stochastic evolution equations which is obtained
by introducing appropriate noise term in (1.1)-(1.4). More precisely we consider a trace class
Wiener process W and a standard real-valued Brownian motion W,. We assume that W, and
W, are mutually independent. We consider the problem

dv(t) + |(v(t) - V)v(t) — Av(t) + Vp] dt = =V - (Vd(t) o Vd(t))dt + S(v(t))dW1, (1.9)
div v(t) = 0, (1.10)

dd(t) + (v(t) - V)d(t)dt = [Ad(t) - %(1d]2 - 1)d| + (d(t) x h) o dWy, (1.11)
[d(t)]> < 1 ae. (z,t) € Q x [0,T], (1.12)

where (d(t) x h) o dW; should be understood in the Stratonovich sense. In 2-D the vector (or
cross) product h x d is a scalar that should be understood as follows

(hle, + h%es + Oez) x (d'ey + dez + Oes) = Oey + Oez + (h'd® — h%d')es,

where (e, e2, €3) is the canonical basis of R3.

Our work is motivated by the importance of external perturbation on the dynamics of the
director field d. Indeed, an essential property of nematic liquid crystals is that its director field d
can be easily distorted. However, it can also be aligned to form a specific pattern by the help of
magnetic or electric fields. This pattern formation occurs when a threshold value of the magnetic
or electric field is attained; this is the so called Fréedericksz transition. Random external fields
change a little bit the threshold value for the Fréedericksz transition. It has been also shown
that with the fluctuation of the magnetic field the decay time of an unstable state diminishes.
For these results we refer, among others, to [2, 20, 33] -and references therein. In all of these
works the effect of the hydrodynamic flow has been neglected. However, it is pointed out in (12,
Chapter 5] that the fluid flow disturbs the alignment and conversely a change in the alignment
will induce a flow in the nematic liquid crystal. Hence for a full understanding of the effect of.
fluctuating magnetic field on the behavior of the liquid crystals one needs to take into account
the dynamics of d and v. To initiate this kind of investigation we propose a mathematical study
of (1.9)-(1.11) which basically describes an approximation of the system governing the nematic
liquid crystals under the influence of fluctuating external forces. To the best of our knowledge
our work is the first mathematical work which studies the effect of fluctuating external forces
to the system (1.9)-(1.11). We mainly establish the existence of strong solution. Here strong
solution is understood in stochastic analysis and in PDEs sense as well. Our results are the
stochastic counterparts of the ones obtained by Lin and Liu in [24].

The organization of the present article is as follows. In the first subsection of Section 2 we
introduce some notation used throughout this paper. In the very subsection we also state the
existence of a unique maximal strong solution to our problem. This maximal solution is global
for the two dimensional case. A maximum principle type theorem is proved in the last section of
the paper. In Section 3 we establish the existence of local and maximal solution to an abstract



nonlinear stochastic evolution equations. The existence of maximal solution stated in the first
subsection of Section 2 is a consequence of this general result. In the appendix we recall or prove
several results which are used to infer that (1.9)-(1.11) with (1.5) falls within the framework of
Section 3.

2. STRONG SOLUTION OF STOCHASTIC LIQUID CRYSTALS (SLC)

2.1. Functional spaces and Preparatory lemma. Let n € {2,3} and assume that O c R"
is a bounded domain with boundary 9O of class C*. For any p € [1,00) and k € N, L?(0) and
W¥P(0) are the well-known Lebesgue and Sobolev spaces, respectively, of R™-valued functions.
The corresponding spaces of scalar functions we will denote by standard letter, e.g. Wk’p(O).
For p = 2 we denote W*?(O) = H* and its norm are denoted by [|u|y. By H} we mean the
space of functions in H! that vanish on the boundary on O IHIé is a Hilbert space when endowed
with the scalar product induced by that of H!. The usual scalar product on L2 is denoted by
{u,v) for u,v € L2, Its associated norm is |ju||, u € L2. We also introduce the following spaces

V = {u € [C°(O,R™)] such that V - u = 0}
V = closure of V in H}(O)
H = closure of V in L%(0).

We endow H with the scalar product and norm of 2. As usual we equip the space V with the
the scalar product (Vu, Vv) which is equivalent to the H!(©)-scalar product.

Let IT : L? — H be the Helmholtz-Leray projection from L2 onto H. We denote by A; = —-IIA
the Stokes operator with domain D(Ay).

From [30, Proposition 1.24] we can define a self-adjoint operator A : H! — (HY)" by

(Au,w) =a(u,w) = / Vu Vwdz, u, weH!. (2.1)
o
The Neumann Laplacian acting on R"-valued function will be denoted by As, that is,

Ou
— 2, 0u _
D(Aj) := {uelHI Com 0 on 8(9}, )
2.2
" 82u
A2u :=—i=51 —6';;:2—, UGD(Ag)

It can be shown, see e.g. {17, Theorem 5.31], that Ay = I+ A, is a definite positive and self-
adjoint operator in the Hilbert space L2 = IL2(O) with compact resolvent. In particular, there
exists an ONB (¢;)%2, of L? and an a increasing sequence (/\k)zozl with A; =0 and Ay 7 0o as
k /oo (the eigenvalues of the Neumann Laplacian Aj) such that A2d; = X\j¢; for any ¢ € N.

~ 1
For any a € [~3,00) we denote by X, = D(A2 +ot), the domain of the fractional power operator

L1
As % We have the following characteization of the spaces Xg,

Xo={u=> udp: Y 1+ ul? < co}. (2.3)
keN k
It can be shown that X, € H'*2* for all & > 0 and X := Xy = H!.

Similarly, for 8 € [0, 0o), we denote by V# the Hilbert space D(Af ) endowed with the graph
inner product. The Hilbert space V# = D(Af ) for B € (—00,0) can be defined by standard
extrapolation methods. In particular, the space V=4 is the dual of V# for 8 > 0. Moreover, for
every 3,9 € R the map A'{ is a linear isomorphism between V# and V49,

Throughout this paper B* denotes the dual space of a Banach space B. We denote by (¥, b)
the value of ¥ € B* on b € B. '
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Hereafter we denote by ||l the norm in the Sobolev, vector or scalar valued, space H*2. We
also put

H=HxXy, V=VxD(Ay)and E= D(A;) x X;. (2.4)
The operator —Aj is the generator of a Cy analytic semigroup {T(t)}¢>0 on L2 satisfying
T(t)u = Z e Mlurde, u= Z ukgx € L2. (2.5)
keN keN

By using the representation (2.3) we can show without any difficulty that the space Xy, is invariant
with respect to this semigroup and the restriction of the latter to the former is also a Cp and
analytic semigroup which will be denoted in the sequel by {S2(t)}¢>0. The minus infinitesimal
generator Ay of {Sa(t)}s>0 is the part of A2 on Xo, that is,

D(A3) = {u € D(Az) : Azu € Xo}, Au = A,u for any u € D(Aj).
Note that X; C D(Az).
Next we denote by {S1(t)}¢>0 the analytic semigroup generated by —A; on H where A is the

Stokes operator.
We also introduce a trilinear form

- 0V
b{u,v,w) = Z/Ou 5

i,j=1

Jj .
widz, uel’,ve WY and w € L",

1

with numbers p, g, € [1, 00] satisfying
RO
p q T
The map b is the trilinear form used in the mathematical analysis of the Navier-Stokes equa-
tions, see for instance (35]. It is well known that one can define a bilinear map B defined on
H! x H! with values in (H')* such that
(Ba(u,v),w) = b(u,v,w) foranyu, v, we H.
We can also a define bilinear map! B; from V x V with values in V* such that
(Bi{u,v),w) =b(u,v,w) for w € V, and u,v € H!.
For any f, g € X% NX; we also set
M(f,g) =1I[V - (Vf ® Vg)].
This definition makes sense because V - (Vf ® Vg) € L? for any f,g € X 1 NX;.
Let h be an element of L N W13, We define a linear operator G from L? into itself by
G(d)=d x h.
It is straightforward to check that G is bounded and satisfies
IG(d)| < |IR]lL<]ld-

Let (Q, F,P) be a complete probability space equipped with a filtration F = {F; : t > 0} satis-
fying the usual condition. Let Wa = (W2(t)):>0 be a real-valued Wiener process on (22, F,F,P).
Let us assume also that K; is a separable Hilbert space and Wi = (W1(t)):>0 be a K;-cylindrical
Wiener process on (€, F,F,P). Throughout we assume that W2 and W) are mutually inde-
pendent. Thus we can assume that W = (Wi(t), Wa(t)) is K-cylindrical Wiener process on
(Q, F,F,P), where

K=K;®K,, K:=R.

11n the context of the Navier-Stokes Equations, the map B; is usually denoted by B.
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We have the following relation between Stratonovich and It6’s integrals
1
G(d) o dWy = §G2(d) dt + G(d) dWs,

where G? = G o G and defined by
G*(d) =G o G(d) = (d x h) x h, for any d € L2
Let f: R™ — R"™ be a function defined by
£(d) =1p@(d)(|d]* - 1)d, d eR™ (2.6)
Remark 2.1. Let f be defined by (2.6). Then there exist positive constants ¢ > 0 and é > 0

such that
|f"(d)| < c and |f'(d)| < & for any d.

Now, by performing elementary calculation we can check that
IAd|? =llAd ~ f(d) + £(d)|* < 2]|Ad - f(@)|* + 2] £(d)]%,
<2||Ad — f(d)[|?> + 2¢|/d||?, for any d € D(A;).
Hence there exists a constant C' > 0 such that
IdlI3 < C()ad - f(d)|I* +2¢]d|)?), for any d € H*(O). (2.7)

With all the above notation, the stochastic equations for nematic liquid crystal (1.9-1.12) can
be rewritten as the following stochastic evolution equation in the space H,

dy(t) + Ay(t)dt + F(y(t))dt + L(y(t))dt = G(y(t))dW (t), (2.8)
where, for y = (v,d) € E and k = (k1,k2) € K,
Ay O By(v,v)+ M(d)\ .
Ay = ( O1 Ag) (;) ’ F(Y) = (312((‘,, d)) + f((d))> y (2.9)
_ 0 _ [ S(u)k
L(y) = <“%G2(d)> G(y)k = (G(d)kD . (2.10)

Below we will also use the Cy analytic semigroup {S(¢)};>0 on H = H x X defined by

S(t) G) - @;EQZ) (v,d) € H.

Its infinitesimal generator is —A, where A is defined in (2.9). Some properties of {S(¢) : t > 0}
will be given in Lemmata A.3-A.5.

Given two Hilbert spaces K and H, we denote by J2(K, H) the Hilbert space of all Hilbert-
Schmidt operators from K to H.

The function S is defined in the next set of hypotheses.

Assumption 2.1. Let h € W2* (hence h € W3 NL>®) with hiso = 0.
We assume that S : H — J2(K1,V) is a globally Lipschitz map. In particular, there exists
£5 > 0 such that
1S3y < 650+ [ulP), for any u € B.

Let us recall the following notations/definition which are borrowed from [3] or [22].

Definition 2.2. For a probability space (2, F,P) with given right-continuous filtration F =
(]-'t) >0 & stopping time 7 is called accessible iff there exists an increasing sequence of stopping

times 7, such that a.s. 7, < 7 and lim,_y00 T = 7, see [22].
Notation. For a stopping time 7 we set
() ={weQ:t<1(w)},
[0,7) x Q= {(t,w) € [0,00) X 2:0 <t < 7(w)}
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Definition 2.3. A process 7 : [0,7) x @ = X (we will also write 7(t), t < 7), where X is a
metric space, is admissible iff
(i) it is adapted, i.e. n|q, = % — X is F; measurable, for any t > 0;
(ii) for almost all w € Q, the function [0, 7(w)) 3 t = n(t,w) € X is continuous.
A process n: [0,7) X @ — X is progressively measurable iff, for any ¢ > 0, the map
[0,t AT)XQ 3 (s,w) = n(s,w) € X
is Biar X Fipr measurable.

Two processes 7; : [0,7;) X 2 = X, i = 1,2 are called equivalent (we will write (11, 71) ~ (72, 72))
iff ; = 72 a.s. and for any t > 0 the following holds

Ul(‘,w) = 772('»‘0) on [07t]
for a.a. w € Q(1) N Q(T2).

Note that if processes 7; : [0,7;) X = X, i = 1,2 are admissible and for any t > 0 m (t)|q,(r) =
n2(t)|q,(ry) @-5- then they are also equivalent.

We now define some concepts of solution to Eq. (3.25), see [7, Def. 4.2] or (28, Def. 2.1].

Definition 2.4. Assume that a V-valued F; measurable random variable yo with E||yol? < oo
is given. A local mild solution to problem (3.10) (with the initial time 0) is a pair (y,7) such
that
(1) 7 is an accessible F-stopping time,
(2) y:[0,7) x Q — V is an admissible process,
(3) there exists an approximating sequence (Tm)men of F finite stopping times such that
Tm /' T a.s. and, for every m € N and t > 0, we have

tATm
E(se[g}:frm] Iy(e)1* +/0 ()b ds) < oo (2.11)
tATm
YEATR) = S(tATm)yo— /; S(t A T — 8)[F(y(s)) + L(y(s)]ds (2.12)

oo
+ /0 10 enryS(t A T — 8)G(y(5)) AW (s).
Along the lines of the paper (3], we say that a local solution y(t), t < 7 is global iff 7 = 0o a.s.

We will check that F satisfies the assumption of Proposition 3.12 with H = H x Xy, V =
V x D(A;) and E = D(A;) x X;. For this purpose we will prove several estimates.

Lemma 2.5. There exist some positive constants ¢y and ca such that for any (v;,d;) € E,
i=1,2 we have, witha = %2,

1 1
1Bi(vi,vi) — Bu(va,va)l < n (IIAf (vi — V) [|AF vy 19| Agvy |
) . (2.13)
T A (v1 = va) [P0l Ay (vy — va)||°(| A2 (Vz)ll)
and
IM(dy) - M(d2)] < 2 (ndl ~ dylalldy 30y g
(2.14)
T 1ldy — dollyd; — dzugndzuz),

Proof. Set (w,d) = (v1 — v2,d; — d2). We start with the proof of the estimate (2.13). Notice
that the left-hand-side of (2.13) is equal to

| B1(w, v1) + Bi(va, w)|.
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Now we estimate the last identity. We have
IB1(w, v1) + Bi(ve, w)|| < Cliwlls[[Vvalis + [[valliall Vwllpe,

from which along with and Eq. (A.1) and the embedding (A.3) we easily derive the estimate
(2.13).

Next we show that (2.14) holds. From elementary calculi we infer the existence of a constant
C > 0 such that

IM(f,8)]| < CIID*f||[|VellLe + [|VE]Ls | D?gllps-
Owing to the embedding (A.3) it is not difficult to check that

M€ g)] < cnfnz<||<7gulm N ||D2g||L4).

Owing to Eq. (A.1), Eq. (A.4) and the embedding (A.3) we obtain that

12(f,8)]l < Clifll=liglz“llgll§, o= %- (2.15)

Note that
M(d:) — M(d2) = M(d; — dz,d1) + M(d2,d; — da).

From this last identity and Eq. (2.15) we easily deduce the inequality (2.14). This ends the
proof of Lemma 2.5. ]

Lemma 2.6. There exist a constant cz > 0 such that for any (v;,d;) € E, i= 1,2 we have

1
|B2(v1,d1) — Ba(v2,d2)(|1 < Cs(llAf (vi = vo)|llldall3*(Id1 I3
(2.16)

T (s — do) I (dy — do)8]1AF (v2>||)

Proof. As in the proof of Lemma 2.5 we set (w,d) = (v1 — v2,d; — d2) and notice that the left
hand side of Eq. (2.16) is equal to

Bz(w,dl) + Bz(dg,w) = J1 + Jo.

Now we want to estimate ||J;[|y = /|| Ji||? + |[VJi]|? for i = 1,2. Since estimating ||J;|| is easy
we will just focus on the term ||V J;||. There exists a constant C’ > 0 such that

IV sc(nwwlu T uDzdlwn),

<o (Ivwlivale- + Iwlie D% ).
Invoking Eq. (A.1), Eq. (A.2) and the embedding (A.3) we infer that with a = %,
1911 < Clabwl (17 -2 D% + D% Do ).
This last inequality implies that there exits ¢ > 0 such that with a = 4,
IVl < &l AZwillld 13 s 15

Using similar argument we can also prove that (again with a = D

1
[V 2|l < E[|Afvalllld1 — dafl;™(|d1 — dal3.
The inequality (2.16) easily follows from these last two estimates. O
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Lemma 2.7. There exists cg > 0 such that for any d; € X% NX; withi=1,2.

[ f(d1) = f(d2)ll1 £ C4(lld1 — dall2ld1 /I3~ (I d1 /I3
(2.17)

T lds — dafl3=*llds — dafl2ldalz + f1ds - d2||2)-

Proof. As in the proof of Lemma 2.6 we will just estimate ||V (f(d1) - f(d2))||. Again we set
d = d; — dy. There exists C > 0 such that

IV (£(d1) — £(d2))|| =lIVd1f'(d1) — Vdaf'(d2)|l,
<||vd f/(dy)|| + [IVd2 (f'(d1) — £'(d2)),

SC(||Va””fl(d1)”L°° +11Vdaffllf(d1) — f'(dz)llmoo>-
Owing to the definition of f we derive from the last line of the above inequalities that
IV (f(d1) = f{d2))]l < C(IlValllldlllmw +||Vaz||[|dllLe + IIVaII)-
Plugging Eq. (A.2) in this estimate yields, with a = %,
IV (£(d1) = f(d2))|| < C(IIVall ld1llgz®lIVdilige + IVdallildlizz I VdllEs + Hvall)-

Thanks to the continuous embedding H**+! C H! c L* with k > 0 we derive easily from the
above inequality that, again with a = %,

IV (f(d1) = f(d2))]l < C(IlallzlldlII%'“IIVdﬂI% + lld2l2lldllz~*/ldlI§ + IIVHII)-
o

For two Banach spaces (B;, ||-||;) with ¢ = 1,2 we endow the product space B; x Bz with the
norm

(b1, ba)| = /10113, + lbal,.

Proposition 2.8. There erists a certain constant Co > 0 such that for any y; = (vi,d;),
i=1,2, with o = 7, we have

[F(y1) = F(y2)llu < Collys - yallv [Ivally*lvalls + lys - 2l lys - yaliglyaly +1]-
(2.18)

Proof. The proposition is a consequence of Lemma 2.5, Lemma 2.6 and Lemma 2.7. Its proof is
easy and we omit it. O

For any integer k > 1 let

1
7 = inf{t 2 0: |[AZ V()| + |Ad®)]| > £},
and Too = liMg—_ye0 7x. Hereafter, we set tx, = t A7y for any ¢t > 0 and for a vector-valued function
u: [0,tx] = B we will write fotk uds:= fotk u(s)ds for any t > 0.
Our first main result is contained in the following theorem. It is basically a corollary of a
general theorem that we will state and prove in the next section.

1
Theorem 2.9. Let n = 2,3 and (vo,do) € D(A}) x X1. The stochastic equation (2.8) for

3
the liquid crystals admits a local-mazimal strong solution (y,Two) provided that Assumption 2.1
holds.



Proof. Lemma A.3-A.5 show that {S(t)};>0 on H = H x X satisfies Assumption 3.3. Thanks
to Proposition 2.8 we can apply the Theorem 3.15 and Theorem 3.16 to deduce the existence of
local and maximal strong solution to problem (2.8). This concludes the proof of the theorem. [J

The second result is about global solvability of the stochastic equation for two dimensional
nematic liquid crystal.

-1
Theorem 2.10. Assume that n = 2 and vo € D(A}), and dy € X%. Then the stochastic

equation (2.8) for nematic liquid crystals has a global strong solution provided Assumption 2.1
hold.

Proof. For any a > 0 and p,q > 1 with p~! 4+ ¢~1 = 1 let C(a,p,q) be the constant from the
Young inequality
ab < C(a, p, q)a” + b,

Let us choose p = ;j%, q= Zf—n, and a = 1. Let us set ®(s) = e~ Is ¢(T)dr, where the function ¢
is defined by

i 2n_
$(s) = C(1,p,9)v(s)lI*|AFv(s)]| &=
For d € D(A) let us set
¥(d) = |-Ad - f(d)|*.
By arguing as in [6, pp. 123] we have

P(m<t) < E(l{rk<t}e‘%“’“k)(i|A% V()] + VE@R)))ed o WW),
= IE(I{W}e‘%‘”t“(nA%v(tk)u - \/—_\P(d(tk)))>

tr 1 logk
+P(/ v|2|AZv 2ds>—‘)’
| IVIFIAT Y 2C(1,p,q)

1 12 1
<gE(e ANV + wa)) + Z02 g [Ppryatvieas

Thanks to Proposition B.1, Remark 2.1, Eq. (B.3) and Eq. (2.7),

P(rk < £) < 1[0 + C(vo, do)eC®] + 2620 [ v iPiagvizas
k logk 0

But from Proposition B.1 the solution (v, d) satisfies
sup E [ [[v(s)|2|A7v(s)]|2ds < C(vo,do)eC"4t,
0<s<ty 0
Hence, combining this latter equation with the former one implies that

lim P(r, <t) =0,
k—o00
from which P(Too < oo) = 0 follows. O

2.2. Maximum Principle type Theorem. In this subsection we show that if the initial value
dp is in the unit ball then so are the values of the vector director d. That is, we must show that

[d(¢)]* < 1 almost all (w,t,2) € 2 x [0,T] x ©. In fact we have the following proposition.

Proposition 2.11. Assume that n < 3 and that a process (v,d) = (v(t),d(t)), ¢t € [0,T7], is
a solution to’ problem (2.8) with initial condition dg such that |do|*> < 1 for almost all (w,z) €
Qx O. Then |d(t)[* <1 for almost all (w,t,z) € Q x [0,T] x O.

49
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Proof. We follow the idea in [9, Lemma 2.1] and [13, Proof of Theorem 4, Page 513]. Let
¢ : R — [0,1] be an increasing function of class C* such that

o(s) =0iff s € (—o0,1],
o(s) =1iff s € [2,400).

Let {pm;m € N} and {¢m, m € N} be two sequences of smooth function from R™ defined by

pm(d) =p(m(|d[* - 1)),
¢m(d) =(/d|* ~ )¢m(d),d € R™.

Define a sequence of function {¥,, m € N} by
U (d) =[|gm (D),
= [ (4P - VPlen(@PPde, d € L4O),
@)

for any m € N. It is clear that ¥,, : H2 — R is twice (Fréchet) differentiable and its first and
second derivatives satisfy

Un@)(8) =4 [ (4 = Don(@d-) de -+ 2m [ (4 = 12 m(@(a - R
and
W)k, =5 [ on(@(d- 0 W) de+4 [ (n(@(df = 105 1) do
(@] @]
+16m [ (4P - Dpn(@)(d-k)(d- 1)) do
[
sam? [ (4P = 1@ B b)) de
(@)
+2m [ (4 = 1P pn(@)(k - h)ds,
O
for any d € H? and h, k € L2(0). In particular, for any k, h such that k L d and h L d
\Ilm(d)(h) =0,
W)k, ) =4 [ (41 = Dipm(@)(k- W)z + 2m [P = 2o hyda.
(0] (@]
It follows from Itd’s formula (see [31, Theorem 1.3.3.2, Page 147]) that
(@) = @) (5= Balv. ) = 5 @)+ 567@) ) e+ ST (D(G(), Gl

The integral stochastic vanishes because G(d) L d. Owing to the identity
—|dxh>=d-((d x h) xh),
we have
L0,(G(d), G()) + 5¥n(GH) = 0.
Hence

d[U(d)] = Tpm(d) (Ad _ By(v,d) — €l2 f(d)) dt (2.19)



Noticing that from the definition of ¢, and the Lebesgue Dominated Convergence Theorem we
have for d € H2, h € L2

: —- 2 2
Jim @ (d) =) (1d? - 1), P,

lim ¥,,(d)(k) :4/@[(@2— 1), d-hldz.

m—o0

Hence, we obtain from letting m — oo in Eq. (2.19) that for almost all (w,t) €  x [0, T)

y(t) — y(0) + 4/(: (/@ [—Ad +(v-V)d+ Elzf(d)] . [d (1df? - 1)+] da:)ds 0,

where y(t) = [|(|d(t)]* — 1), ||*>. Let us set ¢ = (|d|* — 1), it follows from [1, Exercise 7.1.5, p
283] that ¢ € H! if d € H!. Thus, since g% = 0 we derive from integration-by-parts that

—4/Ot</0Ad~d(|d]2~1)+do:)ds:/0t</o (2v([d?) - V¢ + 4€|vd]?) dx)ds,

Since £ > 0 and |Vd[? > 0 a.e. (t,z) € O x [0,T)] we easily derive from the above identity that

—4/0t</oAd-d(|dlz—1)+dx>dsZQ/Ot(/OV(Id|2~1)-V£dx>ds.

Thanks to [1, Exercise 7.1.5, p 283] we have

/Ot</0 v(ld?* - 1).ngx>d5:/0t/olv(ld|2_ 1)1 sy de ds,

which implies that

—4/; (/o Ad-d(|d? - 1)+dx)ds > /Otfoyvqcu? - 1)]*1qqp2>13dz ds.

We also have

o[ (10w iagar -1y, )as = [ [ 1o pamigae - 1),z )as,

- /O t ( /O (v- V){{dm) ds,

=0.
Since f(d) =0 for |d|? > 1 and £f(d) = 0 for |d|? < 1 we have

4/0t(/(9§f(d) -ddw)ds = 0.

Therefore we see that y(t) satisfies the estimate

t
y(t) + 2 / / IV (ld[? - 1) %ds < y(0),
0 J{|d]?*>1}

for almost all (w,t) € @ x [0,T]. Since the second term in the left hand side of the above
inequality is positive and y(0) = ||(Jdo|?> — 1)+||?> and by assumption |dg|? < 1 for almost all
(w,t,x) € Q x [0,T] x O we derive that

y(t) =0,

for almost all (w,t) € @ x [0,T], T > 0. Hence we have |d|? <1 a.e. (w,t,z) € Qx [0,T] x O,
T2>0. |
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3. STRONG SOLUTION FOR AN ABSTRACT STOCHASTIC EQUATION

The goal of this section is to prove a general result about the existence of local and maximal
solution to an abstract stochastic partial differential equations with locally Lipschitz continuous
coefficients. This is achieved by using some truncation and fixed point methods.

3.1. Notations and Preliminary. Let V, E and H be separable Banach spaces such that
E C V continuously. We denote the norm in V by || - || and we put

Xr :=C([0,T); V) N L0, T; E) (3.1)
with the norm .
ey = 5w )+ [ fuls)lh ds. (3:2)
s€(0,T] 0

Let F and G be two nonlinear mappings satisfying the following sets of conditions.
Assumption 3.1. Suppose that F : E — H is such that F(0) = 0 and there ezists p > 1,
a €[0,1) and C > 0 such that

F(y) - F@)ln < C[ly - zllslP~olul% + ly - zlgly - <l =2lelP],  (33)
for any xz,y € E.

Assumption 3.2. Assume that G : E — V such that G(0) = 0 and there exists k > 1, 8 € [0,1)
and Cg > 0 such that

16(w) - G@)l < Ca[lly = <llylF 21yl + ly = alfly - <l lzl*], (34)
for any z,y € E.

Let (Q, F,P) be a complete probability space equipped with a filtration F = {F; : t > 0}
satisfying the usual condition. By M?(Xr) we denote the space of all progressively measurable
E-values processes whose trajectories belong to X7 almost surely endowed with a norm

lul2e xpy =E| sup flu(s)® + / ' Ju(s)l3 ds]. (3.5)
M*(Xr) €[0T 0 E

Let us also formulate the following assumptions.

Assumption 3.3. Suppose that E C V C H continuously. Consider (for simplicity) a one-
dimensional Wiener process W (t).

Assume that S(t), t € [0,00), is a family of bounded linear operators on the space H such that
there exists two positive constants Cy and Ca with the following properties . :

(i) For every T > 0 and every f € L?(0,T; H) a function u =S * f defined by

T
ut) = /0 S(t—r)f(r)dt, te[0,T]

belongs to Xt and
fulxy < CilflL20,1;m)- (3.6)
(ii) For every T > 0 and every process £ € M*(0,T;V) a process u = S 0§ defined by

T
u(t) = /0 S(t—r)é(r)dW(r), t€]0,T)

belongs to M2(Xr) and
lulpm2(xp) < Colélmz0,1,v)- (3.7)
(iii) For every T > 0 and every ug € V, a function u = Sug defined by
u(t) = S(t)uo, t€[0,T]



belongs to Xr. Moreover, for every Ty > 0 there ezist Cy > 0 such that for all T € (0, Ty),
lulxr < Colluoll- (3.8)
Now let us consider a semigroup S(t), t € [0,00) as above and the abstract SPDEs

t t
u(t) = S(t)uo +/0 S(t—s)F(s)ds +/{; S(t—s)G(s)dW(s), foranyt>0 (3.9)

which is a mild version of the problem

{ du(t) = Au(t)dt + F(u(t)) dt + G(u(t))dW(t), t >0, (3.10)

u(O) = Up.

Definition 3.1. Assume that a V-valued Fy measurable random variable ug such that Eluol|? <
oo is given. A local mild solution to problem (3.10) (with the initial time 0) is a pair (u,7) such
that
(1) 7 is an accessible F stopping time,
(2) w:[0,7) x @ — V is an admissible? process,
(3) there exists an approximating sequence (Tm)men of F finite stopping times such that
Tm /' T a.s. and, for every m € N and ¢t > 0, we have

tATm
su u(s)]? w(8)|% ds 0o .
IE(sefO,t/I\)rm] Iste) +/0 fu(s)lz d ) < %0, (3.11)
WEATm) = SEATm)uo+ /W’" S(t ATm — 8)F(u(s))ds (3.12)
0

+ /0 " Lgineny S(E A Tm — 5)Gu(s)) AW (5).

Along the lines of the paper [3], we said that a local solution u(t), t < 7 is called global iff T = o
a.s.

Remark 3.2. The Definition 3.1 of a local solution is independent of the choice of the sequence
(an). A proof of this fact follows from the continuity of trajectories of the process u (what is a
consequence of admissibility of u) and is based on the following three principles.

(i) If 7 is an accessible stopping time then there exist an increasing sequence 7, of .discrete
stopping times such that a.s. 7, < 7 and 7,, * 7;
(ii) if 7 is an accessible stopping time and ¢ < 7 is a stopping time then o is also accessible.
(ii) if a pair (u,7) is a local solution to (3.9), then (3.12) holds with ¢ being any discrete stopping
time.
It follows that the following is an equivalent definition of a local solution.
A pair (u,7), where 7 be an accessible stopping time and u : [0,7) x Q@ — V is an admissible
process, is a local mild solution to equation (3.10) iff for every accessible stopping time o such
that o < 7, for every t > 0, a.s.

tho

uwtAho) = SEAo)ug+ St Ao —s)F(u(s))ds (3.13)
0

+ /O 10, ¢no] S(t A & — 5)G(u(s))dW (s).
Let us first formulate the following useful result.

Proposition 3.3. Assume that a pair (u,7) is a local mild solution to problem (3.10), where ug
s an V-valued Fy measurable random variable such that IE“U[)“Z.’ Then for every finite stopping
time o, a pair (U|jo rrs)x0, T A 0) is also a local mild solution to problem (3.10).

2This also follows from condition (3) below.
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Let us recall following result, see [14, Lemmata III 6A and 6B].
Lemma 3.4. (The Amalgamation Lemma) Let A; be a family of accessible stopping times
with values in {0,00]. Then a function

T :=sup{a: a € A}

is an accessible stopping time with values in [0,00] and there exists an Aj-valued increasing
sequence {an}2, such that T is the poitwise limit of an.
Assume also that for each a € Ay, I : [0,a) x @ = V is an admissible process such that for all
a,B € Ay and every t > 0,

I,(t) = Ig(t) a.s. on Q(a A B). (3.14)
Then, there exists an admissible process I: [0,7) x Q =V, such that every ¢t > 0,
I(t) = I4(t) a.s. on Q(a). (3.15)

Moreover, if I : [0,7) x Q@ — X is any process satisfying (3.15) then the process I is a version
of the process I, i.e. for anyt € [0, 00)

P ({w €0t <), I(tw) # f(t,w)}) = 0. (3.16)
In particular, if in addition I is an admissible process, then
I=1 (3.17)

Remark 3.5. Let us note that because both processes I: [0,7)xQ — V and I : [0,a)xQ = V
are admissible (and hence with almost sure continuous trajectories), and since a < 7, condition
(3.15) is equivalent to the following one:

I|[0,a)xﬂ, = Ia. (3.18)
Similarly, condition (3.14) is equivalent to the following one
Taj0,anB)x02 = Iﬂl[O,a/\B)xQ' (3.19)

Definition 3.6. Consider a family £S of all local mild solution (u,7) to the problem (3.10).
For two elements (u,7), (v,0) € LS we write that (u,7) = (v,0) iff 7 < 0 a.s. and Y| ryxq ~ u.
Note that if (u,7) < (v,0) and (v,0) < (u,7), then (u,7) ~ (v,0). We write (u,7) < (v,0) iff
(u,7) < (v,0) and (u,7) % (v,0). Then the pair (LS, =) is a partially ordered set in which,
according to the Amalgamation Lemma 3.4, every non-empty chain has an upper bound.

Each such a maximal element (u,7) in the set (£S, <) is called a maximal local mild solution
to the problem (3.10).

If (u,7) is a maximal local mild solution to equation (3.10), the stopping time 7 is called its
lifetime.

A priori, there may be many maximal elements in (£S, <) and hence many maximal local
mild solutions to the problem (3.10). However, as we will see later, if the uniqueness of local
solutions holds, the uniqueness of the maximal local mild solution will follow.

Remark 3.7. The following is an equivalent version of Definition 3.6. For a local mild solution
(u,7) the following conditions are equivalent.
(nm1) The pair (u,7) is not a maximal local mild solution to problem (3.10).
(nm2) There exists a local mild solution (v, ) to problem (3.10) such that (u,7) < v,0).
(nm3) There exists a local mild solution (v, ¢) to problem (3.10) such that 7 < o a.s., vj[o,r)xq ~ U
and P(r < o) > 0.
(nm4) Every local mild solution (v, o) to problem (3.10) such that (u, ) # (v, o) satisfies (u,7) £
(v, 0).

Definition 3.8. A local solution (u, 7) to problem (3.10) is unique iff for any other local solution
(v,0) to (3.10) the restricted processes ujg raq)xq and vjo,ras)xn are equivalent.



Proposition 3.9. Suppose that uo is an Fo-measurable and p-integrable V -valued random vari-
able. Suppose that there exist at least one local solution (u®, 7°) to problem (3.10) and that for
any two local solutions (ul,7%) and (u',72), and every t > 0,

ul(t) = u(t) as. on {t <7 AT2}. (3.20)
Then there exists a mazimal local mild solutions to the same problem.

Remark 3.10. Let us note that similarly to Remark 3.5, because both the local solutions wu!
and u? are admissible (and hence with almost sure continuous trajectories), condition (3.20) is
equivalent to the following one:

uIIIO,Tl/\ﬁ)xQ = u]z[o,r1 AT2)Xx Q" (3.21)

Proof of Proposition 3.9. Consider the family £S introduced in Definition 3.6. Note that in
view of Proposition 3.3, if (u,7) € LS, then for any T > 0, (ujjo,rAr)x0, T A T) also belongs to

LS. Let LC be any nonempty chain in £S containing (u°,7°). Set
7:=sup{7: (u,7) € LC}.

Since the chain LC is non-empty, from the Amalgamation Lemma 3.4 it follows that # is an
accessible stopping time and that there exists an admissible V-valued process a(t), t < ¥ such
that for all (u,7) € LC, (4j0,r)x0,T) ~ (u, 7). In view of the Kuratowski-Zorn Lemma it remains
to prove that the pair (4, 7) belongs to £S. To prove this let us consider an £C-valued sequence,
which exists in view of Lemma 3.4, (u", a,) of local mild solutions to problem (3.10) such that
an /' T a.s. Moreover, by the above comment on Proposition 3.3 we can assume that oy, is a
bounded from above stopping time. Moreover, since each (u", ay) is a local mild solution, we
can find a sequence (o) of local times such that o, < an, 0, , 7 a.s. and for each n, the
condition (3.11) and equality (3.12) are satisfied by u™.

Since (u", an) € LC, we infer that (djp,a,)xq, @) ~ (u", an) and thus we infer that also for each
n, the condition (3.11) and equality (3.12) are satisfied by 4. This proves that (@,7) € £C. The
proof is complete. d

Now we shall prove a counterparts of Corollary 2.29 and Lemma 2.31 from [3].

Proposition 3.11. Assume that the Assumption 3.1-Assumption 3.3 hold. If a pair (u,7) is a
maximal local solution then

Pl{we Q:7(w) < 00,3 lim u@)(w)eV})=0 3.22
(¢ (@) <003, lim u(t)(w) € V}) (3.22)
and

}i/m|u|xt=oo P —a.s. on {1 < 0o}. (3.23)

Proof of Proposition 3.11 (by contradiction). Part I. Assume that there exists Q; C  such that
P(Q1) > 0 and such that for any w € Q1 we have 7(w) < oo and lim; qr ) u(t)(w) = v(w) € X.
Let us take an increasing sequence {0,}52, of stopping times such that o, < 7 a.s. and g, * T
a.s. Since the function f, : Q 3 (w) = u(on(w))(w) € V, is F,,~measurable, see e.g. [21,

Proposition 1.2.18], and hence JF,-measurable, the set
2 :={weQ:7(w) <ocoand lim f(w) := ¥(w) exists}
n

belongs to the o-algebra F, and the function ¥ is F,~measurable. Note that obviously Q; C Qs
so that P(€22) > 0.

Let v(t), 7(w) < t < m2(w), be the solution to (3.10) with initial condition Vr(w) (W) = B(w)1gq, (w).
Then, by [3, Corollary 2.9] the process i(t) defined by '

u(t)(w) = {

u(t)(w), ift<7(w),
v(t)(w), fweN andte |[r(w), nW))
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is a solution to (3.10). Obviously this contradicts the maximality of the solution u(t).
Part II. Let us assume that there exists € > 0 such that

P({r < oo} N {limsup |u|x, < oo}) = 4e.
t/'r

Since the function ¢ — |u|x, is increasing, it means that

P({r < oo} N{ sup |u|x, < oc}) =4e > 0.
tefo,r)

Hence there exists R > 0 such that
P({r < oo} N {sup [u(t)|x, < R}) =3¢ >0.
t<Too
Define (our definition implies that og = 7, possibly co, when the set {w € Q : |u|x, < R,t €

[0,7)} is empty)
or = inf{t € [0, 7] : |u|x, > R}.

It is known that og is a predictable stopping time and the set Q={op=7}N{r <oo}is
Fop-measurable. Note also that Q = {r < 0o} N {sup;<. |u(t)|x, < R} and so

P(Q) > 3e.
Define next two processes x and y by
2(t) = Li<on)G(u(t)),  Y(t) = Lit<ony F(u(t)) t 2 0.
Note that z(t) = 0 or |u|x, < R.
Since F(0) = 0 by assumptions, from (3.3) we infer that

|F(z)|a < Clle|/P*'~%|z|%, z € E.
Similarly, from (3.4)
IG@)I < C[1+IalZlel 1], @ € E.
Let us now fix 7"> 0 and calculate.

TAoR

T T
/ ()} dt = E / 100 (| F(u(£)) [ dt < C? / )PP 10 ()20 dit
0 0 0

2 2 1 Thor 2
<c?[ sw Ju@Pe [ ol
te[0,TAcR) 0

TAoOR
<[ sw eI ([ ok )Tl
tG[O,T/\a'R) 0

TAor
<orfi-a) swp uOPED 4o [ k]
te[0,TAcR) 0

2
< C2T1—a[|u'§((;i,l:)] < g2l 2+ iy)

In particular,

T
E / ly(t)% dt < EC?T'*R¥*1*155) < 0.
0

In a very similar manner we can show that

T
]E/O 2 ()1 dt < oo.

This allows us to define a process v by



o) = S+ /0 S(t — s)y(s)ds + /0 T oy S(t - s)a(s)dW(s), £20.  (3.24)

The process v is defined globally and it is V-valued continuous. Moreover, since y = F(u) and
& = G(u), on [0,0R), we infer by (3, Remark 2.27] that u = v on [0,0R). In particular, there
exist, a.s.

lim u(t) in V.

t/oR
In particular, the above limit exists on the set . Thus, a.s. on {2,

lim u(t) in V.

t /T

O

3.2. An abstract result. In this subsection we want to establish a general theorem of existence
of mild solution to the following abstract SPDEs

t t
w(t) = S(t)uo + /O S(t — 8)F(u(s))ds + /0 S(t - 5)G(u(s))dW(s), foranyt>0, (3.25)

where S(t), ¢ € [0,00) is a semigroup, F' and G are nonlinear map satisfying Assumption 3.3,
Assumption 3.1, and Assumption 3.2, respectively.
Let #: Ry — [0,1] be a C§° non increasing function such that

iéﬁ.{f 0'(z) > -1, O(z)=1iffz€[0,1] and 6(z)=0iff z € [2,00). (3.26)
x + A

and for n > 1 set f,(-) = 6(%). Note that if A : Ry — R, is a non decreasing function, then for
every z,y € R,

On(@)h(@) < h(20),  [6(z) — On(y)| < ~Jo — ] (3.27)

Proposition 3.12. Let F be a nonlinear mapping satisfying Assumption 3.1. Let us consider
a map

7 = @7 : X7 3 uws O,(|ulx )F(u) € L*(0,T; H).
Then ®7. is globally Lipschitz and moreover, for any ui, us € Xr,

[@F(w1) = B (wa) 2o riny S CEnP*[2nC + 1| TO-D 2wy — gy, (3.28)

The proof is based on a proof from the paper [7] which in turn was based on a proof from
papers by De Bouard and Debussche [10, 11]. For simplicity, we will write & instead of o7

Proof. Note that ®7(0) = 0. Assume that u;,us € Xr. Denote, for i = 1,2,
T = inf{t € [O,T] : lui[Xt > 2n}.

Note that by definition, if the set on the RHS above is empty, then 7, = T.
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Without loss of generality we can assume that 71 < 7p. We have the following chain of
inequalities/equalities

T 1/2
[8r(u1) — Sr(w)lzorm = | /0 6a(fual ) (11 (8) — O (2l F (2 (®)) y ]

because for i = 1,2, 6,(|us|x,) =0fort >

2 1/2
= [ enttuslx ) (6 = Bl Plua )y ]

= [/0” | [Bn(lurlx.) = On(luzlx,)] F(u2(t)) + On(jualx,) [F(u1(t) —F(uz(t))]ﬁ,dt] 1/2

< ['/0‘1-2 |[9n(|u1|X:) - 0n(|u2|Xt)]F(’U/2(t))|%{ dt},lﬂ

2 s 1172
+[ [ tonlhual) [P(1(6) - Fla@)] ]~ = A+ B
Next, since 8, is Lipschitz with Lipschitz constant 2n we have

# = [l - ()] Pl

IN

™2
2
G [ s, = b L F (o ey
by Minkowski inequality
) 2
4n202/0 lug — u2|§(t|F(u2(t))|%1 dt < 4n2.C2/ lur — U2|§(T|F(u2(t))'%{ dt
0

IA

IA

2
2

an*C*u, — U2|XT/0 |F(U2(t))|¥i dt

Next, by assumptions

T2 2
[ e < o [Tl a
0 0

™
C? sup |lu(t)|P+2-%( / fu(t) 3 dt) *ri=e
te[0,m2) 0

C27.21—a |u|§€;—2 < C2T21—a (2n)2p.+2

IA

INA

Therefore,

A < C27'2(1_a)12(2n)p+2|u1 — 2| Xp-



Also, because 0,(|u1|x,) = 0 for t > 71, and 7, < 75, we have

B = [/Ora Ign({let)[F(ul(t))-—F(uz(t))“%{dt]
L/Q'” I@n('ullXt)[F(ul(t)) - F(“Q(t))]’%r dt:l 1/2

because 0, (|u1|x,) < 1 for t € [0,71)

[/0” |F(u1(t)) — F(uz(t))% dtJ V2
C{/OT1 Jlua (8) = wa ()11 [lwa ()27~ 2 us () |3 dt]1

Ol [ ha® - ual@fila® - wa@lF* ooy ]

1/2

It

IN

/2

IA

/2

+

IA

¢ 5w ()~ wa@m@P=| [ haeyia]

tel0,m;

+ 0 sup fun(®) = wa® Pua @[ [ furte) - wa(oiear]
tel0,m1] 0

1 a/2 —a
< s ua(®) ~w®] s fu@P-e] [ o a] "
tefo,7) te[0,m1] 0

n a/2 _

+ C sup furt) = wa(®)]"* sup Jlua(t)|P] / ur(t) - wa ()l dt| {2
t€[0,7] te[0,7m1] 0

S Clu - UZIXT|“1‘I))(71 7-1(1_a)/2 + Clur — ua|x,|uzls " 7'1(1_"‘)/2

becauselu|x,, <2n and |uz|x,, < |ug|x,, <2n

Orl™ s — walxr [l + fal%,, | < C@ 77 s ~

IA

Summing up, we proved

[@r(uw) = @r(ua)l2ommy < CPr5 220 2jur — ualxp + C2)P {2y — ug|x,
= C(2n)P™[2nC + 1] 7'2(1—&)/2|u1 — ug|x,
The proof is complete. O

In what follows the function &% from Proposition 3.12 will be denoted by ®7% 7. The following
result is a special case of Proposition 3.12 with H = V.

Corollary 3.13. Let G be a nonlinear mapping satisfying Assumption 3.2. Define a map d%
by
Oc = 0% = B¢ 1 : X1 3 urr On(|ulx )G(u) € L2(0,T; V). (3.29)

Then @’&;T is globally Lipschitz and moreover, for any uy,us € Xp,

|G 7(u1) — 8 r(u2)l20ry) < Co(2n)f[2nCq + 1T A 2u; — uy|x,. (3.30)
Proposition 3.14. Let Assumption 3.1-Assumption 8.3 hold. Consider a map
U7 = U7 : M*(X1) 3 urs Sug + S * B p(u) + S 0 8% (u) € M2(Xr) (3.31)

Then ¥t is globally Lipschitz and moreover, for any uy,us € M?(Xr),

T\U1) — T (U2 MzXT —_ A'n T UI—UQMZXT, - )
(0% (u1) = W3 (un) pra iy < C(n)TI(@VAN/2) | a2 () (3.32)
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where
C(n) = C1Cr(2n)P*! [2nCr + 1] + C2Ca(2n)* ! [2nCq + 1]

Proof. For simplicity of notation we will write ¥ and not ¥%. We will also write ¥ (resp.
U;) instead of Y (resp. ¥gr).
Obviously in view of Assumption 3.3 the map ¥r is well defined. Let us fix u1,up € M 2(XT).
Then
|Wr(u1) — Y7 (u2)|m2(xp) IS % ®p(u1) — S * @r(u2)|m2(xq)
|S OQ’G(’U&) -So (DG(U2)|M2(XT)
C1|®r(w1) — Br(u2)|m2(0,m;m) + C2l®c(wr) — @6 (u2)m2(xr)

[CrCr(any ™ 2nCr + 1] T0-2)/2

IAN + IA

IA

CaCq(2n)* [2nCq + 1]T(1—ﬂ)/2]
& (n)T-(@vB)/2,

IN +

where
C(n) = C1Cr(2n)P 1 [2nCF + 1] + C2Cs(2n)F ™ [2nCq + 1].
The proof is complete. O

The first main result of this subsection is given in-the following theorem.

Theorem 3.15. Suppose that Assumption 3.1-Assumption 3.8 hold. Then for every Fo-measurable
V -valued square integrable random variable ug there exits a local process u = (u(t),t € [0, Tv))
which is the unique local mild solution to our problem. Moreover, given R > 0 and € > 0 there
ezists T(e, R) > 0, such that for every Fo-measurable V -valued random wvariable ug satisfying
E|luo||? < R?, one has

P(Ty > 7(e,R)) > 1—¢.
Proof. Owing to Proposition 3.14 we can argue as in [7, Proposition 5.1] to prove the first part
of the theorem. For any n € N, T > 0 and up € L%(Q,P;V) let ¥% ,, be the mapping from
M?(Xr) defined by

t t
B o (1) =Setio + /0 St—r[Bn (il ) F (u(r) ] + /0 St—r Bn(lulx, )G u(r)) | dWO(r).

It follows from Proposition 3.12, Corollary 3.13 and Assumption 3.3 that ¥7.  ~maps M 2(XT)
into itself. From Proposition 3.14 we deduce that ¥% , is globally Lipschitz, moreover it is a

strict contraction for small T. Therefore we can find § > 0 such that ¥7 is %-contraction.
For k € N let (t;)ren be a sequence of times defined by tx = kd. By the %-contraction property
of U3, we can find u™!) € M?(X;) such that ul™! = U3, (w1, Since ul®! € M?(Xj) it
follows that ul™! is F;-measurable and ul™(t) € L?(R,P; V) for any t € [0,6]. Thus replacing
ug with ul»1(8) and using the same argument as above we can find u[™? € M?(X;) such that
ulv? = ‘I’Zu[n,ll (5)(1‘[”’2])' By induction we can construct a sequence ul™kl ¢ M?(Xs) such that
ulvk) = s uink—1] (ul™k]). Now let u™ be the process defined by u"(t) = ul™1(t), t € [0,6), and

for k =[]+ 1 and 0 < t < 4, let u™(t + ko) = ul™¥l(t). By construction u" € M?(Xr) and
u" = YT 0 (u™), consequently u™ is a global solution to the truncated equation

t t
u(t) = Syuo + /0 Seerl6n(Julx, ) F (u(r)))dr + /0 SecrlBn(ulx, )G (u(r))AW (r).

Arguing exactly as in [7, Theorem 4.9] we can show that it is unique. Now let (7)nen be the
sequence of stopping times defined by

7o = inf{t € [0,T] : |u"|x, > n}.



By definition 6,(|u"|x,) =1 for r € [0, A 7,,), hence
On(Ju"|x, ) F(u™(r)) = F(u™(r)),r € [0,t ATy).

From [6, Lemma A.1] we infer that
tATn

tATR
/ Starn—rlOn(lulx,)G(u(r))]dW (r) = / Stnrn—rG(u"(r))dW (r).
0 0

From these remarks we easily deduce that u™ satisfies
tATh

PtATR
ut(tAT") = Siar,u0 + / Star—rF (W™ (r))dr +/ Starn—-rGu™(r))dW (r).
0 0

Since 7, is an accessible stopping time it follows that the process (u™(t),t < 7,) is a local solution
to Eq. (3.10). This ends the proof of the first part of the theorem.

For the second part we will follow the lines of [7, Theorem 5.3]. For this we fix &€ > 0 and
choose N such that N > 2¢71/2,

Thanks to Proposition 3.12, Corollary 3.13 and Assumption 3.3 we can deduce that there
exist some positive constants C;,i = 1,...,4 such that for any u € M?(Xt) we have

1 ~ o~ ~
(EIS * ®2(w)[%,)? < C1C2(2n)P+2(2nCo + 1)T -/,
1S 0 3F(w)|arz(xp) < C3Ca(2n)*+2(2nCy + 1T =P/,

Since o, € [0,1) we infer from these inequalities that there exists a sequence (Ky,(T)), of
numerical functions with limz_,¢ sup,, K,,(T") = 0 and

1S * @7 (u) + 5 © 8¢(u)p2(x,) < Kn(T),

for any u € M%(Xr). Let us put n = NR for some “large” N to be chosen later and choose
b1(e, R) > 0 such that K,(61(e,R)) < R. Let ¥Z be the mapping defined by (3.31). Since
E|luo||? < R?, we infer by the Assumption 3.3 (namely (3.6)) that
|7 ()l mz(xp) SCoR + Kn(T),
S(CO + I)R)
for any T < d1(¢e, R). That is, for T < d1(e, R) the range of ¥% is included in the ball centered

at 0 and of radius (Cp + 1)R of M?(Xr). Furthermore, Propositions 3.14 implies that there
exists C' > 0 such that for any u;, us € M?(X7)

W (wr) — O (u2) a2 (xp) < CNPHRPEYNRC + 1)TH VB2 0y — wg|ppzxm-
(XT) (XT)

Hence we can find d2(e, R) > 0 such that UZ% is a strict contraction for any T < 82(e, R). Thus
if one puts 7(¢, R) = d1(¢, R) A 82(¢, R), the mapping ¥% has a unique fixed point u™ which
satisfies

Elu"%, . n < (Co+1)°R.
As in [7, Proposition 5.1] we can show that (u"(t),t < 7,) is a local solution to problem (3.25). By
the definition of the stopping time 7, the set {7, < 7(¢, R)} is contained in the set {|u™| Xr(er) =
n}. By Chebychev’s inequality we have

P(r, < 7(¢, R)) SJP’(IU"&,(E B 2 M)
<(Co+1)2N72,
<e

?

for N > (Co + 1)6%. Therefore for N > (Cy + l)a% we have P(7, > 7(¢,R)) > 1 — € and the
stopping time T1 = 7, satisfies the requirements of the Theorem; this concludes the proof. O

The next result is some kind of characterization of the maximal solution around its lifespan.
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Theorem 3.16. For every ug € L%(Q, Fo, V), the process u = (u(t), t < 7o) defined above is
the unique local mazimal solution to our equation. Moreover, P({Too < 00} N{sup;c,, |u(t)|lv <
o0}) =0 and on {7 < oo}, limsup; . [u(t)lv = +oo a.s.

Proof. Since 7, / T We have 7, < Too < 00 for any n on {7 < co}. This implies in particular
that for any n > 0 there exist 0 < t, < 7o, ng > 0 and § > 0 such that 7, — t, < ¢ and
lulx,, > n for any n > ng. This concludes that u = (u(t),t < 7o) is the unique maximal
solution.

To prove the second statement we argue by contradiction. Assume that for some £ > 0,
P({Too < 00} N {t € [0, 7o0)[u(t)|v < 00}) = 4€ > 0. Let R > 0 and assume that

P({7oc < 00} N {Ju(t)|lv < Rfor allt € [0,70)}) > 3e.

Let o = inf{t € [0,7o0) : [u(t)]v > R} and Q = {og = Too < 00}.
Note that
Q = {Too < 00} N {|u(t)lv < R for all t € [0,7c0)}
With this R and previous ¢ we can choose a number 7(g, R) > 0 as in Theorem 3.15. Let
us now choose a such that o = %T(E,R). By construction 7, T almost surely and hence

for arbitrary & > 0 there exists ng > 0 such that P(Qg) > (1 — §)P(Q), where Qp := {w € Q:
Too = Tno < @}. Choosing § =  we get P(Qp) > 2¢.
Let Tp = 7p,, and

_ U(T()) on Qo,
Yo = 0 otherwise.

Note that E(|yo[?,) < R?. Then thanks to Theorem 3.15 the problem (3.25) with initial condition
(starting at Ty) yo has a unique local solution denoted by y(t), t € [To,To + T1). Moreover,
the lifespan T of the process y(-) satisfies P(Ty > 7(¢,R)) > 1 —e. From the first part of
our theorem y is the unique maximal solution of (3.25) with initial condition yo. Note that
P(7oo — To < 37(¢, R)) > 2¢. Hence we infer that

]P(Ql) >e> 0

where
Q1:=QN{T1 > 7(¢,R)}.

Next we define a local stochastic process v by

u(t,w) if w € Qf,
v(t,w) = y(t,w) if w €  and t > T,
u(t,w) f w e @ and t € [0, Tp),

The process v(-) is a local solution of (3.25) with initial condition ug. Since P(Tp + %T(E, R) >
Too) = € the process v(-) satisfies

E (llerm+%f(e,R) ' 1191) sk (|v|XTo+T(€»R) ' 191) ’
SIE[(lu|xTo + I1]-[TQ,TQ+T(€,R)]yIXTo+,(E‘R)) . 1191],
S]E (lulXTO]]‘Ql) +E (]]‘Ql l]1[To,T0+T(E,R)]y|XT0+T(E,R)) ’
<k (

Iuleolﬂo) +E (1nlly|X[To,To+r(e,R)]) 4

where the space X,y and the norm |- | Xa are defined similarly to the space X7 and norm
E |XT'



Since Tp = inf{t € [0,7c) : |ulx, > no} = 7y, we infer that Tp is finite (Th < 7o to be
precise) on the set Qy and hence |u] Xz, = no on the set (9. Therefore, the first expected value

E (|U|XTOIIQD) is finite.
Since the solution y(-) is such that i, 1,47)y € M2 (X1p47y) and the lifespan Ty of y(-)
satisfies P(Ty + Ty > Ty + 7(g, R)) > € we infer that

2 X
E (I]l[To,T0+T(E,R)}y|XTo+f(s,R)) <E (l]l[To,T0+T(E,R)]y'XTO+r(e,R)) < 0.

Therefore

E (lUIXToo+%T(E,R) . 1191) < 0.

This implies in particular that |v(t)[x < oo on ) C {Tw < oo} which contradicts

Too+%1’(€,R)
Proposition 3.11. O
The last result is very important since a’priori we only know that |u|x, — o0 as t ,* 7o on
the set {70, < 00}.
The proof of the existence of a global solution could then follow the proof in [7, Theorem
8.12].

APPENDIX A. SOME PRELIMINARY ESTIMATES

In this section we recall or establish some crucial estimates needed for the proof of our mains
results.

First, let n < 4 and put a = . Then the following estimates, valid for all u € W4, are
special cases of Gagliardo-Nirenberg’s inequalities:

lullis < Jufl*=@(Vuj®, (A.1)
lallee < flullyz®lIVullfs. (A.2)
The inequality (A.1) can be written in the spirit of the continuous embedding
H! c L% (A.3)
It follows from (A.2) and (A.3) that for u € D(A4;)
lullLee < JJulli=*)|Vull3. (A4)

Next we give some properties of the bilinear form B; and B, defined in Section 2.

Lemma A.1. The bilinear map Bi(-,-) maps continuously V x H! into V* and

(Bi(u,v),w) = b(u,v,w), foranyucV,veH ,weV, (A.5)
(Bi1(u,v),w) = =b(u,w,v) for anyuecV,veH ,weV, (A.6)
(Bi(u,v),v) =0 for anyueV,veV, (A7)
1B1(w, ) v+ < Collull*~ %[ Vul|# v %[ VV||%, for allueV,veH (A.8)

With an abuse of notation, we again denote by Ba(-,-) the restriction of Ba(-,-) to V x H2.

Lemma A.2. We have
(B2(v,d),d) =0, for anyv eV,d e H? (A.9)
(Ba(v,dg),Ady) =(M(dy,d), V), for any v € V,d;,dy € H2. (A.10)
Proof. Eq. (A.9) easily follows by integration-by-parts and by taking into account that V.-v =0
and v is zero on the boundary.
Note that (Ba(v,d2), Ad1) = b(v,da, Ad;) is well-defined for any v € V,d;,ds € H2. Thus,

taking into account that v vanishes on the boundary we can perform an integration-by-parts
and deduce that the identity (A.10) holds. O
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Next we give some properties of the semigroups {Si(t) : t > 0} and {Sz(t) : t > 0} generated
by —A; on H and —A on X 1y respectively.

Lemma A.3. Let T € (0,00), g € L?(0,T;Xo) and

T T
u(t) = / Sa(t — 5)g(s)ds, = 3 / e Mt=5)g, (s)ds, t € [0,T]. (A.11)
0 keN /0
Then
ue C(0,T;X1)N L*(0,T;X,),
and )
”u(t)”C(O,T;X%) + [[u(t)llL20,ri%,) < (1 + max(T, 1+ ';\'2))||g(t)"L2(O,T;X0)'

Proof. This result is well-known. We refer the reader to [31]. O

Similarly we have the following result. See, for instance, [36]

Lemma A.4. Let T € (0,00), § € L2(0,T; H) and

T
v(t) = /0 S (t — )§(s)ds.

We have

1
t ¢ : <(1+=)|g .
VOl 7 iy, + VOO0 < 0+ a0
where py is the smallest eigenvalues of the Stokes operator A;.

Let ¢; be an element of M?(0,T;H) (resp. (2 € M%(0,T; X%)) and consider the stochastic
convolutions

t
wa(t) = /0 Sa(t — 5)Ca(s)dWa(s),
and

¢
wi(t) = /0 S1(t — 8)¢1(s)dWy(s).

Lemma A.5. There ezxists C > 0 such that
Elwi ooz, + EIW®ll 20,8 < CEIGO 120,727,
where (V, B) = (D(AZ), D(A1)) if i = 1, and (V, B) = (D(A;),X1) if i = 2.
Proof. This result is also well-known, see for example [31, 36]. O

APPENDIX B. ESTIMATES FOR THE LOCAL SOLUTION TO SLC

The existence of global strong solution in two dimension of the SLC relies on the next two
propositions.

Proposition B.1. Let (v,d) be the local strong solution from Theorem 2.9. For anyt > 0 and
q > 2 there exists a constant C(h,q) such that

sup E(nv(smq ()] + ||Vd(s>||Q) < E(||V0||q+ Idoll? + nwolw)ec(’w”k,
<t

0<s<t

and

tx 1 1
B[ (vi2iatvie + jal-2ag? + Jival2jad? )as )
0

=< E(“VOHq + [|dol|? + ||Vd0||q> Clha)te
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Proof. Firstly, from the definitions of G?, G and the Assumption 2.1 it is not difficult to check
that

o1
lai=(FIGQ@I? +(a GHay) < culal,
ldl*~*1(d, G(d))[*< C(R)l|d]|“.
By straightforward calculation we see that there exists a constant C(h) > 0 such that
IVeG(@)l* <C(h)(IVal® + ||d||?), (B.1)
[V=G*(a)|* < C(R)(IIVAI + [|d]®), (B.2)
[(V2G*(d), Vd)| < C(R)(I V| + [|d|[*).

Using these estimates and Young’s inequality we have that

||Vd“q—2(HVxG(d)”2 +(V.G*(d), Vd)) < WVl (Ival® + 1),

< C(h, @)l VAl + 4]
Similarly
IVa[*=*(VzG(d), Va)[* < C(h, ¢)[|VA||? + |||
From Young’s inequality we deduce that
- 1 -
IVa|*=?|(f(d), Ad)| < C(|vd||*?|ld||* + sIIval*=2ad|?,
1 -
<O(Idll" + [[vd]) + Z[Iva|*=? | ad?,
and
Ia1147%|~(f(a),d)| < C|ld|*.
From the assumption on S we easily derive that
VIS (W 7y vy < C L+ 19119
Secondly, let ¢ > 0 and s € [0, tx]. Using Ité’s formula we have
1 1
dl|d(s)||1? = qlld(s)[|*~? [—HVd(S)H2 — (£(d(s)),d(s)) + 5(G*(d(s)), d(s)) + §||G(d)ll2} ds
+q(g = 2)|d(s)[177*|(d(s), G(d(5)))[*ds.
The function [[Vd(s)||? satisfies the It6’s formula
dl|vd(s)||? = QHVd(S)Hq"z<~HAd(S)Il2 + (Bz(v(s) - Vd(s) — f(d(s)), Ad(8)>>d8

+qHVd(s>nq-2(uvxad(s))nz T (VLG(d(s), Vd<s)>)ds

+q(g — 2)[IVA(s)|7* (V=G (d(s)), Vd(s))|*ds
+q[|Vd(s)[[77*(V,G(d(s)), Vd(s))dWa(s).

From It6’s formula we obtain
dllv(s)]? < quv<s>||q-2(—nA%v(s)uZ — (M(d(s)), v(s)) + i!S(v(s))tlfyz(Kl,m)ds |
+4(q = 2)IIV()IT2IS (v ()%, k, vyds + dllv()IT2(v(s), S(v(s)))dW1(s).
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Thirdly, we want to estimate [|d(s)[|?+ [|[Vd(s)||? + [|v(s)||?. To do so we first add up side by
side the Ito formula above and use (A.10) and the estimates we obtained in the first step of the
proof. Integrating the result from this procedure implies that for any ¢ > 0 and s € [0, tk)

Sk l _ 1 _
olsk) +q /0 (||vuq-2||Afvu2+ndnq 2|val? + 5| vd| 2nAdn2)dr
Sk Sk
<q / IVIIT2(v, S(v))dWi(r) + ¢ /O IVa|e2(V,G(d), Vd)dWs(r)
0

+0)+Cta) [ (vl e+ IlVdII")dr,
where
o(t) =V ()7 + [ + [vd B,
o(0) =I[voll* + doll* + [V

Taking the mathematical expectation, the supremum over s € [0,t] in this last estimate and
using Gronwall’s inequality yields the sought estimates in the proposition. O

Proposition B.2. let n = 2 and (v,d) be the local strong solution from Theorem 2.9 and
¥(d) = [|-Ad - f(a)|*
There ezist some positive constants C(vg,do) and C(h) > 0 such that for anyt >0

e 400 (bl + w0 )| +E [ 006) (21acvi? + 19(8 - s@)IF)as

1 1
<IIAFvo|2 + T(do) + CPint, (IIAfVoII2 +¥(do) + C(vo,do)tk) ,
(B.3)

where ¢(-) is a positive function that will be in the course of the proof and ®(s) = e~ Jo ¢(r)dr
Proof. Since the local strong solution (v,d) € D(A;) x X; almost surely we can view ¥(d) as
¥(d) = |ad - f(d)|I*.
The functional ¥(d) is twice differentiable with first and second Fréchet derivatives defined by
¥'(d)(h) = 2(-Ad ~ f(d), —~Ah - f'(d)h),

and
0" (d)[h, k] = 2(— Ak — f'(d)k, —Ah — f'(d)h) — 2(—Ad — f(d), f"(d)h k),
for any h, k € X%.
Let us recall that

dv(t) + (Alv(t) + By(v(t),v(t) + M(d(t)))dt = S(v(t))dWh,

1
dd(t) + (Ad(t) + Ba(v(t),d(t)) + f(d(t)) - §G2(d(t)))dt = G(d(t))dWs.
Since (v,d) € X; for any t € [0,7,) We see that
Alv(t) + Bl (V(t), V(t)) + M(d(t)) € L2(Oa t; ]HI)’
and )
Ad(t) + Bz(v(t),d(t)) + f(d(?)) - §G2(d(t)) € L?(0,t;Xo),
1
for any t € [0,7c). Therefore by considering the Gelfand triples D(A;) C D(Af{) C H and
1
X;cX 1 C X, Ito’s formula for the functional ||AZv(t A 7¢)||> and ¥(d(¢ A 7x)) for any integer



k > 0 are applicable to our situation (see (31, Theorem 1.3.3.2, Page 147]). By It&’s formula we
have

ty
Vv ()2 = [Vvol? = ~2/0 (Arv + Bi(v,v) + IIV - (Vd ® Vd), A;v)ds

ti 1
0

N /Ok”S(v)H?h(Khv)derQ / (AZS(v), AFv)dWi (s).

As in Lin and Liu 1995 [24] we use the identity

2
(IV - (Vd ® Vd), A1v) = (AdVd, Av) + (V ('VS‘ ) L Av),

= ((Ad - f(d))Vd, A1v) + (f(d)Vd, A v).

To get the second line of this identity we have used the fact that Av is divergence free. As a
consequence of this we have that

1 1 12 t
IAZv(t)lI? = [Avol2 = —2 /0 (Arv + By(v,v) + £(d)Vd, Av)ds + / 1S 12 ¢, s

tie te 1 1
—2/ ((Ad - £(d))Vd, A;v)ds + 2/ (AZS(v), AZv)dW(s).
0 0
(B.4)
At the same time we have
17 1 tx
¥(d(t)) - ¥(do) = /0 W/(d)[~v - Vd ~ Ad - f(d)}ds + 5 /0 ¥'(d)[G3(d))ds
1 % " b /
+3 /0 (d)[G(d)G(d)]ds + /0 ' (d)[G(d)]dWa(s).
Using the definition of ¥’(d) we see from this last equation that
tk
T(d(t)) — ¥(do) = 2/0 (—Ad - f(d),~A( - v-Vd - Ad - f(d)))ds
Copte te
+% /0 ¥'(d)[G?(d)]ds + % /0 ¥"(d)[G(d), G(d)]ds 5
B.5

Tk ti
-2 [ (-aa— f@). (@(- v va- ad- @)+ [ w@[G@Was)
0 0
4 tr the
= 2§ /0 Ii(s)ds + /0 ' (d)[G(d)]dW2(s).
For (v,d) € D(A;) x Xj almost surely we easily check that —v.Vd € D(A). Therefore I; can
be rewritten in the following form
Li(s) = (-AvVd — v - VAd, Ad - f(d)) + (Ad - f(d),—A(Ad - f(d))),

where the first term is a product of two function in L2 and the second term is understood as
the duality pairing between an element of H! and (H')*. Invoking Eq. (2.1) we derive that

I(s) = =(v- V[f(d)],Ad - f(d)) — |V(Ad - f(d))|I”

+(~AvVd — v - V(Ad - f(d)), Ad — f(d)). (B:6)
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We derive from Eq. (B.4), Eq. (B.5) and Eq. (B.6) that

1 1 tk
IAFveI? + B(d(0) — [afvoll - W) +2 [ 1w + 1V (ad - s (Pas

tk

= Q/tk (B1(v,v) + Vdf(d),Av)ds + 2/ (Vd|Ad - f(d)], Av)ds
0 0

e

—2 / * (Avvd, Ad - f(d))ds — 2 / (v V[f(d)],Ad - f(d))ds (B.T)
0 0
173
—2/ (£(@)(~v-Vd+Aad~ f(d)), Ad - f(d))ds
0
tk
—2/ (v-V[Ad - f(d)}, Ad — f(d))ds + OT.
0
where the other term OT is defined by
b 1 [t / 1 [t "
OT = /0 ||S(V)||.272(K1,V)ds + -2—/0 ¥'(d)[G%(d)]ds + 5/0 ¥"(d)[G(d), G(d)]ds
e 1 1 12
+2 / (A2 S(v), AFv)dWi (s) + / ¥(d)[G(d)]dWa(s).
0 0
Thanks to (A.7) the identity (B.7) can be simplified as follows

IAdv(EI? + () - Iadvol? - ¥(do) +2 [ [JAwvI + [V(Ad - F(a)]s

173

tk
=2/ (B1(v,v)+Vdf(d),Av)ds—2/ (f'(d)(—V-Vd+Ad—f(d)),Ad—f(d))ds
0 0

7%
—2 / (v V[f(d)], Ad — f(d))ds + OT.
0
From the last equality and the chain rule v - V[f(d)] = f'(d)v - Vd we deduce that

1 1 tk
ATV @01 + R(d(e0)) ~ DAFvoll = (o) +2 [ [IAwvIP + IV (Ad - F(a) ] ds

i
) /0 (By(v,v) + Vdf(d), Av)ds — 2 /0 (f/(d)(Ad - £(d)), Ad ~ f(d))ds + OT.

To get rid of some terms we want to apply the Ité’s formula to the function

S(te, v, d) ==(t) (nA%v(tk)n? " wdak»)

(B-8)
—e o0 (bl + waw)) ).
where ¢(s) is going to be determined by some estimates on
(B1(v,v),Av) + OT. (B.9)
From this point let us study the terms in Eq. (B.9). First,
[(B1(v, V), Av)| < || Bi(v, v)[l[|Av]], (B-10)

From Holder inequality and Gagliardo-Nirenberg inequality we deuce that there C; > 0 such
that

| Ba(v,d)||< CilIvII*~ % || Vv || 3||Vd| % |Ad| %, for any v € V,d € HZ.



from which along with Eq. (B.10) we derive that
L Y R e n
[(B1(v,v), AV)| Zcl|v]' " T AZ V]| ¥ || A v||* =% ||Arv][% [ Arv],
n l n
<Vl T AT vl[|Arv | tE. (B.11)
Let us recall Young’s inequality ab < C(a, p, q)a? + ab? for p~! + ¢~ =1 and arbitrary a > 0.
Let us choose p = n—S—_M and g = ﬁ—n. Applying Young’s inequality with the above p and ¢ in Eq.
(B.11) we obtain
1 2n_
(B1(v,v), AV)| < o] AV|> + C(ar p, g) VI AF V] * 7= (B.12)
Let us look at the other terms. Thanks to the Assumption 2.1 it is not difficult to check that
G?(d) = (d x h) x h € D(Ay),

and
G(d) =d x h € D(A,).
From the definition of ¥’ and these last remarks we easily deduce that
%\Il'(d)[G2(d)] =(Ad - f(d), A(d x h) x b+ (d x h) x Ah — f'(d)(d x h) x h),
=(Ad - f(d), ([Ad - f(d)] x k) x h) + (Ad — f(d), [f(d) + (d x Ah)] x h)
+ (Ad - f(d), (d x h) x Ak — f'(d)(d x h) x h),
=—|lh x (Ad - £())|1* + (Ad - f(d), [f(d) + (d x Ah)] x k)
+(Ad - f(d), (d x h) x Ah) — (Ad ~ f(d), f'(d)(d x k) x h),
=—|lh x (Ad - f(d))|* + K1 + K2 + K. (B.13)
Owing to the assumption on h we have that for any 6; > 0
[K1| <& [lAd — £(@)* + CE) (/@)1 + Id x AR|?[hlfE).
<61[|Ad ~ £(Q)|* + C(61)(C + [[d[Fal| AR|EsllRlIFes),

<&[|Ad - f(d)||* + C(6:1)(C + C(n)| Vd|]?). (B.14)
We can use a similar argument to prove that for any d; > 0
|Ka| < &2[|Ad — f(d)||* + C(82)(C + C(h)||Vd)?), (B.15)
and for any é3 > 0 :
|Ks| < d3l|Ad ~ f(d)|” + C(83)(C + C(h)|Id]1?). (B.16)

By combining the inequalities (B.13)-(B.16) we obtain that for any &; > 0,:=1,2,3,

3
%‘I"(d)[GQ(d)] < =[x (Ad = £(@))*+ (3 6:)llAd — f(Q)|[* + C(81,62,83)(C + C(h)|| V).

=1

(B.17)
Now let us take a look at

%‘I’”(d)[G(d), G(d)] = |AG(d) - f(A)G(A)II* - (Ad - f(a), f"(d)[G(d),G(d))),
=J1 + Jo.
It is easy to show that for any d4 > 0 we have
|72 < 84[|Ad ~ f(d)[|* + C(64) | G(d)]|a
< 8f|Ad - F(A)[? + C(8a)(C + C(h)||Vd]]?). (B.18)
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To treat J; we use an argument which is similar to the one for 3¥’ (d)[G?(d)). More precisely,
we have

AG(d) - f'(d)G(d) = [Ad — f(d)] x h+ f(d) x h+d x Ah — f(d)(d x h).
Since [la + b||2 = ||a||? + 2(a, b} + ||b]|* we infer that for any §5 > 0 we have
Ji < [1Ad — £(d)] x hl2 + 85[AlZ | Ad — f(A)]I? + C (&)1 £(d) x h = f/(d)(d x h) +d x M.
By the same reasoning used to obtain estimate (B.14) we have the following inequality
B < |k x (Ad = £(@)2 + Ss[hlf<]1Ad — f(@)* + C(8)(C(R) + C(R)|VA|f*).  (B.19)
Owing to (B.18) and (B.19) we obtain
%q’"(d)[G(d),G(d)] < |Ih x (Ad = F()I? + (8 + SslIAllf<) 1A ~ f(@)II?
+C(84,85)(C(R) + C (W) Va|?).

(B.20)

With the help of BDG’s inequality we have

2E sup < ClE(/o k[@(8)]2|\Il'(d)[G(d)]|2ds) i.

0<s<ty

/0 " 3(r)¥(d)[G(d)]dWa (r)

Now invoking the definition of ¥'(d)[G(d)], Cauchy-Schwarz’s inequality and Cauchy’s inequal-
ity we have

2E sup
0<s<ty

< E[ sup VEEA(s) - FAE)]

0<s<ti

/0 "3 ()W ()G dWs(r)

x (/OSQ(r)IIA((d x h) x h) - f'(d)((d B x h)llzdr> %]

< C(d)E " 3(s)|A((d x k) x h) = F(d)((d x h) x h)|ds
0
+06E sup &(s)|Ad - f(d)|%,
0<s<t

for any 8 > 0. Thanks to this last inequality and Eqgs. (B.14)-(B.16) it is easy to prove that

ti
< C(66, h)E /0 T(s)(C + C(h)||Vd||2)ds

oF sup /0 * 8 ()W (Q)[G(d)|dWa(s)

0<s<t

" (B.21)
+C(d6, h)E /0 &(s)||Ad — F(d)||*ds + 56E03‘§5 &(s)|Ad — F(d)]|.

With similar idea we can prove that

2E sup
Os.sgtk

1 tk
< aE sup <I>(S)||AfVI|2+1E/ 3(s) S (%, k, vy ds-
0<s<ty 0
(B.22)

/0 " (r)(AZS(v), AFv)dWi(r)

Let o = 1 and oy = 6 = §. For the function ¥(s) in Eq. (B.8) let us take

1 o
é(s) = C(1,p, @) IvIPII A v]|3=,
where the constant C(1,p, q) is defined in (B.12). The application of It6’s formula to the real-
1
valued stochastic processes <I)(t)(||A12v||2 + \Il(d)) and the estimates (B.12), Eq. (B.17), Eq.



(B.20), Eq. (B.21) and Eq. (B.22) yield that

Ba(n) (AR @I + V() +E [ 8(6) (21AnvI? + [V(ad - S

tr ti
< [1Vvo|l? + (do) + E/O 8(s)IS(V) 1%, x, vy ds + C(h)E/O &(s)[|Ad ~ f(d)||*ds

tk

+CE [ @(s)(C + C(h)|Vd|?)ds.
0
The hypotheses on S in Assumption 2.1 yields that

E [e-fé’“ o(r)ar (HA% v(t) |2 + w(d(tk»)] +8 [ " (s) (21ArvI? + V(Ad - 7()[?)ds

tx
< [9v0lf + ¥(do) + CWE [ 8(5) IV + 1A - S(@)7)ds
+C’(V0, do)ec(h’z)t’“tk.
(B.23)

Here we have used Proposition B.1 to infer that there exists a constant C(vq,dp) > 0 such that

sup E([[v(s)I? + [Vd(5)[7) < C(vo,do)e®Diny,
0<s<ty

for any ¢ > 0. From (B.23) and Gronwall’s inequality we derive Eq. (B.3). O0
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