bounded isometries of separable metric spaces 筑波大学・数理物質科学研究科 加藤久男 Hisao Kato

> Institute of Mathematics University of Tsukuba

1 Introduction

In this note, unless stated otherwise, we assume that all maps are continuous functions. Let \mathbb{Z}, \mathbb{N} and \mathbb{R} denote the set of integers, the set of natural numbers and the set of real numbers, respectively. Also, let I, Δ and \mathbb{Q} be the unit interval [0, 1], a Cantor set and the Hilbert cube I^{∞} , respectively. For any compact metric space Z, C(Z) denotes the function space of all (continuous) maps from Z to \mathbb{R} with the supremum metric \tilde{d} , i.e.,

$$d(f,g) = \sup\{|f(z) - g(z)| \mid z \in Z\}$$

for $f, g \in C(Z)$.

A map $i: (X, d_X) \to (Y, d_Y)$ between separable metric spaces is an *isometrical embedding* from (X, d_X) into (Y, d_Y) if *i* satisfies the condition $d_Y(i(x), i(x')) = d_X(x, x')$ for each $x, x' \in X$. A map $g: (X, d_X) \to (Y, d_Y)$ between separable metric spaces is an *isometry* if g is surjective and $d_Y(g(x), g(x')) = d_X(x, x')$ for each $x, x' \in X$. For a separable metric space (X, d), let Iso(X) be the group of all isometries of X equipped with the pointwise convergent topology, i.e.,

$$Iso(X) = \{g : X \to X \mid g \text{ is an isometry}\}.$$

A well-known theorem of Banach and Mazur is the result that C(I) (I = [0, 1]) is a universal space of separable metric spaces up to isometry (see [1,3,9]). Also, Urysohn [11] constructed a complete separable metric space \mathbb{U} that is also universal up to isometry. In [12], Uspenskij proved that for any separable metric space X there is a natural isometrical embedding $i : X \to \mathbb{U}$ such that i induces a natural continuous monomorphism $i^* :$ $Iso(X) \to Iso(\mathbb{U})$ satisfying that $i^*(g) \in Iso(\mathbb{U})$ is an extension of $g \in Iso(X)$ (see [2,3,5,7,12,13] for more detailed properties of \mathbb{U}).

In this note, we study the extension property of "bounded" isometries of separable metric spaces in function spaces $C(\mathbb{Q})$ and $C(\Delta)$. Also, we know that C(I) does not have the extension property. Let (X, d) be a separable metric space and $x_0 \in X$. A subgroup G of Iso(X) is bounded if diam $G(x_0) < \infty$, where $G(x_0) = \{g(x_0) | g \in G\} (\subset X)$. The definition of "bounded subgroup" of Iso(X) does not depend on the choice of the point $x_0 \in X$. Also, each $g \in Iso(X)$ is bounded if diam $\{g^n(x_0) | n \in \mathbb{Z}\} < \infty$. Note that if (X, d) is bounded, i.e., diam_d $X < \infty$, then Iso(X) itself is bounded. In particular, if X is a compact metric space, then Iso(X) is bounded. In [6], Mazur and Ulam proved that if B and B' are Banach spaces, then every isometry $T: B \to B'$ with T(0) = 0 is linealy isometric and moreover, Banach and Stone proved that if X and Y are compact Hausdorff spaces, then every isometry $T: C(X) \to C(Y)$ with T(0) = 0 is lineally isometric and moreover, T is induced by a homeomorphism $h: Y \to X$ (see [1,10]).

Theorem 1.1. (Banach [1] and Stone [10]) Let X and Y be compact Hausdorff spaces. Then the followings hold.

(1) C(X) is isometric to C(Y) if and only if X is homeomorphic to Y. (2) If $T : C(X) \to C(Y)$ is a linear isometry, then there is a homeomorphism $h : Y \to X$ and a (continuous) map $\alpha : Y \to \mathbb{R}$ with $|\alpha(y)| = 1$ for $y \in Y$ such that

$$(T(f))(y) = lpha(y) \cdot (f \circ h)(y)$$

for $f \in C(X)$ and $y \in Y$. Moreover, if Y is connected, $T(f) = f \circ h$ or $T(f) = -(f \circ h)$.

For any Banach space B, let

$$LinIso(B) = \{ f \in Iso(B) | f \text{ is linear } \}.$$

Note that LinIso(B) is bounded, because $LinIso(B)(0) = \{0\}$.

2 Extensions of bounded isometries in function spaces

In this section, we assume that (X, d) is a separable metric space and x_0 is a fixed point of X. In [9], Sierpiński considered the space

$$X' = \{f : X \to \mathbb{R} \mid f(x_0) = 0 \text{ and } |f(x) - f(y)| \le d(x, y) \text{ for } x, y \in X\}$$

which is a topological space equipped with the pointwise convergent topology (see also [3]) and by use of the spaces X', he proved that C(I) is a universal space of separable metric spaces up to isometry. We modify the Sierpiński's method of [9]. In this paper, for any bounded subgroup G of Iso(X), we consider the following more general space

$$\tilde{X} (= \tilde{X}_G) = \{ f : X \to \mathbb{R} \mid f(z) \in [-\operatorname{diam}(G(x_0)), \operatorname{diam}(G(x_0))] \text{ for } z \in G(x_0) \text{ and} \\ |f(x) - f(y)| \le d(x, y) \text{ for } x, y \in X \}$$

which is a topological space equipped with the pointwise convergent topology. We have the following lemmas.

Lemma 2.1. $\tilde{X}(=\tilde{X}_G)$ is a compact metric absolute retract (=AR). Moreover, if $g \in G$, then $\tilde{g}: \tilde{X} \to \tilde{X}$ is a homeomorphism, where \tilde{g} is defined by $\tilde{g}(f) = f \circ g$ for $f \in \tilde{X}$.

Lemma 2.2. Suppose that $p_G : Z \to \tilde{X}(=\tilde{X}_G)$ is a map from a compact metric space Z onto \tilde{X} such that for each $g \in G$ there is a (lift) homeomorphism $L_g : Z \to Z$ satisfying the following commutative diagram.

$$\begin{array}{cccc} Z & \xrightarrow{L_q} & Z \\ p_G \downarrow & & \downarrow p_G \\ \tilde{X} & \xrightarrow{\tilde{g}} & \tilde{X} \end{array}$$

Then there is an isometrical embedding $i_G : X \to C(Z)$ such that for each $g \in G$, the following commutative diagram holds.

$$\begin{array}{ccc} X & \xrightarrow{g} & X \\ i_G \downarrow & & \downarrow i_G \\ C(Z) & \xrightarrow{\tilde{L}_q} & C(Z) \end{array}$$

where $\tilde{L}_g : C(Z) \to C(Z)$ is the isometry defined by $\tilde{L}_g(f) = f \circ L_g$ for $f \in C(Z)$. In particular, $\tilde{L}_g \in LinIso(C(Z))$ is an isometrical extension of $g \in G$.

Here we have the following theorem of $C(\mathbb{Q})$ which implies that $C(\mathbb{Q})$ is universal concerning isometrical extensions of bounded isometry groups of separable metric spaces.

Theorem 2.3. Let (X, d) be a separable metric space and let G be any bounded subgroup of Iso(X). Then there is an isometrical embedding $i_G : X \to C(\mathbb{Q})$ such that i_G induces a continuous monomorphism $i_G^* : G \to LinIso(C(\mathbb{Q}))$ such that $i_G^*(g) \in LinIso(C(\mathbb{Q}))$ is an extension of $g \in G$.

Corollary 2.4. Suppose that (X, d) is a bounded separable metric space. Then there is an isometrical embedding $i : X \to C(\mathbb{Q})$ such that i induces a continuous monomorphism $i^* : Iso(X) \to LinIso(C(\mathbb{Q}))$ such that $i^*(g) \in LinIso(C(\mathbb{Q}))$ is an extension of $g \in Iso(X)$.

Remark 1. Note that for any Banach space B, LinIso(B) is a bounded group. Hence in this note, we can not omit the condition that G is bounded.

If we observe the proof of Lemma 2.2, we see that some converse assertions of Lemma 2.2 are also true. In fact, we have the following.

Proposition 2.5. Suppose that $p_G : Z \to \tilde{X}(=\tilde{X}_G)$ is a map from a compact metric space Z onto \tilde{X} , $i_G : X \to C(Z)$ is the isometrical embedding as in the proof of Lemma 2.2 and $g \in G$. Let $L_g : Z \to Z$ be a homeomorphism. Then the followings hold. (1) The following diagram is commutative:

$$\begin{array}{cccc} Z & \stackrel{L_q}{\to} & Z \\ p_G \downarrow & \downarrow p_G \\ \tilde{X} & \stackrel{\tilde{g}}{\to} & \tilde{X} \end{array}$$

if and only if the following diagram is commutative:

$$\begin{array}{cccc} X & \stackrel{g}{\to} & X \\ i_G \downarrow & & \downarrow i_G \\ C(Z) & \stackrel{\tilde{L}_g}{\to} & C(Z) \end{array}$$

(2) The following diagram is commutative:

$$\begin{array}{ccc} Z & \xrightarrow{L_q} & Z \\ p_G \downarrow & & \downarrow p_G \\ \tilde{X} & \xrightarrow{-\tilde{g}} & \tilde{X} \end{array}$$

if and only if the following diagram is commutative:

$$\begin{array}{cccc} X & \stackrel{g}{\to} & X \\ i_G \downarrow & & \downarrow i_G \\ C(Z) & \stackrel{-\tilde{L_g}}{\to} & C(Z) \end{array}$$

Example. Let $X = \{x_i | i = 0, 1, 2\}$ be the set of three elements and let d be the metric on X defined by $d(x_i, x_j) = r > 0$ $(i \neq j)$. Define the isometry $g: X \to X$ by $g(x_0) = x_0, g(x_1) = x_2$ and $g(x_2) = x_1$. Let $G = \{id_X, g\}$. Note that $G(x_0) = \{x_0\}$. Then there is an isometrical embedding $i_G: X \to C(\mathbb{Q})$ such that there is no isometrical extension of g on $C(\mathbb{Q})$. In particular, $C(\mathbb{Q})$ is not equal to the Urysohn universal space \mathbb{U} , because that \mathbb{U} has the following strong property: Any isometry between finite subsets of \mathbb{U} can be extended to an isometry of \mathbb{U} .

Next we will consider the case of the function space $C(\Delta)$. Let H(X) be the set of all homeomorphisms of a space X.

Proposition 2.6. Let X be a compact metric space and let G be a countable subset of H(X). Then there is an onto map $p_G : \Delta \to X$ such that for any $g \in G$ there is a (lift) homeomorphism $L_q : \Delta \to \Delta$ of Δ such that the following diagram is commutative.

$$\begin{array}{ccc} \Delta & \stackrel{L_q}{\to} & \Delta \\ p_G \downarrow & & \downarrow p_G \\ X & \stackrel{g}{\to} & X \end{array}$$

Then we have the following theorem of $C(\Delta)$.

Theorem 2.7. Let (X, d) be any separable metric space and let G be a countable bounded subgroup of Iso(X). Then there is an isometrical embedding $i_G : X \to C(\Delta)$ such that there exist a countable subgroup G^* of $LinIso(C(\Delta))$ and a continuous epimorphism $r^* :$ $G^* \to G$ such that each $g^* \in G^*$ is an extension of $r^*(g^*) \in G$. In particular, if $g \in G$, then there is an extension $g^* \in LinIso(C(\Delta))$ of g.

Remark 2. Note that the space $H(\Delta)$ of all homeomorphisms of Δ is homeomorphic to the space P of irrationals, and hence $H(\Delta)$ is zero-dimensional. If G is any bounded subgroup of Iso(X) with dim $G \geq 1$, there is no embedding from G to $H(\Delta)$.

Corollary 2.8. Let (X, d) be any separable metric space. If $g \in Iso(X)$ is periodic i.e., $g^n = id_X$ for some $n \in \mathbb{N}$, then there is an isometrical embedding $i_g : X \to C(\Delta)$ such that there is an extension $g^* \in LinIso(C(\Delta))$ of g with $(g^*)^n = id_{C(\Delta)}$.

Finally, we consider the case of C(I). We have the following proposition of C(I).

Proposition 2.9. Let (X, d) be any separable metric space and let $g \in Iso(X)$ such that g has a periodic point x_0 with period $n \in \mathbb{N}$. If $n \geq 3$, there is no isometrical embedding i from X to C(I) such that g has an extension in LinIso(C(I)).

Now, we have the following problem.

Problem 2.10. Let (X, d) be any separable metric space. Is it true that there is an isometrical embedding i from X to $C(\mathbb{Q})$ such that each $g \in Iso(X)$ has an extension which is an affine isometry of $C(\mathbb{Q})$?

References

- [1] S. Banach, Théories des Opétations Linéaires, Hafner, New York 1932, p. 185.
- [2] P. J. Cameron and A. M. Vershik, Some isometry groups of the Urysohn space, Annals of Pure and Applied Logic, 143 (2006), 70-78.
- [3] M. R. Holmes, The universal separable metric spaces of Urysohn and isometric embeddings thereof in Banach spaces, Fund. Math. 140 (1992), 199-223.
- [4] Y. Ikegami, H. Kato and A. Ueda, Dynamical systems of finite-dimensional metric spaces and zero-dimensional covers, Topology Appl. 160 (2013), 564-574.
- [5] M. Malicki and S. Solecki, Isometry groups of separable metric spaces, Math. Proc. Camb. Phil.Soc. (2009), 146, 67-81.
- [6] S. Mazur and S. Ulam, Sur les transformation isométriques d'espace vectoriel normés, C. R. Acad. Sci. Paris, 194 (1932), 946-948.
- [7] J. Melleray, On the gometry of Urysohn's universal metric space, Topology Appl. 154 (2007), 384-4-3.
- [8] J. van Mill, Infinite-dimensional topology: prerequisites and introduction, North-Holland publishing Co., Amsterdam, 1989.
- [9] W. Sierpiński, Sur un espace métrique séparable universel, Fund. Math. 33 (1945), 115-122.
- [10] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375-381.
- [11] P. Urysohn, Sur un espace métrique universel, Bull. Sci. Math. 51 (1927), 43-64.
- [12] V. V. Uspenskij, On the group of isometries of the Urysohn universal metric space, Comment. Math. Univ. Carolinae, 31 (1990), 181-182.
- [13] V. V. Uspenskij, A universal topological group with a countable base, Functional analysis and its applications, 20 (1986), 86-87.
- [14] H. Kato, Isometrical extensions of bounded isometries of separable metric spaces in the function spaces $C(\mathbb{Q})$, $C(\Delta)$ and C(I), preprint.