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Extensions for certain subordination relations

Kazuo Kuroki

Abstract

For some complex number v which has a positive real part, a certain subordina-
tion relation concerned with the Bernardi integral operator I, was proven by D. J.
Hallenbeck and St. Ruscheweyh (Proc. Amer. Math. Soc. 52(1975), 191-195). By
considering the analyticity of the functions defined by the Bernardi integral opera-
tor I, for some non-zero complex number v with Rey < 0, an extension for certain
subordination relation are discussed.

1 Introduction and definitions

For a positive integer n and a complex number a, let H[a, n] denote the class of functions
p(z) of the form
p(z)=a+ Z ap2*
k=n
which are analytic in the open unit disk U = {z € C: |z] < 1}. Also, let A be the class of
analytic functions f(z) which are normalized by f(0) = f'(0) —1=0.
An analytic function f(2) is said to be convex in U if it is univalent in U and f(U) is a

convex domain (A domain D C C is said to be convex if the line segment joining any two
points of D lies entirely in D). It is well-known that the function f(z) is convex in U if and

only if f/(0) # 0 and
zf"(2)

f'(z)
Let p(z) and g(z) be analytic in U. Then the function p(z) is said to be subordinate to

g(2z) in U, written by

(1.1) p(z) < g(2),

if there exists an analytic function w(z) with w(0) =0, |lw(z)] <1 (z € U), and such that
p(z) = q(w(2)) (z € U). From the definition of the subordinations, it is easy to show that
the subordination (1.1) implies that

(1.2) p(0) =¢(0) and p(U) C ¢(U).

Re(1+ >>0 (z € V).
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In particular, if g(2) is univalent in U, then the subordination (1.1) is equivalent to the
condition (1.2).

For the functions p(z) € Ha,n] and h(z) € H]a,1], Hallenbeck and Ruscheweyh [3] (also
Miller and Mocanu {6]) considered the following first-order differential subordination

(1.3) p(z) + 2 ( 2@ ),
where 7 is complex number with v # 0, and proved the following subordination result.
Lemma 1.1 Let n be a positive integer, and let v be a complex number with Rey > 0.

Also, let h(2) be analytic and convez univalent in U with h(0) = a. If p(z) € H[a,n] satisfies
the differential subordination (1.3), then p(z) < g(z), where

(1.4) a(z) = ﬁf /0 “ Rt dt.

The function q(z) defined by (1.4) is the best dominant of the subordination (1.3).

Remark 1.2 If p(z) < ¢(z) for all p(z) satisfying the subordination (1.3), then ¢(z) is
called a dominant of the subordination (1.3). A dominant §(z) that satisfies §(z) < g(2)
for all dominants ¢(z) of the subordination (1.3) is said to be the best dominant of the
subordination (1.3). Note that the best dominant is unique up to a rotation of U.

For the function f(z) € H[0,n], the Bernardi integral operator (2] is defined by

(15) LI =252 [ s,

where v =0, 1,2,---. In particular, the integral operator I, is well-known as the Alexander
integral operator [1]. The integral operator L, is well-defined on H[0, n] and maps f(2) into
H[0,n]. Specially, we note that L,[f](2) € A for f(2) € A. Next lemma [6, Lemma 1.2c]
shows that the Bernardi integral operator can be extended for certain complex values of +.

Lemma 1.3 Let m be an integer with m 2 0, and let v be a complex number with
Revy > —m. If f(z) = Y ar2® is analytic in U, and F(z) is defined by
k=m

(1.6) F(z) = ;17- /0 "yt

then F(z) = § Tk pk

k=m 7 k

is analytic in U.

Remark 1.4 Let us consider the analyticity of the function F(z) defined by (1.6). If
f(2) € Hla, 1] with a $# 0, then by Lemma 1.2 with m = 0, the function F(z2) is analytic in



U for some complex number 7 such that Re~y > 0. On the other hand, considering the case
m = 1 in Lemma 1.2, we find that the function F(z) with f(z) € H[0, 1] is analytic in U for
some complex number + such that Rey > —1.

To prove the subordination relation in Lemma 1.1, Miller and Mocanu [6] discussed the
analyticity of the solution g(z) of the following first-order differential equation

(L7) glz) + A ”z"’(z) —hz) (zeU)

with ¢(0) = h(0), where 7y is complex number with v # 0. Note that the solution ¢(z) of the
differential equation (1.7) is given by (1.4). Let h(z) € H[h(0),1]. According to the first
assertion in Remark 1.4, the function g¢(z) given in (1.4) is analytic in U for some complex
number  with Rey > 0, because h(z) € H[h(0),1].

On the other hand, let us define the functions ho(z) and go(2) by

(1.8) ho(2) = h(z) — h(0) and go(2) = q(z) — ¢(0)

for z € U, where ¢(0) = A(0). Then the differential equation (1.7) is equivalent to
(19) qo2) + -————"Z‘f(z) —ho(2) (z€U)

with go(0) = ho(0) = 0. Noting that the solution go(2) of the differential equation (1.9) is
given by

a(z) = L= / ho(t)tF1dt (2 € U),
nz» Jp

it follows from the equalities in (1.8) that the solution ¢(2) of the differential equation (1.7)
can be represented by

(1.10) (z) = h(0) + 'n'g? /0 ) (h(t) - h(O))t%—l dt  (zeU)

Then since h(z)—h(0) € H[0, 1], the second assertion in Remark 1.4 leads us that the function
q(z) given by (1.10) is analytic in U for some complex number v with Re (%) > —1.

From the above-mentioned, we expect that the subordination relation in Lemma 1.1 can be

discussed for some complex number v with v # 0 and Rev > —n by replacing the conclusion
in Lemma 1.1 with the following subordination

p(z) < h(0) + ;zzl';{‘_ /Oz (h(t) - h(()))t'}‘1 dt.

In the present paper, by considering some properties for the function g(z) given in (1.10),
we will discuss the following subordination relation :

(1.11)  p(2) + —= zp7( 2) < h(z) implies p(z) < h(0)+ -7;%5'- /Oz (h(t) - h(O))t%*l dt

for some complex number v with v # 0 and Rey > —n.
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2 Preliminary results

Miller and Mocanu [6] developed a lemma which is well-known as the open door lemma.
By considering a simpler version of the open door function, Kuroki and Owa [5] provided
the better result for the open door lemma.

Definition 2.1 (Simpler version of open door function) Let ¢ be a complex number with
Rec > 0. Then the open door function R.(z) is defined by

1 2Rec+1
+

v).
Tt Ty <V

(21) R(z)=~T—

The function R.(z) is analytic and univalent in U with R;(0) = c. In addition, R(z) maps
U onto the complex plane with slits along the half-lines £} and £, where

Q={w€C:ng=0 and Imwgﬁt—z(ld 2Rec+1—1mc)}

and
Cz{wEC:Rew=O and Imwg—-h—i—g <|c| 2Rsc+1+1mc)}.

Note that the slit domain C\ {£} U £; } is not symmetric with respect to the real axis (see
(51)-

Lemma 2.2 (Open door lemma) Let ¢ be a complez number with Rec > 0, and let
R(z) € H|c, 1] satisfy the subordination
R(z) < Re(2),
where R.(z) is defined by (2.1). If p(2) € H[L,1] satisfies the differential equation
zp'(z) + R(z)p(z) =1 (2 € ),
then Rep(z) >0 (z € U).

More general form of this lemma for p(z) € H[L,n] was given in the work [5].

3 Some properties for certain integral operator

To considering the subordination relation (1.11), we need to develop some property for
certain integral operator by using the open door lemma.

Theorem 3.1 Let v be a complex number with Rey > —1, and let f(2) € A satisfy

Zf”(Z)

31 1)

+ 0 RY+1(Z))
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where R, ,:(z) is the open door function defined by

_ 1 2Rev+3
(32) B =-(7+ 1) -5+ 7T (z € ).

If F =1,[f] is defined by (1.5), then F(2) € A, F'(z) #0 (z € U) and

z2F"(2)

(3.3) Re(1+ STe

+'y)>0 (z € ).

Proof.  From the subordination (3.1), we note that f/(2) #0 (z € U). By Lemma 1.3, it
is easy to see that

F(z)= =22 / feytdt e A

for Rey > —1. If we define the funcnon p(z) by

R S AP
P /0 PO d (2 eU),

then since f'(z) € H(1,1], it follows from Lemma 1.3 that p(z) € H [ > ] By differenti-
ating the equality (3.4), we find that p(z) satisfies the differential equation

(34) p(2) =

(35) 2p'(2) + R(2)p(2) =1 (2 € ),
where R(z) is defined by
(3.6) R(z)=1+ J{((‘;) +v  (z€)

From the subordination (3.1), we see that R(z) € H[y + 1, 1], and R(z) satisfies the subor-
dination
R(2) < Rya(2),

where R.,1(2) is defined by (3.2). Thus, the function p(z) satisfies the conditions of Lemma.
2.2 with ¢ = v+ 1, and so we deduce that

(3.7 Rep(z) >0 and p(2)#0

for z € U. Moreover, the function p(z) defined by (3.4) can be represented by

_ 1 v+1 [?7. ., y—
p(z)_('y+1)zf’(z) 27 /(;(tf(t))t Lt

1 ! F'(z)
RCERIR) {+(uln@) } = G 2

which implies that
(3.8) F(z)=(v+1)f(2)p(z) (2€).
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Then since p(z) # 0 (z € U), it is clear that F'(2) # 0 (z € U). Making differentiation
(3.8) logarithmically, we have

14 2F"(2) b= (1 2] z2f"(2) +’Y) 422 2p/(z) _ 1 (z € U)

F'(z) f(2) p(z)  p(2)
from the equations (3.5) and (3.6). Hence, the condition (3.7) shows that the function F(z)
satisfies the inequality (3.3). This completes the proof of Theorem 3.1. O

4 Main results

Kuroki and Owa [4] proved the following lemma concerned with a special first-order dif-
ferential subordination for certain complex values of A which has a negative real part.

Lemma 4.1 Let n be a positive integer, and let X be a complex number with

1 1
<
(4.1) ReA<0 and lA + — 5 2n
Also, let q(z) be analytic in U with ¢(0) = a, ¢’(0) # 0 and
2q"(z) 1 1
(4.2) Re(1+ q(z)>> nRe<A) (z € D).
If p(z) € Hla,n] satisfies the subordination
(4.3) p(2) + Azp'(2) < g(2) + Anzd/ (2),
then p(z) < q(z).
If we take A = 1 for some non-zero complex number v, then the condition (4.1) is

equivalent to the mequahty —n < Rey £ 0. In addition, the subordination (4.3) can be
written as follows:
p( )

p(z) + ===

nzq(z)
<q(z) + —= "

1
By making use of Lemma 4.1 with \ = —;, and applying Theorem 3.1, we derive the

following result concerned with the subordination (1.11).

Theorem 4.2  Let n be a positive integer, and let v be a complez number with v 5% 0 and
-n <Revy £0.
Also, let h(z) € Hla, 1] satisfy the subordination

' (2)

(4.4) A e

+ =< R_‘L+1(Z),



where R-};H(z) is the open door function defined by

2Re +3
1, 2Re(3)

— s
R R e

(z € U).

ol
(4.5) R_;L+1(z) = — (-;' -+ 1) -1
If p(z) € Mla,n] satisfies the differential subordination (1.3), then p(z) < q(z), where

(4.6) a(z) =a+ E}I | /0 " (h(e) — )t dt.

The function q(z) defined by (4.6) is the best dominant of the subordination (1.3).

Proof.  Note that #'(0) # 0 from h(z) € H]a,1]. If we define the function ¢(z) by
qg(z) =a+ —:/—5 / (h(t) —a)t='dt (2 €1,
nz=n Jo
then by Lemma 1.3, we find that ¢(z) € H]a, 1] with ¢'(0) # 0. Also, it is easy to see that

h(z) = o(z >+"""‘Z) (zeU).

1 :
It sufficies to show that the function ¢(z) satisfies the inequality (4.2) with A = P according

to Lemma 4.1. If we let

fe) =202 (e,

then the subordination (4.4) can be written by
zf"(2)

f’( ) + X = R.1+1(Z)

1+ -5

We also set

F(z) = L1[f](2),

where I is defined by (1.5). Since f(z) € A and Re (%) > —1, we deduce that F(z)
satisfies the inequality

zF"(2)
4.7 Re (1+ F’()+ )>0 (z € U)
by applying Theorem 3.1. A simple check gives us that ¢(z) can be represented by
2R (©)
g(z) =a+ 171 L F(2) (z e U).

Therefore, the inequality (4.7) shows that g(z) satisfies the inequality

R<1+Z:II;(§)+ )>0 (z € U).

Since all conditions of Lemma 4.1 with A = —’1; are satisfied, we conclude that p(z) < ¢(2),
which completes the proof of Theorem 4.2. O

13
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Remark 4.3 For h(2) € H|a, 1], if we define the function H(z) by

(4.8) H(z) =1+ ",':(S) (2 € U),

then the assumption (4.4) in Theorem 4.2 can be written by
(49) H(z) < Rzn(z) - 1,

where Ry ,(2) is defined by (4.5). The subordination (4.9) means that H(z) maps U onto
inside of the slit domain C\ {¢+ U£~}, where

v+ n|y/2e2 43 — (lmy) (B2 + 2)

= wEC:Re'w=——B-)e-;-’Z and Imw 2
n Rey+n
and
R =|y +n| M+3l(m7)(m+2)
- ={weC:Rew=——) and Imw < z i

Revy+n

5 An extension of subordination relation for certain
complex values of ~

Let ¢ be a smooth arc in U connecting 0 to z, and assign a value to lbi_’n(x) argt (t€(). We
define t” = €78t (¢ € () by continuation. Noting that

lim|#"] = lim [¢7e~ (M8t =0 (¢ € ()

when Rey > 0, we define tY =0 att =0 (Revy > 0). Thus, a simple calculation gives that

% T1* 4
/Ot"‘dt=/t"1dt=[%] =i7- (Rey > 0).
< 0

Therefore, it follows from the above fact that

[ hyeErar = /zat%~1dt+%/z(h(t)—a)t%*ldt
nzw Jo nzw Jo nzw Jo

-_-a+_7_l_/ (h(t) — a)t="'dt  (Rey>0),
nze Jo

where h(z) € H[a,1]. This leads that the equality (1.4) in Lemma 1.1 can be replaced with
the equality (4.6). Hence by combining the assertions in Lemma 1.1 and Theorem 4.2, we



derive the subordination result for some non-zero complex number vy with Rey > —n.
Theorem 5.1 Let n be a positive inleger, and let v be a complex number with v # 0 and
Rey > —n. Also, let h(z) € Hla,1], and suppose that H(z) defined by (4.8) satisfy one of
the following :

() ReH(z)>0 (2€U) when Rey> 0,

() H(z) < Rzqul2) — % when —n <Rey <0,

where Ra 11(2) is the open door function defined by (4.5). Then p(2) € Hla,n] satisfies the
following subordination relation :

p(2) + zpﬂf 2) < h(z) implies p(z)<gq(z)=a+ —-—/ (h(t) - a) ~1dt,
and the function q(z) is the best dominant of the subordination (1.3).

If we consider the function A(z) given by
h(z) =1+2z € H[1,1],

then, it is easy to see that h(z) satisfies all assumptions in Theorem 5.1. Also, it follows that

T [f Ea gl
_— —— — n =3 Re —_ .
a(2) 1—!—112%/0 (h®) — 1)t~ dt 1+n+7z (Rey > —n)
Hence by Theorem 5.1, we find the following corollary.

Corollary 5.2 Let n be a positive integer, and let v be a complexr number with v # 0 and
Re~v > —n. Then p(z) € H[1,n] satisfies the following subordination relation :

zp’()

(5.1) p(z2)+ ——= <1+2z implies

Example 5.3 Let us consider the function p(z) given by

(5.2) p(z) =1+ -;-z2 € H[1,1]
in Corollary 5.2 withn =1 and vy = —-—;—(1 — ). A simple calculation gives that

(z) + z?f?z) 1+-%-z (z € U).

Then, we see that p(z) defined by (5.2) satisfies the subordination relation (5.1) with n =1
and vy = ——5(1 —1).

15
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Remark 5.4 From Corollary 5.2, we find that p(2z) € H([1, n] satisfies the following relation

zp'(2) N [od
p(z)+-—7——1 <1 (z€U) implies |p(z)—1| <m (z € U)

for some non-zero complex number v with Rey > —n.
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