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Abstract approach to Dirac equation with time
dependent potential

AR - H22EL &9 AKBR (Kentarou Yoshii)

Department of Mathematics, Science University of Tokyo

1. Introduction and statement of the result

Let H(R3) be the usual Sobolev space and
Hi(R®) := {u € LA(R®); (1 + |z[*)Y?%u € L*(R%)}, TY(R®) := H'(R®) N H.(R3).

In this paper we consider the Cauchy problem for Dirac equation in L?(R3)%:

(DE) 2% =Hu+V(t,z)u, Hy:=a -D+mp

with u(-,0) = o € H*(R3)* N H;(R%)*% Here u : [0,7] x R® — C* is an unknown
function and o := (a1, s, 03), 8 := a4 are 4 x 4 Hermitian matrices satisfying

o716 + Qply; = 25jk1)
where 4 is Kronecker symbol, I is the identity matrix and D = i=1(8y,,, 83), m > 0.
V(t,z) is a 4 x 4 Hermitian matrix-valued potential.

We shall show the existence of a unique classical solution under some conditions on
potential V. It seems that this problem is associated with Kato and Yajima [5].

Now we want to state our main theorem.

Theorem 1.1. Set V = Vj(t,z) + q(t, z)I, where Hermitian matriz-valued function Vi
and real valued function q satisfy the conditions:

(V1) Vo(t,2)] < alz" + 8,
(v2) |2 o(t,2)] < (alal~ + Do (1),
(@ (1+ [2)"2q € C(0.T; L=(R®)) N L0, T; W (&%),

where |V | denotes the operator norm of V, a, b are nonnegative constants with a < 1/2
ando € L'(0,T). Then for every initial value up € S'(R3)* problem (DE) has a unique
(classical) solution

u(+) € C'([0, T]; L2 (R®)*) N O([0, T); B} (R®)*).
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Remark 1. Conditions (V1) and (V2) imply (a|z|14-5)~1Vy € WH(0, T; L (R3)**4).

To prove Theorem 1.1 we employ an abstract approach. This approach becomes a
little simple than [10].

Let {A(t);t € [0,T]} be a family of closed linear operators in a complex Hilbert
space X. Then we consider the abstract Cauchy problem for linear evolution equations
of the form

d
Zu(t) + A@u(t) = f@t), telo,T),
ACP) Su(t) + A@ut) = 1), te[0,T]
Here the initial value ug is selected as follows.

To introduce our assumption on {A(t); ¢t € [0, T]} we need one more family {S(t); ¢t €
[0, T]} of auxiliary operators in X.

Assumption on {S(t)}. The family {S(¢)} satisfies the following three conditions:
(S1) For every t € [0, T], S(t) is positive selfadjoint in X and

(u,S(t)u) > |luf? for u € D(S()).

Let Y; be the Hilbert space D(S(t)!/?) with new inner product (-, )y, and norm || - ||y,
for ¢t € [0,T] and u,v € Y;:

(u,0)y, = (SE)Y2u, St) ), Nully, = (w, )y,

embedded continuously and densely in X. In particular, Y := Y; plays the roll of the
space of initial values as in Theorem 1.3 (see below).

(S2) For t € [0,T], Y; = Y, and S(-)V/2 € C.([0,T); B(Y, X)), where B(Y, X) is the
space of all bounded linear operators on Y to X, with norm || - || py,x), while the

subscript , is used to refer the strong operator topology in B(Y, X) (for this notation
see Kato [4]).

(S3) There exists a nonnegative function o € L*(I) such that

IS@) 2l = 11S(s)ll] <

t
/ o(r)dr| max ||S(Y20], veY, tse0,T).
s re{s,t}
In connection with the symbol B(Y, X) we shall also use the abbreviation: B(X) :=
B(X,X), B(Y) := B(Y,Y).
Let {S(t)} be as defined above. Then we may introduce the following

Assumption on {A(¢)}. The family {A(t)} satisfies the following four conditions:
(A1) There exists a constant o > 0 such that

|Re (A(t)v,v)| < allv]?, v e DA®)), t€[0,T).
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(A2) Y C D(A(t)), t € [0,T).
(A3) There exists a constant S > « such that
| Re (A(t)u, S(t)u)| < BI|S(#)Y?u|?, we D(S(t)) CY, te€[0,T].
(A4) A() € C.([0,T]; B(Y, X))
Theorem 1.2. Suppose that Assumptions on {A(t)} and {S(t)} are satisfied. Then

there exists a unique evolution operator {U(t,s); (t,s) € A} for (ACP), where A, :=
{(t,s);0 < s <t < T}, having the following properties:

(i) U(-,-) is strongly continuous on Ay to B(X), with
|U(t,s)llsx) < 2@, (t,5) € Ay

(ii) U(t,m)U(r,s) =U(t,s) on Ay and U(s,s) =1 (the identity).
(iii) U(t,s)Y CY and U(-,-) is strongly continuous on A, to B(Y'), with

(1) U 8)aam < exp ( /tg(r)dr), (t,5) € Ay,

(1.2) U 9)lew) < exp /Osa(r) dr) exp (2 / ) dr), (t;s) € Ay,

where o (t) := B + o(t).

Furthermore, letv € Y. Then U(-,-)v € CY(AL; X), with
(iv) (@/ot)U(t, s)v =—=A{)U(t,s)v, (¢, s) € Ay, and
(v) (0/9s)U(t,s)v =Ul(t,s)A(s)v, (t,s) € Ay.

The equation in (ACP) is naturally interpreted if the solution has an additional
property u(-) € C([0,T];Y). In fact, it is guaranteed by condition (A2) that u(t) €
Y C D(A(t)) for every t € [0,T).

Theorem 1.3. Let {U(t,s)} be the evolution operator for (ACP) as in Theorem 1.2
above. Forug €Y and f(-) € C([0,T); X)N L0, T;Y) define u(-) as

u(t) == U(t,0)ug + /t Ul(t,s)f(s)ds.
Then (ACP) has a unique (classical) solution
u(-) € C([0,T]; X) N C([0, T} Y).

Remark 2. The assertion of Theorem 1.3 is same as in [10]. However, we can simplify
assumption on {S(t)} and the proof of Theorem 1.2 a little than [10].
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2. Preliminaries

Let X be a (complex) Hilbert space. In this section we prepare some useful lemmas.

2.1. Lemmas on time-independent operators
In this subsection we consider a pair {A, S} of closed linear operators in X. Let A
be quasi-accretive in the sense of Kato [1, Section V.3.10]:

(2.1) Re (Av,v) > —a|jv|?, v € D(A),

for some constant o > 0; in other words, a + A is accretive. Let S be a positive-
definite selfadjoint operator in X, with D(S) C D(A). Now we can state a condition
connecting A and S: assume that there exist a constant S > 0 such that

(2.2) Re (Au, Su) > —B (u,Su), u € D(S) C D(A).
Lemma 2.1. Let A and S be as in (2.1) and (2.2), respectively. Then
(a) a + A is m-accretive in X; (b) D(S) is a core for A.

(a) was first proved by Okazawa [6], while (b) was later noted by Kato[3] (for a
complete proof see Tanabe [13, Section 7.7] or Ouhabaz [11, Section 1.3.3]).

Given the pair {4, S} as in Lemma 2.1, let {An;n > a} and {S; € > 0} be Yosida
approximations of A and S, respectively:

(2.3) Ap:=AJ, =n(1-1J,), J,:=1+n"14)7
(2.4) S.:=SJ.=¢eY1-J,), Jo:=(1+eS)™"

Then the pair {A,, S} satisfies conditions in Lemma 2.1 with a and f replaced with
a(l —n~'a) ! and B(1 — n~1B)71, respectively.
(2.1) and (2.2) are invariant under taking their Yosida approximation.

Lemma 2.2 (Okazawa [7, Lemma 2.2]). Given A as in Lemma 2.1, let {A,} and {J,}
be as in (2.3). Then | ullpx) < (1 —n7ta)™ (n > a) and ||An|lax) < n (n > 20),
with

(2.1), Re (A w,w) > —a(l —n7la) Hw|?, weX, n>a

Lemma 2.3 (|9, Lemmas 2.7]). Given the pair {A, S} as in Lemma 2.1, let {A,} and
{S:} be as in (2.3) and (2.4). Then

(2.2)n¢ Re (Apw, Sew) > —B(1 —n71B8)7|SY2w|?>, weX, n>B>a.
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2.2. Lemmas on time-dependent operators
Since we need conditions (A1), (A3) and (S3) as a whole only in the last step of
the proof of Theorem 1.2, we may introduce a set of weaker conditions:

(A1), There exists a constant a > 0 such that
Re (A(t)v,v) > ~aljv|[?, ve D(A(®t)), t € [0,T].
(A3). There exists a constant 8 > a such that
Re (A(t)v, S(t)v) > —B|IS®)?v|?, v e D(S(t)) CY, te(0,T).
(83),4 There exists a nonnegative function ¢ € L'(0,T) such that

IS8 2| — |S(s)?u|| < ( / o) dr) IS(s)2u|, ueY,0<s<t<T

38

By virtue of Lemma 2.1, it follows from conditions (A1), (A2) and (A3), that
a+ A(t) is m-accretive in X. We can obtain following

Proposition 2.4. Let {S(t)} be a family of selfadjoint operators in X, {A(t)} a fam-
ily of closed linear quasi-accretive operators in X, satisfying conditions (S1), (S2),
(83)4 for {S(t)}, and conditions (A1), (A2), (A3),, (A4) for {A(t)}. Then there
ezist Yosida approzimations {An(t);n > o} and {S:(t);e > 0} of {A(t)} and {S(2)},
respectively:

(2.5) An(t) :=A(t)Jn(t) =n(l = Jp(t)),  Ju(t) =1 +n"tA®),

(2.6) Se(t) :=St)J(t) =71~ Jo(t)), J(t) :=(1+eS()™L
Put
(2.7) an =a(l —n"ta)™, B :=p1-n"18)"" (n>pF2>a)

Then the pair of {An(t)} and {S.(t)} satisfies Assumptions on {A(¢)} and {S(t)} with
Y, a and 8 replaced with X, o, and B, respectively:

(S1) D(S.(8)) = X, t € [0.T].

(8:2) Se(-) € C.([0, T); B(X)).

(Se3)+ Forw e X,

1S ()Y 2w)? = ||S.(s)2w]? g[(l + / to(r) dr)2—1] I1S.(s)Y2wl?, 0<s<t<T

(A1), Forn>a,te[0,T], [|[Jn(t)Bx) < (1—n"ta)™? and
Re (An(t)w,w) > ~agfw]?, we X.

(An2) D(An(t) =X, t€[0,T].
(An3)y Forn > B,t€[0,T], Re (An(t)w, S:(t)w) > —B,||S:(t)?w|]?, we X.
(And) An(-) € Cu([0, T]; B(X)) (n > B), with ||An(t)|lax) < n (n > 2¢, t € [0,T)).
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(S¢1) and (A,2) are trivial. (A,l), and (A,3); follow from Lemmas 2.2 and
2.3, respectively. (A,4) and (S.2) were proved in [7, Lemma 3.1(a), (b)] and [10,
Proposition 2.5], respectively. We show only the proof of (S.3),. The first half of the
proof is same as in [10, Proposition 2.5].

Proof of (S¢3),. First we remind of the definition of S.(-):
w=J.()w+eS:()w, weX.

Then the symmetry and positivity of J.(-) yield that

(2.8) (w, S, (t)w — Se(s)w)

(w, S (t +€S (8))w — (Je(t) + £5e(2))Se(s)w)

(Je( — 8(s))Je(s)w) + ((Je(t) = Je(s))w, (S(t) — S(5))Je(s)w)

(
(Je(S) (S(t) 5(s)) Je(s)w)
—e(Je()(S(t) — S(s))Je(s)w. (S(t) — S(s))Je(s)w)
(
)

Il

I

]

< (Je(s)w, (S(t) = S(5)) Je(s)w)
=15@)!2Je(s)ywl|* ~ 1S(s)*Je(s)wl|?.

On the other hand, it follows from condition (S3). that

(2.9) ISy asul < (1+ [ o) dr)iS.(s7 2l

where we have used ||Jc(s)?|px) < 1 (¢ > 0). We see from (2.9) that

210) IS@"(s)ul? - 1S sl <[(1+ [ “o(r)dr) 1] I5.(s) 2wl

Combining (2.10) with (2.8), we obtain (S.3). O

The next proposition is essential in the proof of Theorem 1.2 in which it is required

to differentiate S.(-). For that purpose {S.(t); t € [0, T} is replaced with a new family
1 t+h

(2.11) Sh(t) := > S.(s)ds, h>0,tel0,T],
t

where we define as Se(s) := S;(T) (s > T'). Then, in view of (S.2), we have

(212) %sﬁ( Ow =3 (Se(t + hyw — S.(t)w),

(2.13) s—f&(r)n Sttyw =S.(Hw, w e X.



Proposition 2.5. Assume that {S(t)} satisfies conditions (S1), (S2) and (S3);. Let
{Sh(t); t € [0,T)} be as in (2.11). Then St(-) € CL([0,T]; B(X)), with forw € X,

(Sh3), (w,ad;S?(s)w) < —H(l—l— / o) o) -1]Is 0wl s € 0.1,

where one defines as o(s) :=0 (s > T). Moreover, for w € X one has

t t
(2.14) limsup/ (w, disS:‘(s)w) ds < 2/ o(5)]|S:(s)?wl|®ds, to<t.
to

hl0 to

With regard to the proof of Proposition 2.6, (S3).. follows from (2.12) and (S.3)..
On the other hand, (2.14) is a consequence of following:

Lemma 2.6. Let ¢ € L*(0,T) and ¢y € L*>°(0,T). Then

limh/ 1+/ )d?) —1]1/1(5)d3=2/0tg0(s)w(5)ds, 0<t<T,

hi0
where one define as p(s) :=0 (s > T).
Proof. We also define that ¢(s) := 0 (s < 0). Since

(1 + /:Jrh o(r) dr)2~—1 = (/:M o(r) dr) (2 + /:M o(T) dT),

by integrating by parts, we obtain

/Ot [(1 + /:Jrh ©(r) dr)z-—l]w(s) ds
_ /0 o o(r) [ / ih(z + / o (1) dr) 3 (s) ds] dr
- /0t+h o) [ /:}:h (2@(3) o) /T ih B(s) ds) dT] dr,

where 9, ¥ € L}(R) are defined as
36) = {zp(s), 0<s<t, - {J<s>, r—h<s<r,

s) ==

0, otherwise, 0, otherwise.

Set

Op(r) = [/h( +,o(¢/ B(s)ds dr]

Then we obtain limp o <I>h(r) = 2p(r)y(r) (a.a. T € (0,t)) and

[@n(r)] < le(r)] (2 + / _:hi ()] dr) [l z=(o,1)

<l (2+ el ) [Wllz=or) € LHO,T).

Thus the assertion follows from the Lebesgue convergence theorem. O

107
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3. Construction of evolution operators

In this section we shall prove Theorem 1.2. The major part of the assertions in
Theorem 1.2 is contained in the following

Theorem 3.1. Let {S(t)} be a family of selfadjoint operators in X, {A(t)} a family
of closed linear quasi-accretive operators in X, satisfying conditions (S1), (S2), (S3)+
for {S(t)}, and conditions (A1), (A2), (A3),, (A4) for {A(t)}. Then there exists
a unique two-parameter family {U(t, s); (t,s) € A} in B(X), having the properties:
(iii)y U(t,s)Y C Y, with (1.1);

(iv)w U(-,-)v € WHH(AL; X), with

(@/at)U(t, s)v = —A()U(t,s)v, aa.te (s, T), veY;
in addition to properties (i), (ii) and (v) in Theorem 1.2.

Therefore the first purpose of this section is to prove Theorem 3.1. To replace (iii)y
and (iv),, with (iii) and (iv) in the final step we need the whole conditions (S1)-(S3)
and (A1)—(A4) in Theorem 1.2.

To prove Theorem 3.1 we consider the approximate problem;

{(d/dt)un(t) + An(Dun(t) =0, tels,T),

(ACP)n Up(s) = w € X,

where {A,(t);n > a} is the Yosida approximation as in (2.5).

According to Pazy [12, Theorems 5.1.1 and 5.1.2] (in which A, () € C([0,T]; B(X))
is assumed, however, it can be replaced by A,(-) € C.([0,T]; B(X)) (condition (A,4))
with appropriate modification of the conclusion), we obtain the following

Proposition 3.2. Let s € [0,T) and n > 2f3, where (8 is defined in (A3),. Then
the approzimate problem (ACP),, has a unique classical solution u,(-)€ C*([s,T]; X).
Accordingly, there exists a unique evolution operator {Uy,(t, s); (¢, s) € A} for (ACP),
having the following properties:

(1) Un(-,-) s strongly continuous on A, to B(X), with
|Un(t, 8)llBxy < ™79, (t,5) € A,

(i), Un(t,r)Un(r,s) = Up(t,s) on Ay and Uy(s,s) = 1 (the identity).
(iii), Un(t,s) is uniformly continuous on A, .

(iv)n (B/0t)Un(t, s)w = —A,()Up(t,s)w, we X, (t,s) €Ay.

(V)n (8/08)Upn(t, s)v = Upn(t, s)An(s)v, we€ X, (t,s) € Ay.

For the limiting procedure for {U,(t, s)} we need several estimates of {Uy, (¢, s)} which
are independent of n.



Lemma 3.3. Let {U,(t,s)} be as in Proposition 3.2, a,, B, as in (2.7) and o as in
condition (S3)4. If n > 28, then for (t,s) € A,

(@) [Un(t, s)llBx) < €22,

(b) Un(t,s)Y C Y and with

t
HS(t)l/zUn(t, s < b9 exp(/ o(r) dr) 1S(s)%|, veY.

S

(c) There exists a constant ¢ > 0 such that

(3.1) IAGRI < eSOV, vey,
and hence
(3.2) [An(t)Un (2, s)v|| < Mlpvlly, veY,

where M := 2cexp(28T + ||o||L10,1))-
Proof. (a) We see from property (iv), and (A,1), that for w € X,

(8/0r)||Un(r, s)w|?> = — 2Re (An(r)Un(r, 8)w, Up(r, 8)w)
L 20, |Un(r, s)w|?, s<r<t.

Integrating this inequality, we obtain the assertion.

(b) Let {S.(t)} and {S%(¢)} be as in (2.6) and (2.11). Since S”(¢)'/? is bounded and
symmetric on X, it follows from property (iv), that for v € Y,

(3.3) (8/0r)||S™M(r)2U,(r, s)v||* = — 2Re (An(r)Un(r, s)v, SH(r)Un(r, s)v)
+ (Un(r, s)v, ((d/dr)SE(r))Un(r, s)v).

Integrating this equality on [s, t], we see from (S?3), that
t
1S2() 2 Un(t, s)oll* < || S2(s)?0]|* - 2/ Re (An(r)Un(r, 8)v, S2(r)Un(r, s)v) dr
t 1 r+h 2 )
- _ /2 112
+ / - [(1 + / o(7) dT) 1] 1o () Y2Un(r, 5)o||? dr-
Passing to the limit as & | 0, we see from (2.13), (2.14) and (A,3), that
t
1S:(8)}2U,(t, s)v||? < 1|Se(s)/2v]|? — 2/ Re (An(r)Un(r, s)v, Se(r)Un(r, s)v) dr

+2 / (M) [Su(r)/2Un(r, s)o|2 dr

<[IS(s)2u]” + 2/ (Bn + Ko (r))1Se(r)!/*Un(r, s)v]|* dr.

109
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Applying the Gronwall lemma, we obtain
t
1,720t )l < exp(2 [ (8 + (7)) dr) 1S(6) P2
Passing to the limit as € — 0, we obtain the assertion.
(c) The existence of such a constant c is guaranteed by conditions (A2) and (A4).
Therefore we see from (A,1), and (3.1) that
14n(@)vll < (1 = n7la) AR < 2]|S@)?0ll, v €Y.

Noting that

B4 150l < (1+ [ o dr)I15©0) 0l < exp( [ otr)ar) o,
0 0

we obtain (3.2) as a consequence of (b). O

Next two lemmas guarantee the existence and uniqueness of evolution operator.
Lemma 3.4 ([10, Lemma 3.4]). Let {U,(t,s)} be the evolution operator for (ACP),.
Then there exists a new family {U(t, s); (t,s) € Ay} such that U(t,s) := S—Em U,(t, s),
where the convergence is uniform on AL, and has properties (i) and (ii) in Theorem 1.2,
with

2T
n— 2«

Lemma 3.5 ([10, Lemma 3.4]). Let {U(t,s)} be as in Lemma 3.4 and v € Y. Then
(a) U(t,s)Y CY and

U@, s)v — Un(t, s)v| < Me* T |lvlly, veY, n>2B.

(3.5) IS(®)Y2U (¢, s)v|| < exp (/ a(r) dr) 1S(s)20|, (t,s) € AL, vEY,

where 7 is defined as in Theorem 1.2 (iii).
(b) U(-,-)v € Wheo(A,; X), with properties (iv)y, and (V).
(c) {U(t,s); (t,s) € A} is unique: U(t,s) = V(t,s) on Ay if {V(&,5); (¢,8) € Ay}
is another family in B(X) with properties (i), (ii) and (v).
This completes the proof of Theorem 3.1. The purpose of the second half in this

- section is to prove properties (iii) and (iv) in Theorem 1.2.

Lemma 3.6. Let {U(t,s)} be as in Lemma 3.4 and v € Y. Assume that S(t) satisfies
conditions (S1)—(S3). Then

(a) S()Y2U(t,s)v is weakly continuous on A..
(b) S()Y2U(t, s)v — S(te)?v as (t,s) = (to, to).
(c) Fort e (0,T), S@t)Y2U(t,-)v € C([0,1]; X).
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Proof. (a) Since S.(-)/? € C.([0,T]; B(X)) (see (S.2)), S:(t)/2U(t, s)v is continuous
on A,. For w € Y, we see that
[(S@)2U (¢, s)v, w) ~ (S-(t)/2U (2, s)v, w)|

=|(S@®Y2U(¢, s)v, [1 — (1 +eS(t)) " w)|

< exp([11l 210, 1S (0)%0]| - |Jw — (1 + S(2)) ™ ?w|

< e exp(|[& || o) vl lwlly,
where we have used (1.2) and (3.4). Passing to € | 0, since Y is dense in X, we can
conclude (a).

(b) It is follows from (a) that

IS(0)20] < limint [S(©)20(,5).

t,5)—(to,to)

On the other hand, it follows from (3.5) that

lim sup “S’(t)l/zU(t,s)vH < |]S(t0)1/2vl|.
(t,s)%(to,to)

Combining these estimates and (a), we obtain the assertion.

(c) Let r € [s,t]. Then we see from (3.5) that
IS@?U (L, r)o = S@)V2U (2, s)vll < exp(lF ]| 10,1 IS () V2(1 = U(r, 5))v].
Therefore the assertion follows from (b). O

Now we are in a position to prove (iii) and (iv) of Theorem 1.2. As is easily seen,
the proof of (iii) and (iv) is based on Lemmas 3.7 and 3.8 below. In other words, we
need the whole assumptions on {A(t)} and {S(¢)}.

Lemma 3.7 ({7, Lemma 3.9]). Let {A(t)} and {S(t)} be as in Theorem 1.2. Assume
that conditions (A1), (A2) and (A3) are satisfied. Then

(3.6) |Re (A(t)v, S:(t)v)] < BIIS(t)%))?, veY, telo,T)

Under conditions (S1)-(S3) Proposition 2.5 is modified as follows.
Lemma 3.8. Assume that {S(t)} satisfies conditions (S1)—(S3). Let {S*(t)} be as in
Proposition 2.5. Then condition (S?3), is replaced with

:3)  |(w Sk < 1 [(1+ /s+ha(r)dr)2-1] max_S.(r)/2u]?

re{s,s+h}

forwe X, h >0 and s € [0,T]. Conseguently, fort, ty € [0,T] one has

t
/ (w2 $8(s)w) | ds / o (5)]15:()2w]* ds|.
to ds to

(3.7) lim sup <2

hl0
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The next lemma completes the proof of Theorem 1.2.

Lemma 3.9. For {A(t)} and {S(t)} as in Theorem 1.2 let {U(t,s)} be as defined in
Lemma 3.4 and v €Y. Then

(a) U(t,-)ve C([0,¢];Y), t € (0,T).

(b) S()V2U(,s)v € C([s, T]; X), s € [0,T).

(c) U(,s)veC([s,T);Y), s € [0,T).

(d) U(:,-)v € C(A4;Y); this establishes property (iii) in Theorem 1.2.
(e) U(-,-)v € CYA,;X), with property (iv) in Theorem 1.2.

Proof. We follow the idea in [7, Lemma 3.10].

(a) We see from condition (S3) that for (¢,s) € Ay,

t
(3.8) 15(s)2w] < exp / ofr)dr) S ul, weY.
Hence we obtain

lU(t,r)o = Ut, s)olly < exp(llo(r)llom)ISE)2Ut,r)v ~ S@t)2U(E, s)o].

Therefore the assertion follows from Lemma 3.6 (c).
(b) By virtue of Lemma 3.6 (a), it suffices to show that

(3.9) IS()MY2U(-, s)v|| € C[s, T).

We trace the proof of Lemma 3.3 (b). Let us ¢, ¢y € [s,T]. Integrating the inequality
(3.3) from 7 =t to r = t and passing to the limit as n — oo, we have

IS2(2)/2U (2, s)l|* — 1152 (o) /U (to, s)ul?

= — 2/ Re (A(r)U(r, s)v, S*(r)U(r, s)v) dr

to
T
d on
+ ‘/t;) (U(r, s)v, (E;SE ('r'))U(r, s)v) dr.
Passing to the limit as h | 0, we see from (3.7) that
11S:(8)/2U (2, s)vlI® — |Se(t0) /U (2o, s)o|?|

52/t|Re (A(M)U(r, s)v, Se(r)U(r, s)v)| dr

+2

/ o(r)|SL(r)2U (r, syo|2dr

to
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Therefore (3.6) yields that

802U ¢, s)vl|* — |Se(t0)*U (to, s)v||?| < 2

/t FOV S )20 (r, s)o|? dr

0

By virtue of (3.5) and (3.4), we have

[I1S:(8)2U (£, s)ol|? = |15 (t0) /2U (to, 8)v|1?| < 2exp(2]|& |21 0,1)) vl

/to “F(r)dr

Passing to the limit as € | 0, we obtain (3.9).
(c) We see from (3.8) that

1T s)v = Ulto, s)vlly < exp([F]] 2, IS (@)U (¢, s)o — S(#)2U (b0, s)0]|-

The assertion is a consequence of (b) and condition (S2).

(d) The assertion follows from (c) and Lemma 3.6 (c) (see also [9, Lemma 3.11 (b)] and
Kato [2, Remark 5.4]). Since (3.4), (3.8) and Lemma 3.5 (a) yield (1.2), this completes
the proof of property (iii).

(e) By virtue of Lemma 3.5 (b), it suffices to show that A(:)U(, s)v € C([s, T]; X).Let
t, to € [s,T]. Then we see from (3.1) that the desired continuity is reduced to those of
Sy2U (-, s)v and A()U(to, 8)v:

IA@U @, s)v — A(to)U(to, s)v]|
<[ARUE s)v — ARV (to, s)vll + [ A[®)U (to, s)v — A(to)U to, s)v||
<c||S@)M2U(t, s)v — SE)V2U (to, s)v|| + || AR)U (to, s)v — A(te)U (o, s)v|.

Therefore the conclusion follows from (c) and condition (A4). Finally, property (iv)
is a consequence of property (iv)y. a

4. Applications to the Dirac equation

In this section we consider, as an application of Theorem 1.3, the Cauchy problem
for the Dirac equation:

dt
u(0) = ug

(DE) {iiu = H(t)u for t e (0,7),

in the Hilbert Space X = L*(R3)*, where up € Y := L}(R3)%.
First we define an operator H(t). Let

H(t) = Ho + V(t, ZE) = Ho + Vo(t, .T) + Q(t)l
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with domain D(H(t)) = CP(R3)4, where Hy is the free Dirac operator, Vy(¢,z) and
q(t,z) are satisfying condition (V1), (V2) and (q). Since H(t) is symmetric, H(t) is
closable. Then we take as H(t) the closure H(t) of H(t), i.e., H(t) = H(t). Set

S(t) == (Ho+ Vo(t))? + (1 + |z|®)1,
D(S@)) = {u € LR S(t)u € L*([R3)}.

Then we can show that S(t) is positive selfadjoint on D(S(t)) (see [8, Lemma 5.4]) and
Y; := D(S(t)*/?) is regarded as a Hilbert space, embedded continuously and densely in
L?*(R3)*, with inner product

(u,v)y, = (St)u, S@)V?v), w,veY,.
We can show that S(t) satisfies condition (S1) and the first half of condition (S2):
Lemma 4.1 (cf. [8, Lemma 6.1]). Let S(t) be as above. Then fort € [0,T],
Y, = Y = SHR3)*
and there exist time independent positive constants ci, cp such that
1) allSOYul? < lull® + [Vul? + llzlull® < ellS@)Y?ul?, ueY.

Moreover the second half of condition (S2) follows from (V2), because (V2) implies
that Vy(:, z) is continuous on [0, 7).
The following lemma guarantees that S(t) satisfies conditon (S3):

Lemma 4.2. Let S(t) be as above. Then

/St o1(r)dr

1S@)*0]1* = [|(Ho + Vo®))vII* + lllzlvll? + |lv]f?,

IS@)2v]| - 115 (s)*/?v]| < max [|S(r)*vl, veY, tsel0,T).

re{s,t}

Proof. Since

we have

%||S(t)1/2v||2 - 2(%%(0% (Ho + Vo(®)v).

Therefore we obtain from the Schwartz inequality and Hardy inequality that
d
a;IIS(t)”"’vllz‘ =20(8)(2aVv| + |lvIDII(Ho + Vo(8))wll.
It follows from (4.1) that
d
£ 50200 = 20+ Beaa(®l1S©) 2],

Thus the assertion follows by o1(t) = (2a + b)cao(2). O
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Now we shall verify conditions (A1)-(A4).

Lemma 4.3. Let A(t) =iH(t) and S(t) be as above. Then for each T > 0
(A1) Re(A(t)v,v) =0, v € D(A(t)), a.a. t € (0,T).

(A2) Y = HY(R3)* N H;(R®)* C D(A(t)), a.a. t € (0,T).

(A3) There exists a constant B > 0 such that

| Re (A(t)u, S(t)u)| < BI|SE)Y?ul’, uw € D(S®)), a.a.t € (0,T).
(A4) A() € C.(0,T; B(Z'(R®)4, L2(R%)%)).

Proof. Noting that Re (A(t)u,u) = — Im (H (t)u,u) the assertion follows from symme-
try of H(t). Moreover the continuity of A(t) follows from (V2) and (q). Therefore, it
is sufficient to show that there exist 8 > 0 such that

| Im (H (t)u, S@t)u)| < B®)||S()Y%u||>, w € D(S), aa. t e (0,T).
By integration by parts we have
Im (H(t), S(t)u) = Im ((Ho + Vo(t))u, |z[*u) + Im (g(t)u, (Ho + Vo(t))w)
= Re ((o - z)u,u) — Re ((o - Vq(t))u, (Ho + Vo(t))u).
We see from condition (q) that there exists a constant ¢, > 0 such that
11+ |2)72Vq(t) |1 < ¢
Hence it. follows from the Schwarz inequality and that

[tm (H(2), S(t)w)| < Nlelull - llull + [[Va@)lull - |(Ho + Vo())ul
< Mlfull - ull + egl (X + 1) 2ull - |(Ho + Vo(®))ul,

Therefore we obtain the desired inequality. a

According to the above lemmas, we can obtain Theorem 1.1.
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