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Abstract

項目反応理論とは，テストの回答結果から「被験者の能力」と「設問の正答確率を表す項
目特性曲線」を推定するテスト理論であり，TOEFL や $IT$ パスポート試験などで実際に利用
されている．項目特性曲線の形状をロジスティック曲線に限定したパラメトリック項目反応理
論が広く使われているが，ロジステイック曲線では当てはまりの悪い設問が数多く存在するこ
とがしばしば問題になる．本論文では，項目特性曲線の形状に強い仮定を置かないノンパラメ
トリック項目反応理論に着目し，被験者の能力と項目特性曲線を同時に推定するための定式化
と発見的解法を提案する．

Keywords: 項目反応理論，混合整数非線形計画，ノンパラメトリック推定，発見的解法

1 Introduction

Item response theory (IRT) [1, 17] is a modern test theory for the design, analysis, and scoring

of tests. The key component of IRT is the item characteristic curve (ICC), which shows the
relationship between the examinee’s latent ability and the probability of correct answer. On the
basis of the item response data of examinees, IRT models estimate the ICCs of question items

and the latent abilities of examinees. IRT methodologies enable one to closely examine item
characteristics, such as difficulty and discrimination, and to investigate not the test score but
the latent (i.e., not directly observable) ability of each examinee. IRT models can be divided

into two categories according to approaches to ICC estimation. Parametric item response theory

(PIRT) models typically force ICCs to be parametric functions (e.g., logistic curves or normal
ogives). On the other hand, this paper focuses on nonparametric item response theory (NIRT)

models, which do not assume any particular parametric forms for ICCs.
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NIRT has its origin in Meredith’s work [10] and Mokken scale analysis [11], and it has
achieved steady development in both the theory and applications (see, e.g., [15, 18, 19, 20, 22,
23] $)$ . The greatest benefit of NIRT models is being able to estimate various forms of ICCs on
mild assumptions. Indeed, it has been demonstrated, e.g., in [3, 4, 16], that PIRT models do not
always fit the data well. In this case, NIRT models, which provide a more flexible framework, are
particularly useful. NIRT models are also useful to examine whether model assumptions of PIRT
are valid or not (see, e.g., [6]). However, greater flexibility in nonparametric ICCs sometimes
makes a model overly fit to the data. As pointed out by [15], consequently, estimation results
obtained by NIRT models can be unstable especially when using small-sized item response data.

There are several estimation methods for nonparametric ICCs. The most commonly-used
approach is kernel smoothing, which was first applied by Ramsay [16] to nonparametric ICC
estimation. Although the usefulness of kernel smoothing methods has been shown, e.g., in [4], it
may be that some estimated ICCs are decreasing with respect to the latent ability. Meanwhile,
isotonic regression methods can always provide nondecreasing ICCs. Lee [7] compared the
performance of three estimation procedures: isotonic regression, smoothed isotonic regression
and kernel smoothing, and demonstrated that the smoothed isotonic regression yielded better
results than the kernel smoothing did. $A$ number of studies have assessed the goodness of
fit of PIRT models by means of these estimation procedures for nonparametric ICCs (see, e.g.,
[4, 8, 9, 24, 25] $)$ . These procedures, however, estimate nonparametric ICCs under the assumption
that latent abilities of examinees are predetermined.

The purpose of the present paper is to build a new computational framework for estimating
the nonparametric ICCs and the latent abilities of examinees simultaneously. To accomplish
this, we formulate mathematical optimization models for NIRT as mixed integer nonlinear
programming (MINLP) problems. Mathematical optimization methodology makes it possible
to place various restrictions on excessively flexible ICCs. In addition to the existing constraints,
i.e., monotone homogeneity and double monotonicity, we propose slope smoothing constraints
to prevent ICCs from overfitting the data. Although it is very hard to obtain an exact solution
to the resulting optimization problems, we develop a heuristic optimization algorithm to find a
good-quality solution in a reasonable amount of time.

2 Nonparametric Item Response Theory

Let us suppose that examinees $i=1,2,$ $\ldots,$
$I$ took a test consisting of dichotomously scored

question items $j=1,2,$ $\ldots,$
$J$ . More specffically, we are given the binary item response data,

$U=(u_{i,j};i=1,2, \ldots, I, j=1,2, \ldots, J)\in\{0,1\}^{I\cross J},$

where $u_{i,j}=1$ if examinee $i$ gave a correct answer to question item $j$ , otherwise $u_{i,j}=0$ . The
main objective of the item response theory (IRT) is to estimate the item characteristic curves
(ICCs) and the latent abilities of examinees on the basis of the item response data, $U.$

181



low–high
Latent ability (Ability ranking)

Figure 1: Parametric/Nonparametric item characteristic curves

In particular, this paper explores the nonparametric item response theory (NIRT) that
employs nonparametric ICCs. In a conventional way, we assume throughout the present paper
that

Unidimensionality: latent abilities of all examinees can be evaluated unidimensionally.

Local Independence: item responses are conditionally independent of each other given an indi-
vidual latent ability.

In what follows, we shall consider ability rankings; that is, we evaluate the latent abilities of
examinees on a discrete scale of $t=1,2,$ $\ldots,$

$T$ . To estimate nonparametric ICCs, we introduce
the decision variables:

$X=$ $(x_{j,t};j=1,2, \ldots, J, t=1,2, \ldots;T)\in \mathbb{R}^{JxT},$

where $x_{j,t}$ is the probability of question item $j$ answered correctly by examinees of ability ranking
$t$ . Figure 1 illustrates a nonparametric ICC which is represented as a piecewise linear function.

The fundamental property required for ICCs is monotone homogeneity ($MH$) [10, 11]. This
requires that all ICCs are nondecreasing with a latent ability. This means that the probability
of correct answer does not decrease with the ability ranking of examinee. Thus, the following
constraints must be imposed on $X$ :

Monotone Homogeneity : $0\leq x_{j,1}\leq x_{j,2}\leq\cdots\leq x_{j,T}\leq 1$ $(\forall j=1,2, \ldots, J)$ . (1)

An additional assumption of nonparametric ICC is double monotonicity ($DM$) [11, 13]. This
implies that the ICC of one item does not intersect with the other. In other words, for all levels
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of examinees, the difficulties of two question items are never reversed. To formulate a clear
definition, we suppose that there is a permutation:

$\sigma:\{1,2, \ldots, J\}arrow\{1,2, \ldots, J\},$

where $\sigma(k)=j$ means that the k-th most difficult item is question item $j$ . We refer to $\sigma$ as a
difficulty ranking function. Then, the $DM$ constraints are written as follows:

Double Monotonicity: $x_{\sigma(1),t}\leq x_{\sigma(2),t}\leq\cdots\leq x_{\sigma(J),t}$ $(\forall t=1,2, \ldots, T)$ . (2)

This means that, for all examinees, the probability of answering a high-ranking item correctly
is lower than that of a low-ranking one.

To estimate ability rankings of examinees, we further introduce the decision variables,

$Y=(y_{i,t};i=1,2, \ldots, I, t=1,2, \ldots, T)\in\{0,1\}^{I\cross T},$

where $y_{i,t}=1$ if the ability ranking of examinee $i$ is estimated to $t$ , otherwise $y_{i,t}=0$ . Since
only one ability ranking should be assigned to each examinee, $Y$ must satisfy the following
constraints:

$\sum_{t=1}^{T}y_{i,t}=1$ $(\forall i=1,2, \ldots, I)$ , (3)

$y_{i,t}\in\{0,1\}$ $(\forall i=1,2, \ldots, I, \forall t=1,2, \ldots, T)$ . (4)

In what follows, we define alog likelihood function to be maximized. Given $x_{j}$ $:=(x_{j,1}, x_{j,2}, \ldots, x_{j,T})$

and $y_{i}$ $:=(y_{i,1}, y_{i,2}, \ldots, y_{i,T})$ , the probability of having the response $u_{i,j}$ can be written as fol-
lows:

$Pr(u_{i,j}|x_{j}, y_{i})=\sum_{t=1}^{T}y_{i,t}(x_{j,t})^{u_{i,j}}(1-x_{j,t})^{1-u_{i,j}}.$

Under the local independence assumption, the probability of having the response $u_{i}$ $:=(u_{i,1}, u_{i,2}, \ldots, u_{i,J})$

of examinee $i$ becomes

$Pr(u_{i}|X, y_{i})=\prod_{j=1}^{J}Pr(u_{i,j}|x_{j}, y_{i})$ .

Considering that the responses of different examinees are independent, we can see that the
overall item response $U$ occurs with the probability:

$Pr(U|X, Y)=\prod_{i=1}^{I}Pr(u_{i}|X, y_{i})=\prod_{i=1j}^{I}\prod_{=1}^{J}(\sum_{t=1}^{T}y_{i,t}(x_{j,t})^{u_{i,j}}(1-x_{j,t})^{1-u_{i,j}})$ .

Finally, by treating $X$ and $Y$ as decision variables, the $\log$ likelihood function is defined as
follows:

$\ell(X, Y|U)=$ log Pr $(U|X, Y)= \sum_{i=1}^{I}\sum_{j=1}^{J}\log(\sum_{t=1}^{T}y_{i,t}(x_{j,t})^{u_{i,j}}(1-x_{j,t})^{1-u_{i,j}})$ .
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3 Mathematical optimization Models

This section presents several mathematical optimization models for NIRT.

3. 1 Monotone homogeneity model

In view of the constraints (3) and (4), the $\log$ likelihood function can be rewritten as follows:

$\ell(X, Y|U)(=\sum_{i=1}^{I}\sum_{j=1}^{J}\sum_{t=1}^{T}y_{i,t}\log((x_{j,t})^{u_{i,j}}(1-x_{j,t})^{1-ui,j})$

$= \sum_{i=1}^{I}\sum_{j=1}^{J}\sum_{t=1}^{T}y_{i,t}(u_{i,j}\log(x_{j,t})+(1-u_{i,j})\log(1-x_{j,t}))$ . (5)

The monotone homogeneity ($MH$) model estimates $X$ and $Y$ so that the $\log$ likelihood
function, $\ell(X, Y|U)$ , is maximized under the conditions (1), (3) and (4). Consequently, the
$MH$ model can be framed as the following mixed integer nonlinear programming (MINLP)

problem:

(MHM)

maximize $\sum_{i=1}^{I}\sum_{j=1}^{J}\sum_{t=1}^{T}y_{i,t}(u_{i,j}\log(x_{j,t})+(1-u_{i,j})\log(1-x_{j,t}))$

subject to $0\leq x_{j,1}\leq x_{j,2}\leq\cdots\leq x_{j,T}\leq 1$ $(\forall j=1,2, \ldots, J)$ ,

$\sum_{t=1}^{T}y_{i,t}=1 (\forall i=1,2, \ldots, I)$ ,

$y_{i,t}\in\{0,1\} (\forall i=1,2, \ldots, I, \forall t=1,2, \ldots,T)$ .

3.2 Double monotonicity model

Next, we ponder a mathematical optimization problem with the double monotonicity ($DM$ )

constraints (2).

Let us recall that $\sigma(k)=j$ means that the k-th most difficult item is question item $j$ . In

the sequel, we shall represent a difficulty ranking function $\sigma$ by using the following permutation
matrix:

$Z=(z_{j,k};j=1,2, \ldots, J, k=1,2, \ldots, J)\in\{0,1\}^{JxJ}$ , (6)

$z_{j,k}=1\Leftrightarrow\sigma(k)=j$ . (7)

The optimization model presented below finds an appropriate difficulty ranking by treating
$Z$ as the decision variable. Note that the permutation matrix needs to satisfy the following
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conditions:

$\sum_{k=1}^{J}z_{j,k}=1 (\forall j=1,2, \ldots, J)$ , (8)

$\sum_{j=1}^{J}z_{j,k}=1 (\forall k=1,2, \ldots, J)$ , (9)

$z_{j,k}\in\{0,1\} (\forall j=1,2, \ldots, J, \forall k=1,2, \ldots, J)$ . (10)

To estimate ICCs under the $DM$ constraints, we use new decision variables:

$W=(w_{k,t};k=1,2, \ldots, J, t=1,2, \ldots, T)\in \mathbb{R}^{J\cross T},$

which represents the probability of the k-th most difficult item answered correctly by examinees
of ability ranking $t$ . In this case, the monotone homogeneity and double monotonicity constraints
on $W$ can be expressed as follows:

Monotone Homogeneity : $0\leq w_{k,1}\leq w_{k,2}\leq\cdots\leq w_{k,T}\leq 1$ $(\forall k=1,2, \ldots, J)$ , (11)

Double Monotonicity: $w_{1,t}\leq w2,t\leq\cdots\leq w_{J,t}$ $(\forall t=1,2, \ldots, T)$ . (12)

The associated $\log$ likelihood function becomes

$I$ $J$ ア

$\ell(W, Y, Z|U)=(5)\sum\sum\sum yi,t(u_{i,\sigma(k)}\log(w_{k,t})+(1-u_{i,\sigma(k)})\log(1-w_{k,t}))$

$i=1k=1t=1$

(6) $,$ (7)
$= \sum\sum^{I}\sum^{J}yi,tT(\sum_{j=1}^{J}z_{j,k}(u_{i,j}\log(w_{k,t})+(1-u_{i,j})\log(1-w_{k,t})))$

$i=1k=1t=1$

I $J$ $J$ $T$

$= \sum\sum\sum\sum yi,t^{Z}j,k(u_{i,j}\log(w_{k,t})+(1-u_{i,j})\log(1-w_{k,t}))$ .
$i=1j=1$ ん $=$ 1 オ $=$ 1

We are now in a position to formulate a $DM$ model, i.e., the problem of maximizing the
likelihood function, $\ell(W, Y, Z|U)$ , subject to the constraints (3), (4), (8)$-(10),$ (11) and (12)

185



as the following MIMLP problem:

(DMM)

$maximizeW,Y,Z$
$\sum_{i=1}^{I}\sum_{j=1}^{J}\sum_{k=1}^{J}\sum_{t=1}^{T}y_{i,t^{Z}j,k}(u_{i,j}\log(wk,t)+(1-u_{i,j})\log(1-w_{k,t}))$

subject to $0\leq wk,1\leq wk,2\leq\cdots\leq wk,T\leq 1$ $(\forall k=1,2, \ldots, J)$ ,
$w_{1,t}\leq w_{2,t}\leq\cdots\leq wj,t (\forall t=1,2, \ldots, T)$ ,

$\sum_{k=1}^{J}z_{j,k}=1 (\forall j=1,2, \ldots, J)$ ,

$\sum_{j=1}^{J}z_{j,k}=1 (\forall k=1,2, \ldots, J)$ ,

$z_{j,k\in}\{0,1\} (\forall j=1,2, \ldots, J, \forall k=1,2, \ldots, J)$ ,

$\sum_{t=1}^{T}y_{i,t}=1 (\forall i=1,2, \ldots, I)$ ,

$y_{i,t}\in\{0,1\} (\forall i=1,2, \ldots, I, \forall t=1,2, \ldots, T)$ .

3.3 Slope smoothing model

It has been pointed out, e.g., in [15], that estimated results can be unstable especially for small-

sized item response data. This instability is caused by the enhanced flexibility of nonparametric

ICCs. To overcome this drawback, it is effective to decrease flexibility of nonparametric ICCs

moderately. This sort of approach is frequently utilized to enhance the generalization capability

in statistical learning methods (see, e.g., [5]). For this reason, we propose additional constraints

to force the slope of each ICC to vary smoothly. We shall call them “slope smoothing (SS)

constraints”, which are expressed as follows:

SIope Smoothing : $\sum_{t=2}^{T-1}|(x_{j,t+1}-x_{j,t})-(x_{j,t}-x_{j,t-1})|\leq\gamma$ $(\forall j=1,2, \ldots, J)$ , (13)

where $\gamma\geq 0$ is an user-defined parameter. If $\gamma$ is sufficiently large, the SS constraints (13) are

invalidated. By contrast, $\gamma=0$ forces all ICCs to be straight lines.

By placing the SS constraints (13) on ICCs of problem (MHM), we can pose the SS model

as follows:

(SSM)

$\max_{X,Y}$
imize $\sum_{i=1}^{I}\sum_{j=1}^{J}\sum_{t=1}^{T}y_{i,t}(u_{i,j}\log(x_{j,t})+(1-u_{i,j})\log(1-x$あ$t))$

subject to $0\leq x_{j,1}\leq x_{j,2}\leq\cdots\leq x_{j,T}\leq 1$ $(\forall j=1,2, \ldots, J)$ ,

$\sum_{t=2}^{T-1}|x_{j,t+1}-2x_{j,t}+x_{j,t-1}|\leq\gamma (\forall j=1,2, \ldots, J)$,

$\sum_{t=1}^{T}y_{i,t}=1 (\forall i=1,2, \ldots, I)$ ,

$y_{i,t}\in\{0,1\} (\forall i=1,2, \ldots, I, \forall t=1,2, \ldots,T)$ .
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4 Heuristic optimization Algorithm

The optimization models presented in the previous section are mixed integer nonlinear pro-
gramming (MINLP) problems, which are very hard to solve exactly. To efficiently compute a
good-quality solution, we develop a heuristic optimization algorithm to the problems. In this
section, we describe an algorithm for solving the slope smoothing model (SSM). We should
notice that this algorithm can be readily applied to the monotone homogeneity model (MHM)

because problem (MHM) is equivalent to problem (SSM) with $\gamma=\infty.$

We begin by giving an ability ranking to each examinee as an initial solution. To set an
examinee’s ability, one may use the number of question items that $s/$he answered correctly.
Then, we denote by

$\overline{Y}=(\overline{y}_{i,t};i=1,2, \ldots, I, t=1,2, \ldots, T)$

the determined ability rankings.

Next, we solve problem (SSM) in which the decision variable $Y$ is fixed to $\overline{Y}$ . This problem
can be decomposed into ones of each ICC $(j=1,2, \ldots, J)$ :

$(SSM(j|\overline{Y}))$

$maxi_{j}mizex$
$\sum_{i=1}^{I}\sum_{t=1}^{T}\overline{y}_{i,t}(u_{i,j}\log(x_{j,t})+(1-u_{i,j})\log(1-x_{j,t}))$

subject to $0\leq x_{j,1}\leq x_{j,2}\leq\cdots\leq x_{j,T}\leq 1,$

$\sum_{t=2}^{T-1}|x_{j,t+1}-2x_{j,t}+x_{j,t-1}|\leq\gamma.$

Although the SS constraints (13) are nonlinear and nondifferentiable, it is well known that
this sort of constraints can be converted into linear ones. Specifically, we can reformulate
problem $($ SSM $(j|\overline{Y}))$ as follows:

$(SSM(j|\overline{Y}))$

$\max_{s_{j}}imizev_{j},x_{j}$
$\sum_{i=1}^{I}\sum_{t=1}^{T}\overline{y}_{i,t}(u_{i,j}\log(x_{j,t})+(1-u_{i,j})\log(1-x_{j,t}))$

subject to $0\leq x_{j,1}\leq x_{j,2}\leq\cdots\leq x_{j,T}\leq 1,$

$\sum_{t=2}^{T-1}(s_{j,t}+v_{j,t})\leq\gamma,$

$s_{j,t}-v_{j,t}=x_{j,t+1}-2x_{j,t}+x_{j,t-1} (\forall t=2,3, \ldots, T-1)$ ,
$s_{j,t}\geq 0, v_{j,t}\geq 0 (\forall t=2,3, \ldots, T-1)$ ,

where $s_{j}=$ $(s_{j,2}, s_{j,3}, \ldots , s_{j,T-1})$ and $v_{j}=(v_{j,2}, v_{j,3}, \ldots, v_{j,T-1})$ for $j=1,2,$ $\ldots,$
$J$ are auxiliary

decision variables. When the SS constraint (13) of ICC $j$ is tight, $s_{j,t}$ and $v_{j,t}$ correspond to
positive and negative parts of $x_{j,t+1}-2x_{j,t}+x_{j,t-1}$ , respectively; therefore, $s_{j,t}+v_{j,t}$ coincides
with $|x_{j,t+1}-2x_{j,t}+x_{j,t-1}|$ . Since problem $($ SSM $(j|\overline{Y}))$ is concave function maximization with
the linear constraints, it can be solved exactly with a standard nonlinear optimization solver.
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Let

$\overline{X}=(\overline{x}_{j,t;}j=1,2, \ldots, J, t=1,2, \ldots, T)$

be optimal solutions to problems $($ SSM $(j|\overline{Y}))$ for $j=1,2,$ $\ldots,$
$J$ . Now, we solve problem (SSM)

in which the decision variable $X$ is fixed to $\overline{X}$ . This problem can be decomposed into ones of

each examinee $(i=1,2, \ldots, I)$ :

$(SSM(i|\overline{X}))$

$maximizey$ $\sum_{j=1}^{J}\sum_{t=1}^{T}y_{i,t}(ui,j\log(\overline{x}_{j,t})+(1-u_{i,j})\log(1-\overline{x}_{j,t}))$

subject to $\sum_{t=1}^{T}y_{i,t}=1,$

$y_{i,t}\in\{0,1\} (\forall t=1,2, \ldots, T)$ .

Here, the objective function can be rewritten as follows:

$\sum_{t=1}^{T}y_{i,t}\underline{\underline{\sum_{j=1c}^{J}(u_{i,j}\log(\overline{x}_{j,t})+(}1-u_{i,j})log(1}-\overline{x}_{j,t}))\ell(i,t)--\cdot$

Therefore, to determine an ability ranking of examinee $i$ , it is only necessary to select $t$ such that
$\ell(i, t)$ is maximized. It follows that problem $($ SSM $(i|\overline{X}))$ can be easily solved by sorting $\ell(i, t)$ .
In this manner, we update $\overline{Y}$ and return to the first step to find better $X$ . By repeating this

procedure, the objective, $\ell(\overline{X},\overline{Y}|U)$ , monotonically increases. We terminate this algorithm

when the solutions are unchanged. Our heuristic optimization algorithm is summarized in

Algorithm 1.

A search strategy of Algorithm 1 is similar to that of the well-known expectation-maximization
($EM$) algorithm [2]. In contrast to the standard $EM$ algorithm, however, Algorithm 1 estimates

the discrete variable $Y.$
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5 Conclusion

We dealt with mathematical optimization models and a heuristic optimization algorithm for
nonparametric item response theory (NIRT). $A$ future direction of study will be to extend our
formulation to polytomous NIRT models [14, 20, 21].
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