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1 Introduction
In this paper we introduce a numerical scheme for the linearized Navier-Stokes equations and
apply the scheme to the linear stability analysis of flows past a circular cylinder.

Let $\Omega$ be a bounded domain in $\mathbb{R}^{d}(d=2,3)$ with Lipschitz-continuous boundary $\Gamma\equiv\partial\Omega$

consisting of three disjoint connected components $\Gamma_{0},$ $\Gamma_{1}$ and $\Gamma_{2}$ . We consider a boundary value
problem; find $(u,p)$ : $\Omegaarrow \mathbb{R}^{d}\cross \mathbb{R}$ such that

$(u\cdot\nabla)u-\nabla(2vD(u))+\nabla p=0$ in $\Omega$ , (la)
$\nabla\cdot u=0$ in $\Omega$ , (lb)

$u=g$ on $\Gamma_{0}$ , (lc)
$\tau=0$ on $\Gamma_{1}$ , (ld)

$P_{\Gamma}\tau=0,$ $u\cdot n_{\Gamma}=0$ on $\Gamma_{2}$ , (le)

where $u$ is the velocity, $p$ is the pressure, $g:\Gamma_{0}arrow \mathbb{R}^{d}$ is a given boundary velocity, $v(>0)$ is a
viscosity, $D(u)$ is the strain-rate tensor defined by

$D_{ij}(u) \equiv\frac{1}{2}(\frac{\partial ui}{\partial_{X_{j}}}+\frac{\partialu_{j}}{\partial x_{i}}) (i,j=1, \cdots,d)$ ,

$\tau$ is the stress tensor defined by

$\tau\equiv\{-pI+2vD(u)\}nr$

for the identity matrix $I$ and the outward unit normal vector $n_{\Gamma}$ , and $P_{\Gamma}\equiv I-n_{\Gamma}\otimes n_{\Gamma}$ is a
projection operator. We assume meas $(\Gamma_{0})\neq 0.$

Let $T$ be a positive constant. Suppose there exists a solution $(u_{*},p_{*})$ of (1). Considering

$(u,p)=(u_{*},p_{*})+(u’,p’)$

for a perturbation $(u’,p’)$ and using the same notation $(u,p)$ as $(u’,p’)$ , we set a non-stationary
linearized Navier-Stokes problem around $(u_{*},p_{*})$ ; find $(u,p)$ : $\Omega\cross(0, T)arrow \mathbb{R}^{d}\cross \mathbb{R}$ such that

$\frac{\partial u}{\partial t}+(u_{*}\cdot\nabla)u+(u\cdot\nabla)u_{*}-\nabla(2vD(u))+\nabla p=0$ in $\Omega\cross(0,T)$ , (2a)

$\nabla\cdot u=0$ in $\Omega\cross(0, T)$ , (2b)
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$u=0$ on $\Gamma_{0}\cross(0,T)$ , (2c)

$\tau=0$ on $\Gamma_{1}\cross(0,T)$ , (2d)

$P_{\Gamma}\tau=0, u\cdot n_{\Gamma}=0 on\Gamma_{2}\cross(0,T)$ , (2e)

$u=u^{0}$ in $\Omega$ , at $t=0$ , (2f)

where $u^{0}:\Omegaarrow \mathbb{R}^{d}$ is a given initial perturbation. We solve problem (2) by a pressure-stabilized
characteristics finite element scheme for the linearized Navier-Stokes equations to see the sta-
bility of the solution $(u_{*},p_{*})$ of (1).

2 $A$ pressure-stabilized characteristics finite element scheme

In this section we introduce a pressure-stabilized characteristics finite element scheme.
We consider a general equation of (2a),

$\frac{Du}{Dt_{w}}-\nabla(2vD(u))+\nabla p+\sigma u=f$ in $\Omega\cross(0,T)$ , (3)

where $w:\Omega\cross(0,T)arrow \mathbb{R}^{d}$ is a given velocity, $D/Dt_{w}$ is a material derivation defined by

$\frac{D}{Dt_{w}}\equiv\frac{\partial}{\partial t}+w\cdot\nabla,$

$f$ : $\Omega\cross(0, T)arrow \mathbb{R}^{d}$ is a given extemal force, $\sigma$ : $\Omega\cross(0, T)arrow \mathbb{R}^{d\cross d}$ is a given reaction
function. We call problem (2) replacing (2a) with (3) problem (3).

Let $V(g)\equiv\{v\in H^{1}(\Omega)^{d};v|_{\Gamma_{0}}=g, v\cdot n_{\Gamma}|_{\Gamma_{2}}=0\},$ $V\equiv V(O)$ and $Q\equiv L^{2}(\Omega)$ be func-
tion spaces. We define bilinear forms $a$ on $H^{1}(\Omega)^{d}\cross H^{1}(\Omega)^{d},$ $b$ on $H^{1}(\Omega)^{d}\cross Q$ and $\mathscr{A}$ on
$(H^{1}(\Omega)^{d}xQ)\cross(H^{i}(\Omega)^{d}\cross Q)$ by

$a(u,v)\equiv 2v(D(u), D(v)) , b(v,q)\equiv-(\nabla\cdot v, q)$ ,
$\mathscr{A}((u,p), (v,q))\equiv a(u,v)+b(\nu,p)+b(u,q)$ ,

respectively, where $(\cdot, \cdot)$ means $L^{2}(\Omega)$ -inner product. Then, the weak formulation of prob-
lem (3) is to find $(u,p):(0,T)arrow V(g)\cross Q$ such that, for $t\in(O, T)$ ,

$( \frac{Du}{Dt_{w}}(t),v)+\mathscr{A}((u,p)(t), (v,q))+(\sigma(t)u(t),v)=(f(t),v) , \forall(v,q).\in V\cross Q$ , (4)

with $u(O)=u^{0}.$

Let $\mathscr{T}_{h}=\{K\}$ be a triangulation of $\overline{\Omega}(=\bigcup_{K\in \mathscr{T}_{h}}K),$ $h_{K}$ be a diameter of $K\in \mathscr{T}_{h}$ , and
$h \equiv\max_{K\in \mathscr{T}_{h}}h_{K}$ be the maximum element size. We define $V_{h}\subset V$ and $Q_{h}\subset Q$ by piecewise
linear function spaces for the velocity and the pressure, respectively. We define function spaces
$X_{h},$ $Q_{h},$ $V_{h}(g)$ and $V_{h}$ by

$X_{h}\equiv\{\nu_{h}\in C^{0}(\Omega_{h}^{-})^{d};v_{h}|_{K}\in P_{1}(K)^{d}, \forall K\in \mathscr{T}_{h}\},$

$Q_{h}\equiv\{q_{h}\in C^{0}(\Omega_{h}^{-});q_{h}|_{K}\in P_{1}(K), \forall K\in \mathscr{T}_{h}\},$

$V_{h}(g)\equiv X_{h}\cap V(g)$ and $V_{h}\equiv V_{h}(0)$ , respectively, where $P_{1}(K)$ is a polynomial space of piecewise
linear functions on $K\in \mathscr{T}_{h}$ . Let $\Delta t$ be a time increment, $N_{T}\equiv\lceil T/\Delta t\rceil$ be a total number of time
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steps, $\delta$ be a positive constant and $(\cdot, \cdot)_{K}$ be an inner product in $L^{2}(K)^{d}$ . We define bilinear
forms $\mathscr{C}_{h}$ on $H^{1}(\Omega)\cross H^{1}(\Omega)$ and $\mathscr{A}_{h}$ on $(H^{1}(\Omega)^{d}\cross H^{1}(\Omega))\cross(H^{1}(\Omega)^{d}\cross H^{1}(\Omega))$ by

$\mathscr{C}_{h}(p,q)\equiv-\delta\sum_{K\in \mathscr{T}_{h}}h_{K}^{2}(\nabla p, \nabla q)_{K},$

$\mathscr{A}_{h}((u,p), (v,q))\equiv a(u,v)+b(v,p)+b(u,q)+\mathscr{C}_{h}(p,q)$,

respectively. Let $X_{1}^{n}(x)$ be an upwind point of $x$ defined by

$X_{1}^{n}(x)\equiv x-w^{n}(x)\Delta t,$

and the symbol $\circ$ mean composition of functions, i.e., for $v:\Omegaarrow \mathbb{R}^{d},$

$v\circ X_{1}^{n}(x)\equiv v(X_{1}^{n}(x))$ .

Let $f\in C^{0}([0, T];L^{2}(\Omega)^{d})$ and $u^{0}\in V(g)$ be given. Let an approximate function $u_{h}^{0}\in V_{h}(g)$ of

$find\{(u_{h}^{n},p_{h}^{n})\}_{n=1}\subset V_{h}(g)\cross Q_{h}$ suchthat,$forn=lu^{0}$begiven. $Af_{T}ressure-stabi1$ izedcharacteristicsfinite
$e1ementN_{T}$

scheme for problem (3) is to

$( \frac{u_{h}^{n}-u_{h}^{n-1}\circ X_{1}^{n}}{\Delta t},v_{h})+\mathscr{A}_{h}((u_{h}^{n},p_{h}^{n}), (v_{h},q_{h}))=(f^{n},v_{h}) , \forall(v_{h},q_{h})\in V_{h}\cross Q_{h}$ . (5)

Remark 1. Let $Q_{0}\equiv L_{0}^{2}(\Omega)\equiv\{q\in L^{2}(\Omega);(q, 1)=0\}$ and $Q_{0h}\equiv Q_{h}\cap Q_{0}$ befunction spaces.
When $\Gamma_{0}=\Gamma,$ $Q$ in the weak form (4) and $Q_{h}$ in scheme (5) are replaced with $Q_{0}$ and $Q_{0h},$

respectively.

Scheme (5) can deal with convection-dominated (small viscosity, high Reynolds number)
problems by the method of characteristics. When we find $(u_{h}^{n}, p_{h}^{n})$ in scheme (5), the composite
function $u_{h}^{n-1}\circ X_{1}^{n}$ is a known function and a coefficient matrix of the system of the linear
equations is symmetric. The advantage, i.e., symmetry of the matrix, enables us to use linear
iterative solvers for symmetric matrices, i.e., MINRES, $CR$ [1,8] and so on. Since the coefficient
matrix is independent of step number $n$ , it is enough to make the matrix only at the first time
step. The scheme employs a cheap element Pl $/P1$ , i.e., a piecewise linear approximation for
both velocity and pressure, it is useful for large scale computations especially in $3D$ . Although
Pl $/P1$ element does not satisfy the conventional inf-sup condition [3], the scheme works by a
pressure-stabilization term $\mathscr{C}_{h}$ introduced in [2].

Let $c$ be a generic positive constant, independent of $h$ and $\Delta t$ . We use norms and seminorms,
$\Vert\cdot\Vert_{k}\equiv\Vert\cdot\Vert_{H^{k}(\Omega)}(k=0,1),$ $\Vert\cdot\Vert_{V_{h}}\equiv\Vert\cdot\Vert_{V}\equiv\Vert\cdot\Vert_{1},$ $\Vert\cdot\Vert_{Q_{h}}\equiv\Vert\cdot\Vert_{Q}\equiv\Vert\cdot\Vert_{0},$ $\Vert(v,q)\Vert_{V\cross Q}\equiv$

$\{\Vert v\Vert_{V}^{2}+\Vert q\Vert_{Q}^{2}\}^{1/2},$

$\Vert u\Vert_{l^{\infty}(X)}\equiv\max_{n=0,\cdots,N_{T}}\Vert u^{n}\Vert_{X},\Vert u\Vert_{l^{2}(X)}\equiv\{\Delta t\sum_{n=1}^{N_{T}}\Vert u^{n}\Vert_{X}^{2}\}^{1/2}$

$|q|_{h} \equiv\{\sum_{K\in \mathscr{T}_{h}}h_{K}^{2}(\nabla q,\nabla q)_{K}\}^{1/2} |p|_{l^{2}(|\cdot|_{h})}\equiv\{\Delta t\sum_{n=1}^{N_{T}}|p^{n}|_{h}^{2}\}^{1/2}$

for $X=L^{2}(\Omega)$ and $H^{1}(\Omega).\overline{D}_{\Delta t}$ is the backward difference operator defined by

$\overline{D}_{\Delta t}a^{n}\equiv\frac{a^{n}-a^{n-1}}{\Delta t}.$

Scheme (5) has the following stability and convergence property.
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Theorem 1 (stability, [7]). (i) Suppose $\Gamma_{0}=\Gamma,$ $g=0$ and $w|_{\Gamma}=0$. Suppose the given func-
tions $w,$ $\sigma$ and $f$ are smooth enouth. Let $\Delta t_{0}$ be any fixed positive number satisfying $\Delta t_{0}<$

$1/\Vert w\Vert_{C^{J}(W^{1,\infty}(\Omega))}$ . Then, for any $\Delta t\in(0,\Delta t_{0}] and u_{h}^{0}\in V_{h}$ there exist $a$ unique solution $(u_{h},p_{h})$

ofscheme (5), and a positive constant $c=c(u_{h}^{0},f)$ such that

$\Vert u_{h}\Vert_{l^{\infty}(L^{2})}, \sqrt{v}\Vert u_{h}\Vert_{l^{2}(H^{1})}, \sqrt{\delta}|p_{h}|_{l^{2}(|\cdot|_{h})}\leq c.$

(ii) Moreover, suppose there exists $p_{h}^{0}\in Q_{h}$ such that

$b(u_{h}^{0},q_{h})+\mathscr{C}_{h}(p_{h}^{0},q_{h})=0, \forall q_{h}\in Q_{h}.$

Then, there exists a positive constant $c=c(1/v,u_{h}^{0},p_{h}^{0},f)$ such that

$\sqrt{v}\Vert u_{h}\Vert_{l^{\infty}(H^{1})}, \Vert\overline{D}_{\Delta t}u_{h}\Vert_{l^{2}(L^{2})}, \Vert p_{h}\Vert_{l^{2}(L^{2})}\leq c.$

Theorem 2 (error estimate, [7]). (i) Suppose that the same assumptions in Theorem 1 hold, that
the solution of (4) are smooth enough, and that $u^{0}$ satisfies compatibility conditions $\nabla\cdot u^{0}=0$

and $u^{0}\in V$ . Suppose $\Vert u_{h}^{0}-u^{0}\Vert_{0}\leq ch$ . Then, there exists a positive constant $c’=c’(1/v,u,p)$
such that

$\Vert u_{h}-u\Vert_{l^{\infty}(L^{2})}, \sqrt{v}\Vert u_{h}-u\Vert_{l^{2}(H^{1})}, \sqrt{\delta}|p_{h}-p|_{l^{2}(|\cdot|_{h})}\leq c’(\Delta t+h)$ .

(ii) Moreover, suppose $u_{h}^{0}$ is the first component of the Stokes projection of $(u^{0},0)$ . Then, there
exists a positive constant $c=c(1/v,u,p)$ such that

$\sqrt{v}\Vert u_{h}-u\Vert_{l^{\infty}(H^{1})}, \Vert\overline{D}_{\Delta t}u_{h}-\frac{\partial u}{\partial t}\Vert_{l^{2}(L^{2})}, \Vert p_{h}-p\Vert_{l^{2}(L^{2})}\leq c(\Delta t+h)$,

Remark 2. (i) The constant $c$ in Theorem l-(i) is independent of $v$ . The fact implies that
scheme (5) is robust even for convection-dominated problems. (ii) The choice of $u_{h}^{0}$ in Theo-
rem 2-(ii) satisfies $\Vert u_{h}^{0}-u^{0}\Vert_{0}\leq ch$

3 Computation of problem (2) by scheme (5)

In this section we compute problem (2) by scheme (5) with $w\equiv u_{h}^{*}$ and $\sigma_{ij}=\partial u_{hi}^{*}/\partial x_{j}$ for a
numerical stationary solution $(u_{h}^{*},p_{h}^{*})$ of the Navier-Stokes equations (1).

We set $d=2.$ $A$ quadrature formula of degree five (seven points formula) [9] is employed
for computation of the integral

$\int_{K}u_{h}^{n-1}\circ X_{1}^{n}(x)v_{h}(x)dx$

appeaning in scheme (5). Let $Re\equiv 1/v$ be the Reynolds number. We set $\delta=\delta_{)}Re$ for a fixed
positive number $h\cdot h=0.05$ is chosen by some numerical experience. The system of linear
equations is solved by MINRES. Let

$\Omega\equiv\{x\in \mathbb{R}^{2};-7.5<x_{1}<22.5, -7.5<x_{2}<7.5, |x|>0.5\}$ (6)

be the domain and $\mathscr{T}_{h}$ be the triangulation of $\overline{\Omega}$ . Fig. 1 shows $\Omega$ (left) and $\mathscr{T}_{h}$ around the
cylinder. The boundary conditions for the stationary flows are also put in the left figure. The
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number of elements is 52, 416, the number of nodes is 26, 608 $(h_{\min}=1.16\cross 10^{-2},$ $h=h_{\max}=$
$2.50\cross 10^{-1})$ and the number of degrees of freedom is 78, 924. The triangulation $\mathscr{T}_{h}$ is symmet-
ric with respect to the $x_{1}$ -axis, cf. Fig. 1 (right). Let $\Omega+\equiv\{x\in\Omega;x_{2}>0\}$ be the upper half
ddmain. We solve the nonstationary Navier-Stokes equations with the boundary conditions of
Fig. 1 (left) in $\Omega+$ by a pressure-stabilized characteristics finite element scheme [5, 6], where
symmetric boundary conditions $\tau_{1}=0$ and $u_{2}=0$ are imposed on the $x_{1}$ -axis. Then, a station-
ary solution defined in $\overline{\Omega}+$ is obtained for sufficiently large time, and we construct a stationary
solution $(u_{h}^{*},p_{h}^{*})\in V_{h}(g)\cross Q_{h}$ defined in $\overline{\Omega}$ which has $x_{1}$ -axis symmetry $(u_{h1}^{*}$ ; even, $u_{h2}^{*}$ : odd,

$p_{h}^{*}$ : even extensions). Fig. 2 exhibits streamlines (left) and pressure contours (right) of the sta-
tionary solution $(u_{h}^{*},p_{h}^{*})$ for $Re=10$ (top) and 100 (bottom). We set the following example.

$\Gamma_{2}:\tau_{1}=0, u_{2}=0$

$\vdash\hat{o_{\wedge}\check{\supset\ovalbox{\tt\small REJECT}|}}$

$r_{0_{O}^{:u=(0,0)^{T}}}$ $\vdash\hat{\vee O^{-}\circ P||}$

$b^{\dot{o}}$

$[–$

$\Gamma_{2}:\tau_{1}=0, u_{2}=0$

Figure 1: The domain $\Omega$ with the boundary conditions for the Navier-Stokes equations (left)
and the used triangular mesh around the cylinder (right).

Example 1. In (2) we set $\Omega$ by (6), $T=100$, six values of $v,$

$v=10^{-1},40^{-1},50^{-1},60^{-1},70^{-1},10^{-2}(Re=10,40,50,60,70,100)$,

$w=u_{h}^{*},$ $\sigma_{ij}=\partial u_{hi}^{*}/\partial x_{j}(i,j=1,2),$ $f=0$ and $u^{0}\approx 0.$

We solve Example 1 by scheme (5) with $\Delta t=1/50$ . The small perturbation $u_{h}^{0}=(u_{h1}^{0},u_{h2}^{0})^{T}$

is set as $u_{h1}^{0}(P)=0$ for all nodes $P,$ $u_{h2}^{0}(P)=0.01$ for a node $P=(-1.36,0)^{T}$ and $u_{h2}^{0}(P)=0$

for the other nodes $P.$

We compute $\Vert(u_{h}^{n},p_{h}^{n})\Vert_{V\cross Q}$ for $n=1,$ $\cdots,N_{T}$ to see the stability of the stationary solutions
$(u_{h}^{*},p_{h}^{*})$ . The graphs of $\Vert(u_{h}^{n},p_{h}^{n})\Vert_{V\cross Q}$ versus $t$ are shown in Fig. 3. For $Re=100,70$ and 60 the
value of $\Vert(u_{h}^{n},p_{\grave{l}}^{n})\Vert_{V\cross Q}$ monotonically increases after $t=3$ , and for $Re=50,40$ and 10 the value
of $\Vert(u_{h}^{n},p_{h}^{n})\Vert_{V\cross Q}$ finally decreases. The results imply that the solutions $(u_{h}^{*},p_{h}^{*})$ for $Re=10,40$
and 50 and 60,70 and 100 are stable and unstable, respectively. Since $Re=50$ is close to the
critical Reynolds number for the onset of instability, cf. [4], it is preferable that smaller $h$ and
$\Delta t$ are employed to obtain the symmetric solution of (1) and to conclude whether the solution
is stable or not. Fig. 4 shows streamlines (top) and pressure (bottom) contours of the final state
$(u_{h},p_{h})(t=100)$ for $Re=100$ . The amplified perturbation is observed.
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Figure 2: Streamlines $(left, [-1,1;0.1])$ and pressure contours $($right, $[-1,1;0.02])$ of the
stationary solution $(u_{h}^{*},p_{h}^{*})$ for $Re=10$ (top) and 100 (bottom).

$0 20 40 60 80 100$$t$

Figure 3: Graphs of $\Vert(u_{h},p_{h})(t)\Vert_{V\cross Q}$ vs. $t$ for $Re=10,40,50,60,70$ and 100.
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$O]O\circ\triangleright 0\circ\circ$ $0$

Figure 4: Streamlines $(top, [-0.02,0.02;0.001])$ and pressure contours (bottom,
$[-0.003$ , 0.003; 0.0001 $])$ of $(u_{h},p_{h})(t=100)$ for $Re=100.$

4 Conclusions
We have introduced a pressure-stabilized characteristics finite element scheme for the linearized
Navier-Stokes equations, and have applied the scheme to the linear stability analysis of flows
past a circular cylinder. In order to make the stationary solutions of the Navier-Stokes equa-
tions a pressure-stabilized characteristics finite element scheme [5, 6] has been employed. The
numerical results have shown that stationary solutions are stable for $Re=10,40$ and 50 and
unstable for $Re=60,70$ and 100 under the computation settings (mesh and At). The obtained
results imply that the scheme is applicable to such linear stability analysis.
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