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On N-Fractional Calculus of the Function
((z = b)2 = )3

Tsuyako Miyakoda

Abstract

We discuss the N-fractional calculus of f(2) = ((z —b)? —c)}. In
order to do fractional calculus of ((z~b)2 —c)3, we consider four type’s
factorization of the equation and calculate

= (=02 -0})
2. (fly= (((z—~b)2 —e)~$((z—-b)2 - c))7
3. (f)y= (((2’*— b)? — c)“g((z ~b)? - 6)2)7
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We have four representations of fractional calculus. And then we show

that these four different forms of N-fractional calculus are consistent
in special case. And some identities are reported.

1 Introduction

We adopt the following definition of the fractional calculus.
(I) Definition. ( by K. Nishimoto, [1] Vol. 1)

Let D={D_,D,},C = {C-,C4}, C- be a curve along the cut joining
two points 2z and —oo + iIm(z), C; be a curve along the cut joining two
points z and oo + iIm(z), D_ be a domain surrounded by C_ , Dy be a
domain surrounded by C ( Here D contains the points over the curve C ).

Moreover, let f = f(z) be a regular function in D(z € D) ,

fv = (f)v:'C(f)u
T'(v+1) F(¢)d¢ -
o | : (v ¢ 2),

C — z)”'H
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(f)-m = lm (f)y (me z), (2)
where
—r<arg((—2)<m for C_, 0<arg((—2)<2r forCy,

(#2 2€C, veR, T, Gamma function,

then (f)y is the fractional differintegration of arbitrary order v ( derivatives
of order v for v > 0, and integrals of order —v for v < 0 ), with respect to
z , of the function f , if |(f),| < .

(II) On the fractional calculus operator N¥ [ 3 ]

Theorem A. Let fractional calculus operator { Nishimoto’s Operator )
NV be

, T 1 C _
w=(GE [ S we2), (Referwll)
with
N™ = ,,li.IBmNy (me Z%), (4)
and define the binary operation o as
NPoN°f=NPNf=N*N°f) (a,p€R), (5)
then the set
{N"}={N*lv e R} (6)

is an Abelian product group ( having continuous index » ) which has the
inverse transform operator (N*)~! = N~ to the fractional calculus operator
NV , for the function f such that f € F = {f;0# |f,| < oo, v € R}, where
f=f(z)and z€ C. (vis. —co<¥v < ).

( For our convenience, we call N” o N* as product of N and N” . )

Theorem B. ” F.0.G. {N"}) ” is an ” Action product group which
has continuous index v ” for the set of F . ( F.O.G. ; Fractional calculus

operator group )
Theorem C. Let
S:={£N}u{0} ={N"}u{-N"}u{0} (v€R). )

Then the set S is a commutative ring for the function f € F, when the
identity
N°4+ NP =N" (N* NP N”ebS) (8)
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holds. [4 ]
(ITT)
In some previous papers, the following result are known as elementary
properties.
Lemma. We have [ 1]
¥ I'(a—p) I(a—p)
— o)), = e-ima\E T —o)fr (12— A
((Z C) )Q € P("',B) (z C) (] F(""ﬂ) I < OO)
(ii) .
(log(z — c))a = —e"™T(a)(z — )™ ([[(a)}| < 00)
(iii) .
(=)™ )-a= —e""’“i:(—&s log(z —¢), ([I'(a)| <o)
where z — ¢ # 0in (i), and 2 — ¢ # 0,1 in (ii) and (iii) ,
(iv)
a+1)

(u-v)a = }:k,r(a Ttk (= u(z) = v(2))

Moreover in the previous works we refer to the next theorem [ 6 ].
Theorem D. We have

@
(((z=b)P =c)®)., = e~ (3—b)*P~7 {Z* [~aeT (Bk — @B + ) ( ¢ )’“
k=0

k'T(Bk — afB) (z—b)B

(9)

T(Bk— B +7)
I'(Bk — af)

(I

| < o0),
and

(i)

k
(((z__b)ﬁ_c)a) ____( l)n(z b)aﬁ*ngl a ﬂk (Jtﬁ] ((sz)ﬂ)
(10)
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where
Me=2A+1)---(A+k—-1)=T(A+k)/T()) with [MNo=1,

(Pochhammer’s Notation).

2  N-Fractional Calculus of the Functions f(z) =
((z =) - o)

In order to have a representation of N-fractional calculus with ~y-order, we
directly apply the theorem to the function at the beginning.

Theorem 1. Let
f=f@)=(-b?-aF ((z-8*-<)% #0) (1)

we have

T T e L R WA
(f)-,—e 7(3 b) 37 kgﬂ k'I‘(2k--§) ((z__b)2) (2)

Proof. According to Theorem D, we have the equation (1) directly.

Secondly, we consider the function as a product of two functions like as
f@) = (=803 - ((z =~ )
and we have the new representation for (f), as follows.

Theorem 2. We set f = f(2), and S, K ,J as follows,

c

§=258(2) = GO (ISl < 1) 3)
[2]k[(2k + § +v —m)
K(k,v,m) = alk k!I‘(2:+ %/) m Sk, (4)
J(v.m) = i K(k,v,m). (5)
k=0

We have

(f), = €™ (z=b)"$12{(1 - 8)J(7,0) — 2vJ(v,1)
+y(y — 1)J(7,2)} (6)



Proof. According to Lemma (iv), we have

(Nr=(((z=82 =) 8- (z-0)* ~0))_ ™
io: kIPI£‘§/7++11) P ((( ) - c)“%)%k ((z - b)2 — )k
(8)

and applying Theorem D.(i) to
(2= b)® ~ &) )0, )

we obtain

(= (=57 - 07)_ (-7 - o)

R D) (- tp-oh)_ -t

T(y)
r 1 -2
+2llgz+ i) (G )22 |
= (-0 -97F) (-tP-+2((-tP-97F) (-1
2907 =1) (-0 - 9)7F)_

_ e_iﬂwy(z _ b)—%—’)’((z - b)2 —c) i [%]kr(Zk + % + 'Y) ( c )k

-+

k'I‘(2Ic +5 \(z-b?
imlr iy BIkC(2k+3+7-1) k
+27(z = b)e™ 0D (7 — p)=a-742 Z L ;Enr(zlc + 4; ((z = b)2)
X [l (2k+ §+7—2 k
+2(y — 1)) (z — p)~E-r42 Z = Ii!zr(;ksjéf)y ! ((z = b)2)
(10)
Then we have the representation
(F(2)y = €™ (2= b) " §1+2{(1-8)J (v, 0) — 29 (1, 1) +22(y — 1)J (7, (2)}5
11

This is the same one as the equation (6).

Next, we consider the function as another product form like as

f2)=((z~b)? =) 8 - ((z - b)? — &)
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and we have the new representation for (f), as follows.

Theorem 3. We set f = f(2), and S, H ,G as follows,

S=8(z) = z——f—;)-z- (151 < 1) (12)
H(k,y,m) = [%]kf‘f';i (J;k :107) wry (13)
Gly,m) = ¥ H(k,~,m). (14)

k=0

We have

22

(), = e™(z=b) (1 - 8)2G(,0) - 4v(1 — §)G(7,1) +by(y — 1)(1 — %S)G(*y, 2)

~4v(y = 1)(7 = 2)G(7.3) + (7 - 1)(7 — 2)(7 — 3)G(,4)}

Proof. According to Lemma (iv), we have

(D= (=0 -97F - (= ~1)* - ) (16)
= 3 T (=0 =9 ) (= 97 - 9P
(a7

and applying Theorem D. (i) to
(=~ 8 =) $)yeiy (18)

we obtain

(= pE D (=87 = 7). (o= 17 = o

17(;31) (G "-‘)'g)y_l (4((z=1)* - c)(z - b))

+———-—-21!‘1.(.Z7+_13) (((z —b)? - c)‘g)’y_2 - (12(z — b)? — 4c)

+3I; 1277+_1;) R 97F)__, - (24~ b))
T(y+1)
4il'(y - 3)

+

+ (-2 - c)—%)H .24

(15)
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= (=0 ~o7%) (=8~ +47((z =0 ~)F) (2~ -z~ b))
+1(r=1) (=0 ~)78)__ (6(z )" ~20)
=D -2) (-0 = ¢7F) _ (-b)

-mh~Dh—®h—&@@—W—dJ)4

10 k
_ e“”"’(z _ b)—-l—ag—‘r-M((z _ b)2 c) E [3 ’;CI;P?:I:;_ 10-')— ) ((z -fb)z) (- (Z - )2 )2

5 10
+y(z B0 - by “**42:[3 o () e

¢ 5 10 k
—im(y— -~ gl (2k+ 5 +~/ 2) c 1 e
+67(y = 1)e™ "D (z — p) 5 T Eﬁ Lgle ( ) - 37=

k’r(2k+ 10 (z - b2
k
ir(y =10y =29y 3 B kr,i?ff&kﬁo}’ 2 (5)

312k ~4 k

(19)

Then we have the representation

(f(2)y = €™ (z=b)"3 (1 - 8)2G(7,0) — 4+(1 — S)G(7.1) + 6~(y — 1)(1 — %S)G(% 2)
—4y(y = 1)(v = 2)G(,3) +v(y — D)(7 — 2)(7 — 3)G(7,4)}- (20)

This is the same one as the equation (15).

Next, we choose another process of the fractional calculus which is devided
into two stages as like as :

(f(@2)y = (f(2)1)y1 - (21)

We have an another result.

Theorem 4. We set f = f(2), and S, R ,W as follows,

§=5(2) = (151 <1) (22)

[+
(z2-b)%
[3lT(2k + § +~v—m)

k
k'T(2k + ) 5 @)

R(k,y,m) =
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Wiy.m) = 3 R(k,7,m). (24)
k=0
Then we have
(= 56— W, 1) - (4 - DW)  (25)
Proof. We have
(=02 -at), = 3(z-t2-a 26 ~b)
= 2e-mr-g i) (26)
Then
(CEDEEEN LI (CEDIOR IR0 I

- § > k!rl(ﬂ(hrZ g (-9 -97) b

-2 T E”%«( 0 = B-a(e = )+ 7 s (@ = 0 - ) Hoera)

_ 2 in(r- ey BT+ +7-1) ¢ ¢ \F
_5{3 (1) (5 — py~$ 'v+2§: 3 k’I'(2k3+§) ((z b)‘*’)

k
+(y = 1)e~ "= (5 — b)~3-7+2 Z blkrgs ;k ++4; 2 ((z f b)z) (27)

And we put

| _ BTk +§+r-m) e\
R(k, v,m) = k!r(2k + g) ((z - b)2> '

W(y,m) = i R(k,v,m)
k=0

So we have

(f@)y = 2™ (2 =b) 5 W(y, 1) + (y - DW(1,2)}, (v¢2").
28)
We have the equation (25) from above equation directly. (



3 Identities

We have four kinds of gepresentation on N-fractional calculus of the function
f(2) = ((z —b)® — ¢)73 like as Theorem 1, 2,3 and 4. Accordingly we have
the following identities with using J and G and W and L given in §2.

Theorem 5. We have

(1)

oo 1 2
)3 [3]';1;1(1?’;6 _’35 1) 5% = (1-8)J(7,0)~21J (3, D+ 24(1— 1) (3, 2),
k=0 :

(1)

and
(i)

oo 1l 2
k=0 )

+61(y = (1 - 58)G(1,2) — 42(7 — (7 - 2)G(.3)
=D =) =3G(r4),  (v¢Z27) (2)

(iii)

S A2k~ 2 +4) 2 ]
,;, : kIT(2k _gg) " = LD+ =LY (v¢27)
®3)

Proof. From Theorems 2 and 3 and 4 we can obtain above equations
directly.

4 A Special Case

In order to make sure of the formulations of Theorem 1, 2 , 3 and 4, we
consider the case of the integer v = 1.
- From Theorem 1, in case of v = 1 the equation becomes

= [~3ll'(2k - 2 +1)

(h=e""(z—b)3 Z.::B KTk = D)

Sk

(v¢Z7)
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=e (2 —b)"5{2 Z —ﬁli-Sk —HESk}

= e¥7(s— b H28(=3) ZLS" 13 s
= e (2 —b)" i{zS(——?;)(l-S) §—§(1—S)§}

= (1)~ B)H(-3)1-8)t
2

= 5(z-b)—%a—sr% 1)

When v = 1, from Theorem 2 , we have
(f) =€z~ b)${(1~ -9, 0) 2J(1 1)}
= (De-bH1-9) Z k'P(2k+ ) s

9 Z (BleT(2k + 5) 5}

k'T(2k + )
2
And we notice following relations,
S Bl — 1o Q

k=0

Z [/\]kk Z ot kl)'Tk Z [A] k+1Tk+1

oy 2t l]kT" —ATA-T)" (@)
k=0

Pl = TAESED a1 (5)

Then, we have the following relations with applying to the above euations.
()1 =—(z —b)~3{25(1 - S) Z‘ [’5]*“ Sk 4 (1 ) Z s"} 22 —3—-8"}
k=0 k=0

~(z=b)" 4201 - 9)S(5 )E[3"sk+§(1—5)(1-3)—%-2(1-3)—%}

k=0
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=—(-HHZ1-5)sa -5t + -8 -8t —20-5h

=—(2-b)"31-9)"3(= s+§~§-8 2)

=2 -nia-st. ©)
And from Theorem 3, we have
() = e(z = b)~H{(1 - $°G(1,0) - 4(1 - H)G(L, 1)}
= e (z-b)"3(1-S){(1-5) Z 8Lk + 3+ 1) g

kT (2k + l{
[ ]kl‘(2k+
,cz_o ivr(2k+ ) Sk}
= —(z=b)"31 - S){2(1 - 8)S 2 -a-l“ilsk

k=0

+_§_(1 _ S) 2 [g]ksk Z E]ksk

= —(z b1 -5 S(l——S)§+———(1—-S)’§——4(1-—S‘%}
10
3

3(z b)-a‘(l—-S)“ . ¢4

= —@-tta-9 s a4 ——1595)

Next, frpm Theorem 4 we have
(D1 = 2(=1)(= -0+ {-L(, 1)
=2 -») L)

_ [g]kr 2k+ ) C k

_.(Z b) l; kT 2k+ 4.§ ( Z'—b)Z)
(Ble /¢ \*

S (G 5)

k=
2

(1 e
(z=b) (=2 =) ®)

i

Win Wwin Wi

( —

—~

™ N
|

< N~
4

il

il



Therefore we have the same results from fi)ur different forms of N-
fractional calculus for the function ((z — b)? — ¢)3.
Now these results are consistent with the one of the classical calculus of

2 (=t -k, 9

Here we confirm again the result for Theorem 1.
When v = 1, from Theorem 1.(2), we have

1 Ll [—1] I‘(2k—3+ )
(-t =0}), =~ -b) %Z 3:,P(2k~3§) ) gk

=—(z-b)" s{zf:_-ﬁ-_ll"ksk Z[ §]’is*k}

=—(z-b)" s{zs(—-)k}%-?—sk k}:ﬂ—jl—’“Sk}
G-t H-2sa -5 - 2a- 9}
= —(z-b)5(1— S)'%{-gs - §(1 - 5)}
= G-ty i-a -9
- g—(z —b¥1-5)? (10)
We have

20— byd(1—8) 3 = 2(z—py3(ED =03
3D L= = 3 -0 ()

= 2-8-n2 -0t (11)

This result also coincides with the one cbtained by the classical calculus.

So we conclude that according to the definition of fractional differin-
tegration |, we have three forms for 4-th differintegrate of the function
((z = b)2 — )3 by Theorems 1, 2, 3 and 4.

We made sure that they have the same results as the classical result
when the differential order is in the case of v = 1.
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