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Abstract

The main purpose of this niote is consider the homotopy type of the
space of algebraic maps from a real projective space to a projective
smooth toric variety as in [14]. The main result of this paper (Theorem
1.1) is also regarded as one of generalizations of the previous work of
the second and third authors [19)].

An irreducible normal algebraic variety X (over C) is called a toric variety
if it has an algebraic action of algebraic torus T" = (C*)", such that the orbit
T - % of some point * € X is dense in X and isomorphic to T". A finite
correction ¥ of strongly convex rational polyhedral cones in R™ is called a
fan if every face of element of ¥ is belongs to ¥ and the intersection of any
two elements of X is a face of each. It is known that A toric variety X is
completely characterized up to isomorphism by its fan ¥, and we denote by
Xs the corresponding toric variety. For an n dimensional lattice polytope
P, we denote by £p the normal fan of P in R™. It is known that the toric
variety Xy is projective if and only if ¥ = ¥ p for some n dimensional lattice
polytope P in R".

We shall use the symbols {z};_, to denote variables of polynomials,
and for f, -+, fs € Clz1, -+, 2], let V(f1,---, fs) denote the affine variety
V(fi, -, fs) ={x€C| fi(x) =0 for each 1 < k < s}.

Let ¥(1) = {;, -, pr} denote the set of all one dimensional cones (or
called a ray) in a fan ¥, and let ny € Z™ denote the generator of px N Z™
called the primitive element of py for each 1 < k < r. Define the affine variety
Zs C C" by Zs = V(2%|c € X), where 2° denotes the monomial given
by 2% = H15k5r,nk¢a 2z, € Zlz1, -+ ,2] (0 € ¥). Let Gg C T" denote the

subgroup consisting of all 7-tuples (u1, - - - , ) € T7 such that [T}_, u™™ =



1 for any m € Z", where we set (x,y) = DoroiTeyk forx = (24, -+ 1), y =
(y1,-+- ,yn) € R™. We say that a set of primitive elements {n;,--- ,n;,} is
primative if they do not lie in any cone in ¥ but every proper subset does. It

is known that

ZE: U V(Ziw"' 7Zis)'

{ni;,,n;, }: primitive

Note that Zy is a closed variety of dimension 2(r — Tmin), Where we set
Tmin = min {s € Z; | {n;,,--- ,m;,} is primitive }.

It is also known that if the set {n;,--- , n,} spans R", there is an isomorphism
Xz = (C"\ Zz)/Gs, where the group Gy acts on the complement C” \ Zs
by the coordinate-wise multiplication.

For connected spaces X and Y, let Map(X,Y) be the space of all con-
tinuous maps f : X — Y, and let Map*(X,Y) denote the corresponding
subspace of all based continuous maps. If m > 2 and g € Map*(RP™ !, X ),
let F(RP™, X;g) denote the subspace of Map*(RP™, X ) given by

F(RP™, X; g) = {f € Map"(RP™, X) : f[RP™" = g},

where we identify RP™! ¢ RP™ by putting z,, = 0. It is known that there
1s a homotopy equivalence F(RP™, X;g) ~ Q™X.
From now on, we assume that the following two conditions are satisfied:

(1.1) Let ¥beafanin R, (1) = {p;, - - , p,} be the set of all one-dimension
cones in %, and all primitive elements {n;, --- ,n,} of the fan ¥ spans
R™, where ny € Z" denotes the primitive element of p; for 1 < k < r.

(1.2) Let D = (dy, -+ ,d;) € (Z»1)" be an r-tuple of integers such that

Z;:l dkl’lk = O
Then, we can identify X5 = (C"\Zz)/Gyx as above. For each (a;,--- ,a,) €
C" \ Zz, we denote by [ay,--- ,a,] the corresponding element of Xs. Let
Him C Clz,...,2y] denote the subspace consisting of all homogeneous

polynomials of degree d. Let Ap(m) denote the space
Ap(m) = Haym X Hagm X =+ X Ha,m

and let Aps(m) C Ap(m) denote the subspace consisting of all r-tuples
(fi,-++, fr) € Ap(m) such that (fi(x), -+, fr(x)) ¢ Zs for any z € R™H\
{0}. Let 7o € X5 be the base point such that 2o = [z1," - , 2] for some
fixed (210, ,%r0) € C"\ Zg. Then let Ap(m,Xs) C Aps(m) denote
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the subspace consisting of all r-tuples (f1,--- , fr) € Apz(m) satisfying the
condition (fy(ey), -, fr(€1)) = (z10,"*+ ,%rp), where e; = (1,0,---,0) €
R™*+! and let us choose [e;] = [1 : 0 : --- : 0] as the base-point of RP™.
Define the natural map j) : Ap z(m) — Map(RP™, Xx) by

Ip(fi e fo)([zo t o+ s zml) = [f1(30), -+, fr(x)]

for x = (xo, - ,Zm) € R™1\ {0}. Since the space Aps(m) is connected,
the image of j;, lies in a connected component of Map(RP™, X5), which is
denoted by Map,,(RP™, Xx).

This also gives the natural map j;, : Ap s(m) — Mapp(RP™, X5). Note
that ]lD(fla e 7f’r‘) € Map*(RPmaXE) if (f17 Ut 7f7‘) € AD(m7XE)’ Hence)
if we set Map® (RP™, X5) = Map*(RP™, X5) N Mapy(RP™, X5), we have
the natural map ip = jj|Ap(m, Xz) : Ap(m, X5) — Mapp(RP™, X5).

Suppose that m > 2 and let us choose a fixed element (g1, »,9r) €
Ap(m —1,X5). Foreach 1 < k < r,let By = {gx + 2mh : h € Hap—1,m}-
Then define the subspace Ap(m, Xs;9) C Ap(m, Xs) by

AD(m, Xz;g) = AD(m, Xz) N (Bl X By X ¢+ X BT)

It is easy to see that ip(f1, - -+ , fr)|RP™ ' = gif (f1, -, fr) € Ap(m, X5, 9),
where g denotes the map in Map},(RP™ !, Xx) given by

g(lzo: -t Tmt]) = [03), -+ ()] for x = (20, , 1) €R™\ {0},

Then, define the map i}, : Ap(m,Xs;9) - F(RP™, X5;g9) ~ Q™ Xs by
the restriction i, = ip|Ap(m,Xx;g). Now define the equivalence rela-
tion “~"on Aps(m) by (fi, -+, fr) ~ (g1,---,gr) if there exists some el-
ement A € R* such that fy = A%g; for any 1 < k < r. We denote by
Ap(m, X5) the quotient space Ap(m, Xz) = Apz(m)/ ~. Then define the

—~—

map jp : Ap(m, Xz) = Mapp(RP™, X5) by jp([f1, -+, fr])([zo, -, 2]) =
[fl(x)7 e 5f7”(x)] for x = (:EO) e )xm) € Rm+1 \ {0}
A map f:RP™ — Xy is called an algebraic map of degree D if it can be

represented as a rational map (or regular map) of the form

f =]’D(f1a )fr) = [fl)"' 7.f'r] for some (fla"' ’fr) € AD,E(m)'

We denote by Alg,(RP™, X5) the space of all algebraic maps f : RP™ — X5
of degree D. Consider the natural projection I', : Ap s(m) — Algp(RP™, Xx)

given by Tp(fi, - f,) = Gb(fiy+ »fr) = Lfir-*- » fr]- Then it clealy in-
duces a natural projection I'p : Ap(m, Xs) — Algp(RP™, X5).
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For g € Algh,(RP™1, Xy), let Algh (RP™, Xz) and Alg*(RP™, Xx; g) de-
note the subspaces of Alg,(RP™, X5) given by

Alg},(RP™, Xz) = Algp(RP™, X5) N Map*(RP™, Xg)
Alg},(RP™, Xg;9) = Algp(RP™, X5) N F(RP™, Xg; g)

Then the projection I'; induces the projection maps by the restrictions

Up : Ap(m, Xz) — Algh(RP™, Xx)
{‘I"D : Ap(m, X5; 9) — Alghh(RP™, X3; g)
Let
Jpc: AlgD(RPm,Xz) S MapD(]RPm,XE)
ipc : Algh(RP™, X5) S Maph (RP™, Xx)
ipc : Algh(RP™, X5;9) 5 F(RP™, Xs; g) ~ Q™ X5

denote the inclusions. It is easy to see that the following equalities hold:

ip =jpcoTp : Ap(m, Xz) — Mapp, (RP™, Xs)
’iD = iD,C o) \I/‘D : AD(m, Xg) — Map*D(RPm,Xg)
ip =ipco ¥y : Ap(m, Xs;g) —» F(RP™, X5; g) ~ Q™ X5,

Let g € Alg},(RP™ ', X5) be any fixed algebraic map of degree D and we
choose an element (g1, ,g,) € Ap(m — 1, Xx) such that g = [g1,- - , g,].

Now we can state the our main result as follows.

Theorem 1.1 ([14]). Let D = (d1,--- ,d,) € (Z>1)" and let & be a complete
smooth fan in R™ satisfying the above conditions (1.1) and (1.2). Then if
2<m < 2(rmin — 1) and Xy is a smooth compact toric variety, the maps

Jjp: leg(m, Xs) = Mapp (RP™, Xx)
iD : AD(m,Xg) %,MapB(RPm,XE)
ip : Ap(m, X5;9) — F(RP™, X5;g) ~ Q™ Xy

are homology equivalences through dimension D(dy,--- ,d,;m), where the
number D(dy,--- ,d,;m) is given by

D(dy, -+ ,dp;m) = (2rmin — m — ) min{dy,dy,--- ,d,} —2. O

Remark. A map f : X — Y is called a homology equivalence through di-
mension N if the induced homomorphism f, : Hy(X,Z) — Hy(Y,Z) is an
isomorphism for any k < N.
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