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Global classical solvability of
an interface problem on the motion of two fluids

Irina Vlad. Denisova

Institute for Mechanical Engineering Problems,
Russian Academy of Sciences

Abstract

We deal with the motion of two incompressible fluids in a container. The lig-
uids are separated by an unknown interface on which surface tension is taken
into account or ignored. Global existence theorem is proved in anisotropic
Holder classes for small smooth initial data and mass forces. We show in the
case of strictly positive surface tension that fluid velocity decreases exponen-
tially as time variable ¢ — oo and the interface between the liquids tends
to a sphere S% (heo) = {|& — hoo| = Ro} with a center Ao close to 0, the
barycenter of the inner fluid at the initial moment.

The proof is based on a local existence theorem in Holder spaces and
on an exponential estimate of Lo-norms of local solutions. We follow to
V. A. Solonnikov’s scheme for proving global solvability of a problem on the
motion of a single drop with free surface [1].

1 Statement of the problem




At the initial moment, let a fluid with the viscosity ¥+ > 0 and the density
p" > 0 occupy a bounded domain Qf C R% we denote QF by I'. And
let a fluid with the viscosity v~ > 0 and the density p~ > 0 fill a domain
Q surrounding Qf. The boundary S = 9(Qf UT U Qy) is a given closed
surface, SNT = 0.

For every ¢ > 0 we need to find T, = 9Q; , velocity vector field v(x,t) =
(v1,v2,v3) and the function p, that is the deviation from the hydrostatic
pressure Fy, which satisfy the following initial-boundary value problem:

1
Dtv—{—(V-V)v—ViV%—l——i—Vp:f, Viv=0 in Qf,t>0,
P

Vlmo=vy in Q5 UQ, v|s =0, (1.1)
= i - i =0,
Mir.= | lim v(z) m v(z) =0,
zeQf €]
[T(v,p)n]|r, = cHn onT,. (1.2)
Here D; = [%, = ( BT sz’ on ) Vo is the initial velocity, v*, p* are the

step functions of viscosity and densn:y, T(v,p) is the stress tensor with the
elements Tjx(v,p) = —6Fp + pESik(v), i,k = 1,2,3, 6F is the Kronecker
symbol, Six(v) = Bv, /0xy + Ouvg/0x;, are the components of the doubled
strain tensor S(v); u* =vp*, o > 0 is surface tension coefficient, n is the
outward normal to Q;, H(z, t) is twice the mean curvature of I'y (H < 0 at
the points where I'y is convex towards €27). A Cartesian coordinate system
{z} is introduced in R3. The centered dot denotes the Cartesian scalar
product. We imply the summation from 1 to 3 with respect to repeated
indexes. We mark the vectors and the vector spaces by boldface letters.

If o > 0, we suppose the inner domain Qf is close to a ball of its volume. In
this case, we introduce a new pressure function p; = pin Q; and p; = p—l—aRiO
in Q. Then only last boundary condition (1.2) changes:

[T(v, pomllr, = o (H + ;O) on T, (1.3)

If o =0, we set p; = p in both domains.

We assume the liquids to be immiscible. A condition excluding the mass
transportation through I';y implies that I'; consists of the points (€, t) which
radius vector x(§,t) is a solution of the Cauchy problem

Dix=v(z(£,1),1), x(£,0)=¢ €€, t>0. (1.4)
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Hence, T, = {z(&,t)|€ € T}, QF = {x(£,1)|€ € Q5 }.

Condition (1.4) completes system (1.1), (1.3).

We transform the Eulerian coordinates {z} into the Lagrangian ones {{}
by the formula

x(€,) = € + / u(€, 7)dr = Xu(€,1), (15)

where u(¢,t) is velocity vector field in the Lagrangian coordinates.

We separate boundary condition for stress tensor (1.3) onto the tangential
and normal components. As a result , we arrive at the problem for u, ¢ =
p1(Xy,t) with the given interface I'. If the angle between n and the exterior
normal ng to I' is acute, this system is equivalent to the following one:

1
Dyu — vEV2iu + Fvuq =f(Xn,t), Vu-u=0 in Qf =05 x (0,7),

u|,_, =vo in Q5 U, u]ST =0, (1.6)
[ul|g, =0, [E*TelSu(u)n][; =0 (Gr=T x(0,T)),
2

[nO + Tu(u, g)n] |GT - U(H(Xn) + —R_O)
Here V, =AV, A is the matrix of co-factors A;; to the elements a;;(,t) =
5J + ft ‘9—“Ldt’ of the Jacobian matrix of transformation (4.2), 3,7 = 1,2, 3;
Nw=w-— n(n w), Iow = w — ny(ng - w) are projections of a vector w onto
the tangent planes to I'; and T, respectively;

Tu(w7 q) = q]I + /j,iSu(W),
where Sy (W) is tensor with the elements Sy (W);; = Aikawj/afk-i-Ajkai/afk,

the vector n is connected with ng by the relation: n 2%%.

We apply the well known relation for twice the mean curvature:
Hn = A(t)x = A(t) Xy, (1.8)

where A(t) is the Beltrami-Laplace operator on I';. In local coordinates
{s1, 52} on the surface T, it has the form:

1 9] 0
of = aﬁ hB
Nz 850, \/_05 082053 * dsp’

ng-n on Gr. (1.7)

At) =

where { g }Z =1

OXu(€(s),t) OXu(E(s),t 0 a
Jap = éiis) ) éiis) ) g = det {9a8}s 5ot 1 = \/gasa(g ’\/3g)-

: : : . 2
is the inverse matrix to metric tensor matrix { gaﬁ}a =1’




As a result, instead of (1.7) we arrive in (1.6) at the following interface
condition:

2
g - Tu(u, g)n|g, — ong - A(t) Xulg, = oz Mo n  on Gr. (1.9)
0

2 Auxiliary statements

We introduce some Holder semi-norms.

Let €2 be a domain in R*, n € N; for T > 0 we put Q7 = Q x (0, T); finally,
let a € (0,1).

We need the following semi-norm with o,y € (0, 1):

'fl (v,1+a) (f) ('y,l+a Eﬁﬂ)
T y
where
(v 14a) _ If(xat)_f(y’t)_.f(x77_)+f(y77-)|
(f) B t,Pel(elLJ?{T) %2}5% |z — y||t — 7|Ata=m)/z

It is known the estimate

(f) 'y,l+a) f>§ll+a 1““"‘).
T

We consider that f € CO'1*e)(Qr) if | flq, + 1£1S: (h1+a) _ o
Finally, if a function f has finite norm

16 = (N0, + 11108, e ©,1), welo),
where
F1® = {lflnT + <f>§,’3T ?fﬂ >0,
| flor if u=0,
then it belongs to the Hélder space C7#(Qr).
- We suppose that a vector valued function is an element of a Holder space

if all its components belong to this space, and its norm is defined as the
maximal norm of the components.

Let T € (0,00], t,7 > 0. We set DT_UQT =Q7 U QF and QF =0F x
(0,7), Q% . —Of x (t t+7); Q=05 UQF = Q7 UG, Qr = 2 x (0,T),
Q(tt+7) =0 x (¢, t+7’)' Gr=T x (0 T) .

k+a— k4o, kte k+a, (k+a k+a (k+a
o™ = 1155 111 “, %) = | filEred g ppllre)
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Theorem 2.1. (Local existence) Let T € C3*¢, f,D,f € e C»*7(Qy),
vo € CT(Q5 UQY) for some a,y € (0,1), T < oo. Assume the compati-
bility conditions hold:

AV Vg = 0, [Vo] |F = 0, [,u H()S(Vo)no] ‘1" 0,
1 .
+ _ _
[Ho(u V2v, — ;i—qu)] (F =0, vos=0, 2.1)
I (£(6,0) ~ —=ale) + v~ V2vo(@)) |, =

where qo(€) =p1(£,0) is a solution of the following diffraction problem:

—SVim(€) = V- (£(6,0) ~ DB (vo)volE)), € € O U,

alle = [2u 52 -] |~ o(Ho© + ), €€,
L0 v, (Zoms) e
_p-lrgr%Ns =ng - (v Vv +f’t=0)’5 (8_?1; = ng - V).

(Here Hy(€) = ng - A(0) lr is twice the mean curvature of I'; B* is the
transpose of B =A — 1, 1 is the identity matriz, IIsb =b —ng(ng - b), ng is
the outward normal to S.)

Then for VT < oo 3 such e(T) that problem (1.6), (1.9) has a unique
solution (u,q): u € C**4e/2(Dr) g € COW*e)(Dr), Vg € C**/2(Dr)
provided that

1+a— 1+a—
1) 1 DA+ ol + ol + Y <eT), 23
q being unigque up to a function of time. The interface I'y is a surface of

C3+>. Moreover, there holds the estimate

| |D+a1+a/2)+|v Iaa/2 +| l’yl+a)

—‘;—'X (2+a) (14+a)
{|f|Q —I—]D f|Q + |v 0|U + o|Hy +RO| }
(2.4)

We note that local and global solvability of the problem governing the
motion of two fluids without surface tension was obtained by the author in



[2]. In the case of strictly positive o, Theorem 2.1 was proven in [3] for the
case when S was absent and QF U Q™ coincided with the whole space R3.
This result was obtained in Holder spaces with power-like weights at infinity
but it is also valid in our case because the weighted spaces are equivalent to
the ordinary Hélder spaces in bounded domains.

Remark 2.1. If 0 = 0, it is sufficiently to assume T' € C?*2, the interface
Iy also will be of class C*+e.

The proof of Theorem 2.1 is based on the solvability of the following lin-
earized problem:
th—uivﬁer—lIvus:f, Vu-w=r in QF,
P
Wltzo = Wy in Q" U Q+, (25)
[W]IGT =0, W‘S =0, [NiHOHSu(W)HHGT = Ilod,

¢ t
ng - Ty(W, s)n]|g, — ong - A(t)/ w|.dr =b+ a/ Bdr on Gr.
0 0

Unique solvability for problem (2.5) was proved in any finite time interval.

Theorem 2.2. Let a,v € (0,1), vy < o, T < 0o. Assume that T, S € C2te
and that for u € C***1+%/2(Dr), [u]|g, = 0, we have

(T + T2 u|GFete?) < 6 (2.6)

for some sufficiently small § > 0. Moreover, we assume that the following

four groups of conditions are fulfilled:
1) 3 a vector g € C**¥%(Dy) and a tensor G = {Gi}3 oy with Gy, €

CO4e)(Dr) N C™(Dr) such that
Dtr—Vu-f=V-g, gizﬁGik/afk, i=1,2,3,
(these equalities are understood in a weak sense) and, moreover,

(g + A™f) - ngJ|e, = 0;

2) £ € C***(Dp), r € CWo™*(Dr), wy € C*(Q UQY), d €
Cl+a, h'-Q(GT) be C(7,1+a)(Gr )7
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3) V. -wo(§) =r(£,0)=0, £€QUQS, [wol|l,=0, wo|g=0
[Ty T(wo(€))ng)|eer = Iod(£,0), € €T,
1
[E{ﬂ&@—?;Vﬂ&m*W;V%%@DH&F=Q (2.7)
1 s N
g (f(g,()) ~=Vs(6,0) + 17V wo(g)) 5=
4) so(€) =s(€,0) is a solution of the problem
V(€)= V- (DB eowol6) ~ 8(6,0) in % U,

[so]lr = [2/4 %ﬂ no” — bls=0,

10 : |
b@ﬁhﬂmﬁmeme, (28)
1 880 -
amels =1 (7 £l )|

Under all these assumptions, problem (2.5) has a unique solution (W, s)
with the properties: w € C*el+e/2(Dr) s € CO1+9)(Dyr), Vs € C**/?(Dy),
moreover, this solution satisfies the inequality

Iw|(2+a,1+a/2) + lvsl(g,aﬂ) + [S](7,1+a)

a,a/2 1+a—+— (2 a,a/2
<e (ﬂﬂﬁ”’+u )+ fwol %2 + g5

(Y +IGIGY +1dIG ) + felg, + (B

+|v bl(aa/2)+ |B| aa/2 +P,[ ]|W0|Ugi} (29)

where c1(t') is a monotone nondecreasing function of ' < T, and

P,[u] =t'7*|Vu|p, + |Vu[5*/?.

3 Global solvability of problem (1.1), (1.3), (1.4) with-
out surface tension

Theorem 3.1. (Global existence theorem) Let o,y € (0,1). Assume that
[ € C2 and vy € C¥e(Q5 UQY), f,VE € C*™F(Qw) satisfy com-
patibility conditions (2.1), where g = po(§) =p1(€,0) being a solution of
diffraction problem (2.2) with o = 0.



Moreover, we suppose that the data are small enough, i.e.

Ivol @) + | ”tf)(“’ )etiﬂg‘;"u?' )4 / leflaadt <e < 1, (3.1)
0

uQE

where b = min{v™,v~}/(2¢y) with the constant cy from inequality (3.3).
Then problem (1.1), (1.3), (1.4) with 0 = 0 is uniquely solvable on infinite
time interval t > 0. The solution (v,p) has the properties: v € C¥rol+e/2
p € COVIHY)  yp e C*/2 the surface T, being from C?+®-class. It means
that for every ty € (0, 00) the solution (u,q) and its derivatives in Lagrangian
coordinates belong to the corresponding spaces over Dr = UQTE (to.to+7) for a
small enough time interval (to,to + 7) and

o0
Neoomanlv#] < (6, m)e" {lv &2+ [T el ade
+|ebtf|(a7 2 _+_ letifl(a’ }(32)

We have introduced the notation: ||-|j20 = ||-||z,(2)- We note that 02 = S
and for v in €2, the Korn inequality

IVliwz @) < collSV)ll20 (3:3)
holds because v| s = 0 (see [4]), [IVllw(q) coinciding with {|v||yzq-uayry due

V]‘rt =

Proposition 3.1. Assume that a classical solution of problem (1.1), (1.2)
with o = 0 is defined in [0, T] and vq satisfies compatibility conditions (2.1).
Let £(-,7) € Ly(Q) and [~ ||e?£(-, 7)||2,0dT < o00.

Then

IV ln < e *{livola+ | e ) laadr ), te (0,T), (34
vt leadr < cfivala+ [l Radr) (35

Proof. We multiply the 1st equation in (1.6) by v and integrate by parts over

Q uQt.
th” “2Q+”V ||29— f vdz.
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If we make use of the Korn and Hélder inequalities and divide by ||v||2a, we
arrive at

d
5 Vl2a +blvilza < [fll2e
with b = min{v*,v"}/ (200). By the Gronwall lemma,

t
IVllze < e lIvollza + / e PED||E (-, 7) g0 dr < e7e
0

which implies (3.4). Next, we integrate over t € (0, 00) and apply the Fubini
theorem to obtain (3.5):

o0
/ Vibadt < 3lvollza + / / D7) o dr dt
0

< Flvolla+ / / ~H=D)|£(., 7) |0 dt dr
< Hivolha+ /0 I£ll20d7 }.

O
We cite now two lemmas from [2].
Lemma 3.1. Let u € C®%*(UQ%), Th > 0, 0 <7 < vTo.
Then u satisfies the inequality
To
(£572) (%) —a-2
i <o+t [Cuadr. @9

Lemma 3.2. For an arbitrary u € Cz+°‘*1+%(UQi), 0 < r < diam{Q}, the
inequality

uQT0 UQE,

(3 3 ) (2+a,1+2) —a-1 To
() 22wy e T o | ||ullgdT (3.7)
0

holds.

Proposition 3.2. Let a solution (v,p) of problem (1.1), (1.2) with ¢ = 0
exist on the interval (0,T] and

Nom[v,p] = [W0|52 + |V + [¢) ™ < (3.8)

hold. Here (u° q°) is the solution of problem (1.1), (1.2) in Lagrangian
coordinates.



Then

to
N(to—'ro,to)[vap]<C(577-0){|fluQ/ lVfluQ’ )+/t HV(-,T)Allz,ﬂdT},

0—270
Vitp € (0,7], (3.9
where 9 € (0,0/2), o depends on p, 6 is the value from (3.13), ¢(6, 7o) is
a non-decreasing function. Here UQﬂ Q (to—2r0+B.t0)
Proof. We fixe arbitrary ¢, € (0,7T]. Let 7o € (0,t9/2) and n)(¢) be a smooth
monotone function of ¢ with A € (0, 7] such that

0 if t<ty—2m+A/2,
m(t) = .
1 if t>t0—27'0+)\,

and for 7, (t) _d"* ® the inequalities
’77/\ t)’R el < (t> /)< c)\~1-a/2

~ hold.
We consider the functions w =vn,, s =pn, which satisfy the system

1 :
Dw + (v-V)w — v V3w + p—iVs =fny + vy,

V-w=0 in Q;UQ?, t >ty — 27y,
Wlt:tﬂ“27’0 - O in Q;)—QTO U Q —2753 (310)
[W]‘Ft =0, [T(W? S)HHPt = 0? W|S =0.

Introduce the Lagrangian coordinates by the formula

t
X=§+/ u(€, 7)dr = X(&,t), t>ty— 27, (3.11)
t0—27’0
here u(,t) =v(X(&,t),t). Then we can rewrite (3.10) in the form
1
Diw — ViViw + p—iVus = f(X, t)n) + un,,

Ve-w=0 in UQ, t>t—2mn,

Wlety—om =0 in U, (3.12)
Wil =0, wis, =0,

[Ty (W)n] |~ = 0, [ng - Ty(w, s)n]|r = 0.
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Here UQY =Q; _,, U 5., TV =Ty, 25, ng is the outward normal to I,
II, and II are the projections onto the tangential planes to I and to I',
respectively. Other notation, for example V), also corresponds the transform
(3.11). The functions w, s, f in the Lagrangian coordinates are denoted by
the same letters.

In order to apply Theorem 2.2 (existence theorem for the linearized prob-
lem) to problem (3.12), we need to verify the hypotheses of it. To this end,
we choose 7y so small that inequality (2.6) holds. It is enough to take 7y such
that

(270 + (270)"H) . < 6. (3.13)

Since V, - w = 0, hypothesis 1)
~Vu- E(X t)m+un) =V-g

is satisfied with g = —A*(£(X, t)ny +uny) due to Vy, = AV = VA*. Tt is
evident that
(g + A*(£(X, t)ma + unp)) - o]l = 0.

As tensor G = {Gi}};-;, we take the potential

G(,t)=V o E& YA (X (y, 1), t)nx + unn)dy,

where £(z,y) =Z1?|—El—_y[ is the fundamental solution of the Laplace equation

in R3 f and u are extended with preservation of class in the whole space R3
and vanish at infinity.

Condition 2) is fulfilled because u € C**/2(Dr).
As to 3), 4), all the functions in (2.7), (2.8) with QF = Qi_% equal zero
at t = to — 279. Hence, by (2.9)
Nito-21040t0) [0 @] < Nitg—2r00) [W, 8]

< c1(2ro){|f(X, Omli ™ + il
/2 J1+a ,0
i |g|EJOé2(Z/ ) 4+ [G]EYQ{, ) 4 |G|EJ’YQ;,)}'

We can estimate the Holder norm of the composite function f(X (¢,t),t) as
follows:

a,a/2 a,a/2 a —a
(X, t)|L(JQ;,/ : < |f|L(JQ6/ " |Vf|UQ6 (2T0|u|;(c,L)JQ6 + (27'0)1 /2|“|UQ6)



since

3 1 t
f(Xu,t) = £(Xu, t) = > /0 f, (Xq,,t)dz /t (u — up) dr.
k=1

0—2Tg

For A < 1, we conclude

1 (Lte=yy
N(t0—2rg+/\,t0)[u7 Q] (1 + 6){_If|z uQ;, + == )\1+¢;—1 (Iflt,ucsa + |Vf|qu)

(257)

1 (af") 1 3
(G + W) + a9

We take now r; = (eA)/7 and 75 = (X)'/? in estimates (3.6), (3.7), respec-
tively, and evaluate |u|yg, , in (3.14) by a way similar to Lemmas 3.1, 3.2.
As a result, we obtain

N(to—270+>\,to) [ua gl < 03(5){€N(t0—27'o+/\/2,t0) [u,q] + _lflz UQh

+rmmm (fliod,” + IVEogy) + (&A™ / . ladr}, (.19

to—270
b= (£ 48,1+ 8, 59204 )} = 42
Let us introduce the functlon
D(A) =X Ngg-2m42,10) [, 4)-
Then we can rewrite (3.15) as follows:
Q(A) < cge®(N/2) + K, (3.16)

where ¢4 =c3(0)2*

Y

o 1a= to
K =a0){16l5 T + Vg +e(0) [ fuC.rlaadr )
to—270

We set ¢ :—C— in (3.16). By iterations with \/2,....A/2% we deduce from
inequality (3. 16) in the limit £ — oo that

®()) < 2K.

This inequality with A = 7y implies (3.9). O
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Now we can prove Theorem 3.1 (global existence theorem for o = 0).

Proof. By Theorem 2.1 (local existence theorem), we have a solution (v, p)
on an interval (0, Tp]. We can take so small data in estimate (2.3) that value
Tp will be greater than 1. The solution norm satisfies the inequality

Nom)lv,p] < 1

with some g > 0. Then by Proposition 3.2, there exists 79 < Tp/2 such that
(3.13) is satisfied and for (v, p), Tp estimate (3.9) holds. Together with (3.4),
it implies that

Nto—1o.t0)[V> D] <Cs(57fo)€—bt°{|lvollz,n+/ e ||E(, 7) |20 dr
0
I btfl | tifI(a )}
< cs(0, mo)e b (1 + |Q|1/2)s, (3.17)

where |Q| is the measure of §, ty € (279, To).
Thus, ,
VCTo)l s <

Now we apply Theorem 2.1 (local existence theorem) again and obtain a
solution in an interval (T, Ty + T3] corresponding to the initial data v(-, Tp).
Note that

Nz, 1o+ [V, P < p1-
There exists 71 < T1/2 such that (3.13) holds for 71, u1, hence,
N(T0+T1‘71>T0+T1)[V’p] c(é, Tl){|f|Q(To+T1 Zrl To+Ty) +[V IQ(TO+T1 —2r,To+T1)

To+1h
A df}

T0+T1 -27‘1

o0
(6, 71)e b Tim 2ﬁ>{qunz,g+/ () aqdr
0
+ |ebtf| | btvfl(a )}

ce(8,71)e DT (1 + |Q|1/2)s. (3.18)



We take in (3.1) € so small that cs(6,71)(1 + |©]"/?)e < p. Hence, we have
again 2ra)
. 2+ ~b(To+T1)
Iv(-, To + Tl)|UQ%0+T1 < pe W) oy

Since the norms of the data have not increased, a solution of problem (1.6),
(1.9) exists in (Tp + T1, Tp + 273] and

N(T0+T1,To+2T1) [V7 p] < /‘1’1 .

Inequality (3.18) is valid for the interval (Ty + 277 — 11, Ty + 2T1). Thus, the
solution of (1.1), (1.3), (1.4) with o = 0 can be extended as far as one likes.

Solution uniqueness follows from the uniqueness of local solutions at every
moment of time (Theorem 2.1). a

4 Problem (1.1), (1.3), (1.4) with positive surface ten-
sion. Energy estimate

We state global existence theorem for o > 0.

Theorem 4.1. Let the hypotheses of Theorem 2.1 with g4 = py(x,0) hold,
and fort =0 let T be given by the equation

|z| = R(I%,O)

on the unit sphere S1. Suppose, in addition, that the initial data are small
enough, i.e.

Pt 55 ety &5 4 ety o 4

(2+a)
unE

where ro(z/|z|) = R(z/|z|,0) — Ry, Ry is the radius of the ball Bg,: || =
4T R3/3.

Then problem (1.1), (1.3), (1.4) is uniquely solvable in the whole positive
half-azis t > 0, and solution (v, p1) possesses the properties: v € C¥tol+e/2
p1 € COW1+9) Yy, € C®e/2 the boundary 'y being given for every t by a
function R(-,t) of the class C’3+°‘

=0l = R =1

+ Vol + ol 7 < e < 1, (41)
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(where h(t) is a position of the barycenter of QF at the moment t), and
tending to a sphere of the radius Ry with center in a certain point heo, and
the pressure being defined up to a bounded function of time. It means that
for any ty € (0,00), the solution (u,q) and its derivatives in Lagmngz'an
coordinates belong to respective Holder spaces over D4 4r) = UQ (to,to+7)
for a sufficiently small time interval (to,to + 7). Moreover, there holds the
estimate

(24+a,1+a/2) a,e/2) (v,14a) (3+a)
I lD(t to+7) t |Vq|D(t Jto+7) |q| Dt tg+7) +t (tsoutf))+7') |r(.’ t)lsl
< oo o (|5 4 MVEGTE ) 4 [ o +
2+ 3
+|vo|£m§> Irol,™}, (42)

where r(w,t) = R(w,t) — Ry, w € S1.

This theorem for f = 0 was proven in [5].

One can conclude from Theorem 4.1 that the trivial solution is unique
when the initial velocity and mass forces are absent and the initial interface
coincides with a sphere. The stability of this solution takes place in the sense
that the solution differs a little from zero under a small deviation of the
initial data and mass forces from zero ones, the interface tending to a sphere
Sg,(hso). However, the center ho of this limit sphere may be displaced with
respect to the initial barycenter of €} for no matter how small an initial
velocity v is. This displacement is evaluated by inequality (5.5) at the end
of the paper. There we also give a necessary estimate with above of initial
distance between the outer boundary and fluid interface.

We need again an exponential estimate for the solution of the nonlinear
problem (1.1), (1.3), (1.4) in Ly. Now we prove it by using the notion of
generalized energy £ introduced in [7, 8].

Assume the solution exists in the interval [0, T]. It is guaranteed by local
existence theorem (Theorem 2.1). Thus, we have also barycenter trajectory
of the drop Q;: h(t) = ——_,,— [ xdz.

Q+

Remind that r(w,t) is the deviation function of I’y from the sphere
Sr,(t) = Sg,(h(t)) = {|z — h(t)] = Ro}. Incompressibility of the fluids
implies that the domains Q3 conserve their volumes for all ¢ > 0:

/ dx=/ dz = (R3—R3)dw=0
F o S



Since 7 = R — Ry, the equality

1 1
rdw=——= [ r’dw—-— [ rPdw (4.3)
/s1 Ry Js, 3RE Js,

holds. We are going to use it later on.
Assume (without restriction of generality) that h(0) = 0. Moreover, as-
sume that I' is defined by the equation

z =y + N(y)ro (T:Z—l) Y € Sgy- (4.4)

(N(y) is the exterior normal to Sg, = {|y| = Ro}, i.e., N(y) = y/|y|.) We
assume that also for 0 <t < T T can be defined by

r=y+ N(yr (%, t> +h(t), ye€ Sy, (4.5)
Equations (4.4) and (4.5) are equivalent to the relations

x x—h
— - —_ = t
|z] Ro—l—rO('xI) and |z — h(t)| Ro-i—r(——'x_h', ),

respectively.

From the kinematic condition (1.4), it follows that
Dix-n=v-n|,.
Hence
o (D] = Vo0 B0, 49
ny(y)Dyr=v-n—h;-n, yeSg,

noy =ng - N is a radial part of ng in the coordinate system with the origin
at 0, and ny =n - N is a radial part of n in the coordinate system with the
origin at h.

We can rewrite h(t) in the form:

h(t) = |Qlt+| //u(f,’r) d¢ dr and hy(t) = Tﬁlﬂ/v(x’t) dz. (4.7)
af

OQ;{’

Note that the barycenter of Q) always coincides with the origin in the coor-
dinates {y}, it means that

/S (R* = RMwidw = 0, (4.8)

where w; = y;/|yl.
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Proposition 4.1. Assume that the classical solution of the problem (1.1),
(1.3), (1.4) is defined in [0, T) and vy satisfies compatibility conditions (2.1).
In addition, let r be such that

Ir(w, t)]s,x0,1) + IV (w, t)|s,x(0m) < 61R0 K 1. (4.9)
Then for ¥t € (0,T]

IV D30+ ) s, < ce‘z”“{||eb“f||%,Qw + HV0”§,9+||T0”%V21(51)},
(4.10)

T
/0 (VG Pl + i) hwasy) dr
{ Il 20 + Ivollza + Irallwysy }» (411)

with the constants by and c independent of T'.
This proposition with f = 0 was proven in [5].

Proof. We multiply the first equation in (1.1) by p*v and integrate by parts
in Q7 UQ. Then

Esoizo= [t 2 \n.
sVl 1y 5800 = [vaso [ (#+ 2 n-var
Q

T,

In view of the formula (1.8) and of the fact that [ v-ndI' = 0, the integral
T
in the right hand side has the form ¢ [ v - A(t)xdI. In [6] it is proved that
Ty

a/ v-A(t)xdll = —a—|I‘t|
I
Therefore we can write

F{3IVPIBa+ o (ind - 4R} + IVl = [ £-vas

dt

Since v‘ s = 0, the vector field v satisfies the Korn inequality (3.3) in Q.
Consequently,

d

dt{_“p V“z ot 0(|Ft| - 47TR0)} + Cl”"HWl(n) clIfll3 Q- (4.12)



In order to be able to use the Gronwall inequality for the generalized energy
mentioned above, we should try to add in the left hand side the term of
the type |I's| — 4mR2. To this end, we construct an auxiliary vector-valued
function W(z, t), z € Q.

Let the function fo(2) be defined on the sphere Sg, and [ fodS = 0. We

Sky |
define Wy(z) as a solenoidal vector field in the whole space R3, such that

\A]()|SR0 = Nfo(Z)

We also assume that suppW) is contained in the ball B4, = {|y| < Ro+a},
where a > 0 is not very large. In addition,

Wollw; gs) < cllfollwr s,y 1Wollogs < cll follz,sg,, (4.13)
and if fy = fo(z,t), then
ID:Wollzrs < cl|Difolla,s, - (4.14)

Such Wy can be constructed (see, for instance, [9], Ch. I).
Further we set

fO(ya t) =~(ya t) = T(y) t) - F(t),
where 7(t) = ﬁ J r(y,t)dSg,. For a and h sufficiently small the vector

Ry
field Wy vanishes near S for all ¢t < 7.
Now we make the following coordinate transformation:

z=y+N"(y)r*(y,t) + h(t) = e,(y,1), ye€Q,

where N* is the extension of N in (2, and r*(y, t) is the extension of m(y)
with the support in the neighborhood of Sg, and 7* = 0 near S. We note
that for small 7*(y,t) and h this transformation is invertible, and it maps
SR, on I'y. The vector field W can be defined as

Wz, 1) :‘28 2 Wo(y, )]

Here L is the Jacobi matrix of the transformation €y

L(y,?) ={——66”£‘Z’ 2 }={ai+ o) v

0y, ij=1"

y=er(z)"

101



102

and L =det £. Let L be a co-factors matrix of £, ,i.e., E(y, t) = LL(y, ).
The vector field W is divergence free as the function of z. Indeed,
~L

V, W=V, W=LV, - (LW) =LV, LTWo=0

in view of the identity V, - L = 0, that holds for the co-factors matrix of
arbitrary coordinate transformation. In addition, W(z,t) = 0 for z € S and

[’N  Wy-N 7

W n|, =W — = — = — K (4.15)
' |ICTN|  |[LTN|  |LTN|ly=er'(@)
From (4.13), (4.14) the estimates
IW(EDwae < cllWol Dllwg Brgsa)
< C“T‘(-,t)“W;/z(SRO), (416)
W, Dllza < ellr( )2,

follow.
In [5], due to (4.6), it was also proved the inequality

IDW(, Ollan < vl IVlnge + Irlypnsy - @&17)

Now we multiply the first equation in (1.1) by p*W and integrate by parts
over Q) UQ:

%/piv-de +/piv-(DtW+(v-V)W) dz (4.18)
Q Q
p* 2
+ [ 58(v): S(W)dz—o (H+§—)n-WdP=/f-de,
0
Q I, Q

where S(v) : S(W) =S;;(v)S;;(W). We add equation (4.18) multiplied by
a small 7 to (4.12). Using (4.15) and the Korn inequality (3.3), we obtain

d

1
E{EllpivngQ + 7/ﬂpiv W dz + o (|Ts| - 47TR3)} +ealvivg @

Ty . Vv T #—ﬂ:- V) x
‘V/QP v (DW+(v-V)W)d +7/Q CS(v) - S(W)d

2\
1o [ (H n —)rdSRO <)+ e Wika  (419)
Sk, Ry



(We have used here the equality dT'(z) = |£TN|dSg,(y), [8, p. 227].) For
arbitrary small 7y the expression under the sign of derivative, that can be
called a generalized energy £(t), is positive. Indeed, by theorem 3 in 6],
under conditions (4.3), (4.8), (4.9) the inequality

El(R7 RO) = *Ftl - 47TR(2) 2 C2HTH%/V,~,1(SI), (420)

holds with the constant ¢, independent of §; and Ry.
Now we make the formula

E\(R, Ry) =/ (R\/R2+ Vs.R|? — Rg) dw

51

our starting point. By decomposition of E1(R, Ry) in the Taylor series at
the point Ry, it was shown in [5] that F;(R, Ry) depends only on r and Vr
, therefore we write E(r) =E;(R, Ry). Under condition (4.9), it holds

Ex(r) < esll7lliny(sy)- (4.21)

Next, it was proved that the surface integral

Es(r) = — / (H + R%) 7dSp,

Sro
was also positive definite, the well known formula for twice the mean curva-
ture

1 VeR 2

H|R| = =V, - - —,
[ ] R Sl \/g \/g
being used in the spherical coordinates, g = R%+ |Vs,R|?,
, 1 _ 1 Ou,
= — ‘U= ———(sinf —.
Vs Jt = Roep + sin aRwew, Vs, -u sin 8 00 (sin Bug) + sinf Jyp
Thus, we have
Es(r) = cllr sy (4.22)

And we set
1
E(t) =§||piv||§,9 + 'y/ﬂpiv -Wdz + 0By (r).

On the basis of (4.16), (4.20), (4.21) we conclude that for sufficiently small

Y
C4(||V||§,n + “TH%V;(&)) <E() < Cs(”"“%,n + ”T”%Vz.l(sl))- (4.23)

103



104

Let us denote by £;(t) the terms outside the derivative D;£(t) in (4.19). It
is easily seen, in view of (4.16), (4.17), (4.22), (4.23), that for small y there
exists such a constant b; > 0 that

&i(t) > 2b:E(t),
which implies the estimate
DiE(L) + 2b1E(t) < c||f||§Q

Then from the Gronwall lemma. it follows that

4

E(t) < e~ PE(0) + / e | |f(, 7)|[3 gdr
0

< ce®t(||vol3q + Irollfas, + 1”7 Fl15 ,)

and (4.10), due to (4.23). By integrating from 0 to 7', we obtain inequality
(4.11). O

Corollary 4.1. The coordinates of the barycenter of Qf satisfy the inequality
101 < (i Ellagn + IVolloa + Imollwysy | VE€ 0,T]. (424

Proof. From formula (4.7) it follows the estimate

1 t
h < - ° d ,
I (t)l 'Qzl-ll/g /0 HV( T)”Z,Q?’ T

which, together with (4.11) implies inequality (4.24). O

5 Proof of the solvability of problem (1.1), (1.3), (1.4)
with ¢ > 0 in global

Proposition 5.1. Let the solution of problem (1.1), (1.3), (1.4) be defined
in the interval (0,T) and let the estimate

a,l+a a2 1
Nz v, pi] = [ 4o 4 gllee/ 4 1g|01e) < g

hold, where (w,q) is a solution of problem (1.1), (1.3), (1.4) written as a
function of the Lagrangian coordinates.
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Then
— (3+a)
N(to—TO,to) [V7p1’ T] = N(to—To,to)[val] + sup |T( )I (51)

to—T0<7T<tp

_.___'Z
< cl(é,fo>{|flug )4 v

4 / (V) + H?‘('J)ng(sl))dT},

0—27p
where ty € (0,T], 7o € (0,t0/2), o depends on p and on the constant & in
(3.13), U, =U Q(ito_%,to)-

This proposition was demonstrated in [5] for f = 0 in a similar way as
Proposition 3.2.

Lemma 5.1. Let rg € C1*(S;) and u € C**%(Dyg,), a € (0,1).
Then r(-,t) € C**(8y) for arbitrary t € (0,Tp) and the inequality

| ( t)l 1+a CQ(IT |(1+a +t' |£l+a ), (52)
holds, if the norms ry and u are small.

This lemma is proved by the passage to the Lagrangian coordinates [5].

Proof of Theorem 4.1. By Theorem 2.1, there exists a local solution (v, p;)
in (0,5}, To > 1 when ¢ in (4.1) is small enough. For (v,p;), estimate (2.4)
holds therefore

a 2]
Nomylv,l < c(lflge * 2 + D f|Q 5 ol + o 1)

(IleT 2 +|D f| = +| ’Ui;rf+|?")3+ ))<C355,u.
By Prop. 5.1, there exists 75 < T0/2 such that (3.13) is satisfied and for

(v,p1), Tp estimate (5.1) holds. Lemma 5.1 guarantees the inequality

||siaoo)T0 02(|7“o|5 +035Tg) 01 Ry

(7| 511 f(aoo%o = SUPg<r<1, |7(-, 7‘)] (te *)), when ¢ is sufficiently small. This per-

mits us to apply Prop. 4.1, and from (4.10), (5. 1) we obtain

____'Z)

N(to —70, tO)[V P1,T ] < cy€ =b1(to—2m0) {IebltﬂUQ, 2 + |€b1tVf'U

e El3g; + Ivallaa + rollwy(s,) }
< cs(mp)ebite (IQ] 2 4 27T2)6,
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where |Q| is the measure of £, and ty € (279, To].
For to = Ty, we have the estimate

2 3
Ve T + I TIE™ <

Next, we use Theorem 2.1 again to obtain solution in (T, Tp + T 1] for the
initial data v(-,Tp), |r(-,To). The norm of the solution

N(TO;T0+T1)[V>p1] < U
Due to Prop. 5.1, we can find 0 < 7; < T1/2 such that satisfies (3.13) and

la—-)

(a» ) (a’
N(T0+T1 —m,To+Th) [V, D1, T] ((5 Tl) { |f|Q(T +T1—271, T0+T1) | |Q(T0+T1 —271,Tg+Ty)

To+Th
b [ Dt Ol drf (653
T0+T1—2T1

Since in view of (5.2)

Itz < c2(IrG 0I5 +Tilulgsy ) < ea(cre+Tim) < éiRo,

§,:D(1y,19+11)

similarly to (3.18) we continue (5.3) by Prop. 4.1 as follows
Nty il 7] < eald m)e 8T (1 4 P2 4 271)e

Choose € so small that cs(8,71) (1 + |Q|Y/2 + 271/2)e < p.
Hence,

I ( To +T1)|U2gf + Ir( Ty + T, )|(3+a) < /.,l/e_bl(T0+Tl).

Thus, the norms of the 1n1t1a1 data do not increase. Therefore we can extend
the solution in the interval (Ty + Ti,Tp + 273]. This procedure may be
repeated again and again as long as we like.

By repeating our argument, we should pass to the Lagrangian coordinates
according to the formula

t
X =¢W 4+ / uEW,rydr,  Weung, te(h,To+T)
To

(5.4)
In fact, due to the additivity of the integral, (5.4) coincides with (4.2):

T, t
X(&,t) = €+/0 u(f,T)dT-i—/T u(&, 7)dr, £e UQ(T, t € (To, To + Th),
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because u(¢W, 1) = u(g, 7).
The same remark is valid for the coordinates of inner fluid barycenter, since
the volume of the fluid is conserved:

t 1 To 1
h(t) = h(T, -I—/——— V.’IJ,'Td.CL‘dTZ/ — | v(z,7)dxdr
0= WO L Jo o 07 Jo¥ )

+
To A

t 1 3 t
+ — [ v(z,7)dxdr = //v z,7)dxdr, t>T,.
/To |Qt+ | Qf (@) 47FR8 0 Joj (@.7) °

Hence, one can conclude that

|h(t)' <CL, t<T0+T17

where c
o v
“ |_—52(—)%|1/2b1{”ebltfllz,czoo +vollze l'r"ll”%(sl)}'

The solution of the system (1.1), (1.3), (1.4) can be extended in this way
with respect to t as far as necessary and it will satisfy the inequality (4.2) .
The limiting position of the barycenter is estimated from Corollary 4.1:

’ 24a o
heel < @ < er ([l a0, + ol + Irol§7) < e (55)

Inequality (5.5) implies that the initial distance between the surfaces I" and

S should be strictly larger than C7<Heb1tf 2,0, + IVQ'E?S_: )+ Iro E.;?’l+a)) + 61 Ry
0
with 61, Ry from (4.9), to exclude their intersection in the future.
The uniqueness of a solution follows from the local existence and uniqueness

theorem.

Remark 5.1. If o = 0, we need evaluate the integral I = [;° [u(-,t)|o+ dt in
order to estimate the distance between the solid boundary and the interface.
In virtue of (3.2),

lu(-, to) o+ < (8, 7p)e e, (5.6)
By using (2.4) and integrating (5.6) with respect to ty > Ty/2, we arrive at
T o Ty 1
I< ?|UIQ;O/2 + /TO/2 lu(-, )]+ dt < —2—6 + ¢(6, 7‘0)58 < cg€.

Thus, if the initial distance between the surfaces is greater than cge, T'y will
never intersect S.
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