ON THE GROUP OF HOLOMORPHIC AND ANTI-HOLOMORPHIC AUTOMORPHISMS OF A COMPACT HERMITIAN SYMMETRIC SPACE

SOJI KANEYUKI

ABSTRACT. Let f be a complex function on a domain in the complex plane \mathbb{C} . Then f is holomorphic or anti-holomorphic, if and only if f is a conformal map. we are interested in generalizing this to higher dimensional cases. In this paper, for a compact irreducible Hermitian symmetric space M, we determine the group $H^{\pm}(M)$ of all holomorphic and anti-holomorphic automorphisms of M, and we characterize the group $H^{\pm}(M)$ as the automorphism group of a certain G-structure on M, called the generalized conformal structure. This paper is a short-cut version; the detailed one will appear elsewhere.

1. SIMPLE GRADED LIE ALGEBRAS AND COMPACT HERMITIAN SYMMETRIC SPACES

1.1.

• Let

$$\tilde{\mathfrak{g}} = \tilde{\mathfrak{g}}_{-1} + \tilde{\mathfrak{g}}_0 + \tilde{\mathfrak{g}}_1. \tag{1.1}$$

be a complex simple graded Lie algebra (abbrev. GLA).

- $Z \in \tilde{\mathfrak{g}}_0$ is the characteristic element of $\tilde{\mathfrak{g}}$, that is, ad Z = k1 on $\tilde{\mathfrak{g}}_k$, $k = 0, \pm 1$.
- τ is the grade-reversing Cartan involution of $\tilde{\mathfrak{g}}$, that is, $\tau(\tilde{\mathfrak{g}}_k) = \tilde{\mathfrak{g}}_{-k}$ $k = 0, \pm 1$, which is equivalent to $\tau(Z) = -Z$. Note that τ is a conjugation of $\tilde{\mathfrak{g}}$ with respect to a compact real form \mathfrak{k} of $\tilde{\mathfrak{g}}$.
- Aut $\tilde{\mathfrak{g}}(\subset \operatorname{GL}(\tilde{\mathfrak{g}}))$: the automorphism group of the complex Lie algebra $\tilde{\mathfrak{g}}$.
- $\tilde{G}_0 := \operatorname{Aut}_{\operatorname{gr}} \tilde{\mathfrak{g}} := \{g \in \operatorname{Aut} \tilde{\mathfrak{g}} : g(\tilde{\mathfrak{g}}_k) = \tilde{\mathfrak{g}}_k, k = 0, \pm 1\}$: the group of grade-preserving automorphisms of $\tilde{\mathfrak{g}}$. \tilde{G}_0 coincides with the centralizer $C_{\operatorname{Aut} \tilde{\mathfrak{g}}}(Z)$ of Z in Aut $\tilde{\mathfrak{g}}$.

Note that $\operatorname{Lie} \tilde{G}_0 = \tilde{\mathfrak{g}}_0$.

- $\tilde{U} := \tilde{G}_0 \exp \tilde{\mathfrak{g}}_{-1}$.
- $\tilde{G} := \tilde{G}_0 \operatorname{Int} \tilde{\mathfrak{g}}$: an open subgroup of Aut $\tilde{\mathfrak{g}}$. \tilde{U} is a parabolic subgroup of \tilde{G} , and \tilde{G}_0 is the Levi subgroup of \tilde{U} .
- We have the (complex) flag manifold $M = \tilde{G}/\tilde{U}$. It can be shown that \tilde{G} acts on M effectively.
- The symmetric space expression of M.

 $\tilde{\tau}$: the Cartan involution of \tilde{G} defined by $\tilde{\tau}(g) = \tau g \tau, \ g \in \tilde{G}$.

Then the set K of all $\tilde{\tau}$ -fixed elements in \tilde{G} is a compact real form of \tilde{G} . Note that Lie $K = \mathfrak{k}$. M is expressed as

$$M = G/U = K/K_0$$

where $K_0 = K \cap \tilde{U}$. Here K/K_0 is a compact irreducible Hermitian symmetric space. K/K_0 has a K-invariant Kähler-Einstein metric (cf. [5]).

• The identity component of K coincides with that of the isometry group I(M).

HOLOMORPHIC AND ANTI-HOLOMORPHIC AUTOMORPHISMS

Theorem 1.1. Let $\operatorname{Hol}^+(M)$ be the group of all holomorphic automorphisms of $M = \tilde{G}/\tilde{U}$. Then we have

$$\operatorname{Hol}^+(M) = \tilde{G}.$$

Proof. (Sketch)

There are four steps. First of all, $\operatorname{Hol}^+(M)$ is a complex Lie group by a theorem of Bochner-Montgomery ([1, 2]).

(1) As was noted before, \tilde{G} acts on M effectively and holomorphically. Hence $\tilde{G} \subset \operatorname{Hol}^+(M)$.

(2) The existence of the K-invariant Kähler-Einstein metric on M implies that

$$\operatorname{Lie} \operatorname{Hol}^+(M) = (\operatorname{Lie} I(M))^{\mathbb{C}} = \mathfrak{k}^{\mathbb{C}} = \tilde{\mathfrak{g}},$$

by Matsushima [6]. Thus \tilde{G} is an open subgroup of $\operatorname{Hol}^+(M)$.

(3) One can show that the center of $\operatorname{Hol}^+(M)$ reduces to the identity. Therefore $\operatorname{Hol}^+(M)$ is realized as an open subgroup of $\operatorname{Aut} \tilde{\mathfrak{g}}$ by taking the adjoint representation of $\operatorname{Hol}^+(M)$ on $\tilde{\mathfrak{g}}$.

(4) M has the coset space expression in two ways:

$$M = \hat{G}/\hat{U} = \operatorname{Hol}^+(M)/\hat{U},$$

where $\hat{U} \supset \tilde{U}$. It is easy to see that $\hat{U} = \tilde{U}$, which shows the coincidence of the numerators.

1.2. Here we consider the scalar restrictions of the objects in 1.1 to \mathbb{R} .

• Let

$$\mathfrak{g} = \mathfrak{g}_{-1} + \mathfrak{g}_0 + \mathfrak{g}_1$$

be the real simple GLA, which is the scalar restriction of the complex GLA (1.1) to \mathbb{R} .

Let I be the complex structure on \mathfrak{g} corresponding to the *i*-multiplication on $\tilde{\mathfrak{g}}$. $\tilde{\mathfrak{g}}$ can be expressed as the pair (\mathfrak{g}, I) .

- $Z \in \mathfrak{g}$ and τ are the same as those for $\tilde{\mathfrak{g}}$.
- Aut $\mathfrak{g}(\subset \operatorname{GL}(\mathfrak{g}))$: the automorphism group of the real Lie algebra \mathfrak{g} . Note that Aut $\tilde{\mathfrak{g}} \subset \operatorname{Aut} \mathfrak{g}$.
- $G_0 := \operatorname{Aut}_{\operatorname{gr}} \mathfrak{g}$. Note that the inclusion $\tilde{G}_0 \subset G_0$ and $\operatorname{Lie} G_0 = \mathfrak{g}_0$ are valid.
- $U := G_0 \exp \mathfrak{g}_{-1} \supset \tilde{U}.$
- The open subgroup G of Aut \mathfrak{g} : Aut $\mathfrak{g} \supset G := G_0$ Int $\mathfrak{g} \supset \tilde{G}$. U is a parabolic subgroup of G, and G_0 is the Levi subgroup of U.
- As a real manifold, M is expressed as a (real) flag manifold G/U. This is non-trivial, and will be proved in Corollary 2.4.

The following theorem will be proved in the section 3.

HOLOMORPHIC AND ANTI-HOLOMORPHIC AUTOMORPHISMS

Theorem 1.2. Let $\operatorname{Hol}^{\pm}(M)$ be the group of all holomorphic or anti-holomorphic automorphisms of M. Then we have

$$\operatorname{Hol}^{\pm}(M) = G.$$

2. The relation between the groups \tilde{G} and G

Lemma 2.1. Let $\tilde{\mathfrak{g}} = \tilde{\mathfrak{g}}_{-1} + \tilde{\mathfrak{g}}_0 + \tilde{\mathfrak{g}}_1$ be a complex simple GLA and let Z and τ be as before. Then there exists a unique normal real form \mathfrak{g}^N of $\tilde{\mathfrak{g}}$ such that $Z \in \mathfrak{g}^N$ and that $\tau(\mathfrak{g}^N) \subset \mathfrak{g}^N$.

 \mathfrak{g}^N can be expressed as a GLA

$$\mathfrak{g}^N = \mathfrak{g}_{-1}^N + \mathfrak{g}_0^N + \mathfrak{g}_1^N,$$

where $\mathfrak{g}_k^N = \mathfrak{g}^N \cap \tilde{\mathfrak{g}}_k$ $(k = 0, \pm 1)$.

Now let ν be the conjugation of (\mathfrak{g}, I) with respect to \mathfrak{g}^N . Then ν satisfies the following equalities:

$$\nu^2 = 1, \ \nu I = -I\nu$$

Since $\nu(Z) = Z$, ν is grade-preserving on \mathfrak{g} . Hence we have

$$\nu \in G_0 \setminus \tilde{G}_0, \quad \nu \in \operatorname{Aut} \mathfrak{g} \setminus \operatorname{Aut} \tilde{\mathfrak{g}}.$$

Let $\bar{\mathfrak{g}}$ be the complexification of \mathfrak{g} . We extend ν \mathbb{C} -linearly to $\bar{\mathfrak{g}}$.

Proposition 2.2.

$$\operatorname{Aut} \mathfrak{g} = (\operatorname{Aut} \tilde{\mathfrak{g}}) \cdot \langle \nu \rangle. \tag{2.1}$$

Proof. Let Π be the Dynkin diagram of the complex simple Lie algebra $\tilde{\mathfrak{g}}$. Then it is well-known that

$$\operatorname{Aut} \tilde{\mathfrak{g}} / \operatorname{Int} \tilde{\mathfrak{g}} = \operatorname{Aut}(\Pi). \tag{2.2}$$

The Satake diagram of the real simple Lie algebra \mathfrak{g} is given by the pair $(\overline{\Pi}, \nu)$, where $\overline{\Pi}$ is the Dynkin diagram of $\overline{\mathfrak{g}}$ which is the pair of two copies of Π . ν acts on $\overline{\Pi}$ as the Satake involution. Now let us denote by $(\operatorname{Aut} \mathfrak{g})^z$ the Zariski connected component of Aut \mathfrak{g} . Then we see that $(\operatorname{Aut} \mathfrak{g})^z = \operatorname{Int} \tilde{\mathfrak{g}}$. Applying a result of H. Matsumoto ([7]) we conclude that

$$\operatorname{Aut} \mathfrak{g}/\operatorname{Int} \tilde{\mathfrak{g}} = \operatorname{Aut} \mathfrak{g}/(\operatorname{Aut} \mathfrak{g})^{z} = \operatorname{Aut}(\bar{\Pi}, \nu) = <\nu > (\operatorname{Aut}(\Pi)).$$
(2.3)

(2.1) follows from (2.2) and (2.3).

From Proposition 2.2 we have

Theorem 2.3. (1) $G_0 = \tilde{G}_0 \cdot \langle \nu \rangle$, (2) $U = \tilde{U} \cdot \langle \nu \rangle$, (3) $G = \tilde{G} \cdot \langle \nu \rangle$. In particular, \tilde{G} is a normal subgroup of G.

Corollary 2.4. The complex flag manifold M is expressed as the real flag manifold

$$M = \tilde{G}/\tilde{U} = G/U.$$

Proof. By Theorem 2.3, we have $G = \tilde{G}U$. Consequently we get

$$G/U = \tilde{G}U/U = \tilde{G}/\tilde{G} \cap U = \tilde{G}/\tilde{U} = M.$$

3. The proof of Theorem 1.2

Definition 3.1. Let X be a smooth manifold, I a complex structure on X and let $\sigma : X \to X$ be a diffeomorphism. Then σ is said to be an *anti-holomorphic involution*, if the following conditions are satisfied on X

$$\sigma^2 = 1, \ \sigma_* I = -I\sigma_*,$$

where σ_* is the differential of σ . The pair (σ, I) is called an *anti-holomorphic pair* (shortly, AHP).

3.1. The AHP $(\tilde{\nu}, \tilde{I})$ on \tilde{G}

We identify the Lie algebra (\mathfrak{g}, I) with the Lie algebra of left-invariant vector fields on \tilde{G} . The complex structure I on \mathfrak{g} and the left-invariant complex structure \tilde{I} on \tilde{G} are related with each other by the equality

$$\tilde{I}_p X_p = (IX)_p, \ p \in \tilde{G}, X \in \mathfrak{g},$$

which is also expressed as

$$\tilde{I}X = IX,\tag{3.1}$$

where both sides are vector fields on \tilde{G} .

Next, noting that $\nu \tilde{G} \nu^{-1} \subset \tilde{G}$, we define the automorphism $\tilde{\nu} : \tilde{G} \to \tilde{G}$ as

$$\tilde{\nu}(a) = \nu a \nu^{-1}, \ a \in \tilde{G}. \tag{3.2}$$

Then $\tilde{\nu}$ is naturally extended to the whole G.

Lemma 3.2. $(\tilde{\nu}, \tilde{I})$ is an AHP on \tilde{G}

Proof. Note that $\tilde{\nu}_* = \nu$. By using this equality, (3.1) and the anti-linearity of ν , we can conclude the equality $\tilde{\nu}_* \tilde{I} = -\tilde{I}\tilde{\nu}_*$.

3.2. The AHP (ν_M, J) on M

First of all, note that

$$\tilde{\nu}(\tilde{U}) = \nu \tilde{U} \nu^{-1} = \tilde{U}. \tag{3.3}$$

The left action of ν on G/U at a point gU ($g \in G$) can be expressed as

$$\nu(gU) = \nu gU = \nu g \nu^{-1} \nu U \nu^{-1} = \nu g \nu^{-1} U = \tilde{\nu}(g) U.$$

Restricting this equality to \tilde{G}/\tilde{U} , we have the following action of ν on \tilde{G}/\tilde{U} :

$$\nu(a\tilde{U}) = \tilde{\nu}(a)\tilde{U}, \ a \in \tilde{G}.$$
(3.4)

In the following, the ν acting on \tilde{G}/\tilde{U} will be denoted by ν_M .

Let $\pi : \tilde{G} \to M = \tilde{G}/\tilde{U}$ be the natural projection. Then the following commutativity follows from (3.4):

$$\pi\tilde{\nu} = \nu_M \pi. \tag{3.5}$$

Next we will define the invariant complex structure J on $M = \tilde{G}/\tilde{U}$, which is π -related to \tilde{I} . We consider the following identification for the complex tangent space of M at the origin o:

 $T_o(M) = \operatorname{Lie} \tilde{G} / \operatorname{Lie} \tilde{U} = \tilde{\mathfrak{g}}_1 = \mathfrak{g}_1^N + I \mathfrak{g}_1^N.$

The complex structure J_o on $\tilde{\mathfrak{g}}_1$ is given by

$$J_o = I|_{\tilde{\mathfrak{g}}_1} = \mathrm{ad}_{\tilde{\mathfrak{g}}_1}(iZ).$$

 J_o commutes with the linear isotropy representation of \tilde{U} , that is,

 $[\operatorname{Ad}_{\tilde{\mathfrak{g}}_1} \tilde{G}_0, J_o] = 0.$

Therefore J_o extends uniquely to a \tilde{G} -invariant almost complex structure J on M. It can be seen from the construction that \tilde{I} and J are π -related, that is,

$$\pi_* \tilde{I} = J \pi_*. \tag{3.6}$$

It follows from (3.6) that the almost complex structure J is integrable.

Proposition 3.3. (ν_M, J) is an AHP on M.

Proof. In view of (3.5), (3.6) and Lemma 3.2, we have

$$\nu_{M*}J\pi_* = \nu_{M*}\pi_*\tilde{I} = \pi_*\tilde{\nu}_*\tilde{I} = -\pi_*\tilde{I}\tilde{\nu}_* = -J\pi_*\tilde{\nu}_* = -J\nu_{M*}\pi_*.$$

Therefore we have the equality $\nu_{M*}J = -J\nu_{M*}$.

Proof of Theorem 1.2

We denote by $\operatorname{Hol}^{-}(M)$ the totality of anti-holomorphic automorphisms of M. Since ν_{M} interchanges $\operatorname{Hol}^{+}(M)$ with $\operatorname{Hol}^{-}(M)$, we have the expression

$$\operatorname{Hol}^{\pm}(M) = \operatorname{Hol}^{+}(M) \amalg \nu_{M} \operatorname{Hol}^{+}(M).$$
(3.7)

As is seen in the proof of Theorem 1.1, $\operatorname{Hol}^+(M)$, realized as a subgroup of Aut $\tilde{\mathfrak{g}}$, coincides with \tilde{G} . Also ν is the realization of ν_M as an element of G. Therefore, considering (3.7) and Theorem 1.1, we have

$$\operatorname{Hol}^{\pm}(M) = \tilde{G} \amalg \nu \tilde{G} = \tilde{G} \cdot \langle \nu \rangle = G.$$

HOLOMORPHIC AND ANTI-HOLOMORPHIC AUTOMORPHISMS

4. Relation to the generalized conformal structure on M

First of all, let us remind the basic facts on the generalized conformal structure (simply, GCS) on the real flag manifold M = G/U (cf. [3]). Let r be the rank of the symmetric space M, and let o be the origin of the coset space M = G/U. As for the case of the complex tangent space $T_o(M)$, the real tangent space at the origin $o \in M$ can be identified with \mathfrak{g}_1 . Let ρ be the linear isotropy representation of U on \mathfrak{g}_1 . Then we have $\rho(U) = G_0$. The G_0 -orbit decomposition of \mathfrak{g}_1 is given by

$\mathfrak{g}_1 = V_r \amalg V_{r-1} \amalg \dots \amalg V_0,$

where V_r is a single open orbit and $V_0 = (0)$. Since G_0 contains \mathbb{C}^* , all orbits are cones. The union of singular orbits, denoted by C_o , is an algebraic cone. The automorphism group Aut C_o is defined as the subgroup of $GL(\mathfrak{g}_1)$ consisting of all elements leaving C_0 stable.

Lemma 4.1. ([3]) Suppose that $r \ge 2$. Then we have

Aut
$$C_o = G_0$$
.

By this lemma, one can translate the cone C_o to each point of M by the action of G. Thus we have the cone field $\mathcal{C} = \{C_p\}_{p \in M}$ on M, which is called the generalized conformal structure (simply GCS) on M. Now we are going to define the automorphism group $\operatorname{Aut}(M, \mathcal{C})$ of the GCS \mathcal{C} . $\operatorname{Aut}(M, \mathcal{C})$ is defined to be the group of all smooth diffeomorphisms f of M leaving \mathcal{C} invariant, in other words, for $\mathcal{C} = \{C_p\}_{p \in M}$, f satisfies

$$f_{*p}C_p = C_{f(p)}, \ p \in M.$$

We can characterize the group G as the automorphism group of the GCS, namely,

Theorem 4.2. ([3])Let G be as above. Suppose that $r \ge 2$. Then

$$\operatorname{Aut}(M, \mathcal{C}) = G.$$

Combining the above theorem with Theorem 1.2, we have

Theorem 4.3. Let M be a compact irreducible Hermitian symmetric space of rank ≥ 2 . Then we have

$$\operatorname{Hol}^{\pm}(M) = \operatorname{Aut}(M, \mathcal{C}).$$

The following theorem gives a necessary and sufficient condition for the global extension of a local holomorphic or local anti-holomorphic transformation on M. The proof is similar to the cause of the causal structure (cf. [4]).

Theorem 4.4. Let D be a domain in M and let f be a local holomorphic or local antiholomorphic transformation of M defined on D. Suppose that rank $M \ge 2$. Then f extends uniquely to an element of $\operatorname{Hol}^{\pm}(M)$ if and only if f is a local C-conformal transformation on D.

References

- [1] S. Bochner and D. Montgomery, Groups on analytic manifolds, Ann. of Math. 48(1947), 659-669.
- [2] S. Bochner and D. Montgomery, Groups of differentiable and real or complex analytic transformations, Ann. of Math. 46(1945), 689-694.
- [3] S. Gindikin and S. Kaneyuki, On the automorphism group of the generalized conformal structure of a symmetric R-spaces, Differential Geom. Appl., 8(1998),21-33.

- [4] S. Kaneyuki, Automorphism groups of causal Makarevich spaces, Journal of Lie Theory, 21(2011), 885-904.
- [5] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. 2, 1969, Interscience Publishers.
- [6] Y. Matsushima, Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne, Nagoya Math. J. 11(1957), 145-150.
- [7] H. Matsumoto, Quelques remarques sur les groupes de Lie algébriques réels, J. Math. Soc. Japan, 16(1964), 419-446.

Sophia University, Tokyo, 102-8554 Japan; Mailing address: 2-14-9 Zempukuji, Suginami, Tokyo, 167-0041 Japan

E-mail address: kaneyuki@hoffman.cc.sophia.ac.jp