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ABSTRACT. Using the same idea of the definition of means for pos-
itive operators by Kubo and Ando, for each natural number $n$ , we
can define means of two positive definite matrices of order $n$ and
try to study the canonical map: we can describe an one to one
corresponding from the class of matrix connections of order $n$ to
the class of positive $n$-monotone functions on $(0, \infty)$ and the range
of this corresponding covers the class of interpolation functions of
order $2n$ . In particular, the space of symmetric connections is iso-
morphic to the space of symmetric positive $n$-monotone functions.
Moreover, we show that, for each $n$ , the class of $n$-connections
extremely contains that of $(n+2)$ -connections.

1. INTRODUCTION

Averaging operations are useful in science. The arithmetic, geomet-
ric and harmonic means are the three $best-$known ones. When we try
to generalize these operations on positive definite matrices, there are
no difficulty for the arithmetic and harmonic means while the geo-
metric one needs some more efforts: since $A^{\frac{1}{2}}B^{\frac{1}{2}}$ is positive definite
if $AB=BA$ and even not symmetric in general for positive definite
matrices $A,$ $B$ . Trying to generalize these notions, Fumio Kub$0$ and
Tsuyoshi Ando [11] introduced the connections of positive operators
on an infinite dimensional Hilbert space $H$ via three axioms. Further-
more, they showed that there is an affine order-isomorphism from the
class of means to the class of positive operator monotone functions
$f$ on $(0, \infty)$ with $f(1)=1$ . This theory has found a number of ap-
plications in operator theory. In particular, Petz [16] connected the
theory of monotone metrics with the theory of connections and means
by Kubo and Ando. He proved that an operator monotone function
$f$ : $(0, \infty)arrow \mathbb{R}$ satisfying the functional equation

(1) $f(t)=tf(t^{-1}) , t>0$

related to a Morozova-Chentsov function which gives a monotone met-
ric on the manifold of $n\cross n$ density matrices.
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Restricting the definition of operator connections from [11] on the
set of positive semidefinite matrices of order $n$ , in this paper, we get
a concept of matrix connections of order $n$ (or $n$-connections). The
following natural question is one of the motivations of our study: Will
there exist an affine order-isomorphism from the $cla\mathcal{S}\mathcal{S}$ of $n$ -connections
onto the class of positive matrix monotone functions (or of interpola-
tion functions of order $n$)?

A $n$ -monotone function on $[0, \infty)$ is a function which preserves the
order on the set of all $n\cross n$ positive semi-definite matrices. Moreover, if
$f$ is $n$-monotone for all $n\in \mathbb{N}$ , then $f$ is called operator monotone. Note
that this is equivalent to that $f$ is a Pick function. Each $n$-connection
$\sigma$ induces a $n$-monotone function (so an interpolation function of order
n$)$ $f$ on $(0, \infty)$ via the identity $f(t)I_{n}=I_{n}\sigma(tI_{n})$ . This corresponding
is an one to one map from the class of $n$-connections to the class of pos-
itive $n$-monotone functions on $(0, \infty)$ (hence, to the set of interpolation
functions of order $n$).

On the other hand, an interpolation function of order $n$ is a positive
function $f$ on $(0, \infty)$ such that for each $n$-subset $S=\{\lambda_{i}\}_{i=1}^{n}$ of $(0, \infty)$

there exists a Pick function $h$ on $(0, \infty)$ interpolating $f$ at $S$ . Using
the integral representation of the Pick function, we know that $f(A)$ has
the integral representation on $[0, \infty]$ for any positive matrix $A$ (The-
orem 3.4). Applying this representation, we can get a ‘local’ integral
formula for a connection of order $n$ corresponding to a $n$-monotone
function on $(0, \infty)$ . Furthermore, this ‘local’ formula also establishes,
for each interpolation function $f$ of order $2n$ , a connection $\sigma$ of order
$n$ corresponding to the given interpolation function $f$ . Therefore, it
shows that the map from the $n$-connections to the $n$-monotone func-
tions is one to one with the range containing the interpolation functions
of order $2n$ . Moreover, we also show that the class of 1-connections is
isomorphic to the class of interpolation functions of order 2 and as
much as properties we know in the space of $n$-connections also hold in
the space $C_{2n}$ of interpolation functions of order $2n$ (Proposition 4.1
and Proposition 3.8). This gives a hope that the class of $n$-connections
is isomorphic to the class $C_{2n}.$

Using the definition of symmetric connections, we can also give a cor-
responding concept for interpolation functions and $n$-monotone func-
tions. It is shown that the space of $n$-connections is strictly subset
of the space of positive $n$-monotone functions on $(0, \infty)$ (Corollary
3.9). However, restricting on the symmetric functions, the space of
symmetric $n$-monotone functions is the same as that of symmetric n-
connections (Theorem 3.10).

In this short note, we state the results obtaining when we study
the connections of finite order positive definite matrices and sketch the
ideas of some proofs. For details of the proofs, please see [10].
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2. MEANS OF POSITIVE LINEAR OPERATORS IN THE SENSE OF
$KUBO-ANDO [11 ]$

Taking an axiomatic approach, Fumio Kubo and Tsuyoshi Ando
introduced the generalization of above notions namely connections and
means of positive operators as follows.

Definition 2.1 ([11]). $A$ connection $\sigma$ is a binary operation $A\sigma B$ for
positive semi-definite operators $A,$ $B$ on an infinite dimensional Hilbert
spaces $H$ , which satisfies the following:

(I) Monotonicity: $A\leq C$ and $B\leq D\Rightarrow A\sigma B\leq C\sigma D.$

(II) Ransformer inequality: $C(A\sigma B)C\leq(CAC)\sigma(CBC)$ .
(III) Continuous from above: $A_{n}\downarrow A,$ $B_{n}\downarrow B\Rightarrow A_{n}\sigma B_{n}\downarrow A\sigma B.$

A mean is a connection with normalization condition, that is $I\sigma I=I$

(I is the identity).

We can show that $I\sigma(xI)$ is a scalar for any positive number $x.$

Hence one can define a function $f(x)$ on $(0, \infty)$ by

$f(x)I=I\sigma(xI)$ .

Then $f$ is monotone and positive on $(0, \infty)$ , and, $f(A)=I\sigma A$ for
any positive definite operator $A$ , so, $f$ is operator-monotone since $\sigma$ is
monotone. Furthermore, with help of (2), we have the relation

$A\sigma B=A^{\frac{1}{2}}f[A^{\frac{-1}{2}BA^{\frac{-1}{2}}}]A^{\frac{1}{2}}.$

On the other hand, the Lowner theory on operator-monotone func-
tions gives an integral representation of operator-monotone functions
as follows.

Theorem 2.2 ([11]). The map which associates each positive Radon
measure $m$ on $[0, \infty]$ to a positive operator-monotone function $f$ defined
on $(0, \infty)$ by

(2) $f(x)= \int_{[0,\infty]}\frac{x(1+t)}{x+t}dm(t)$ for $x>0$

is an isomorphism from the class of positive Radon measures on $[0, \infty]$

onto the class of positive operator-monotone functions.

3. MEANS AND CONNECTIONS OF ORDER $n$

3.1. Interpolation functions. Throughout the paper, let us denote
$\mathbb{R}_{+}$ the subset $(0, \infty)$ of the real line $\mathbb{R},$ $M_{n}$ the algebra of square ma-
trices of order $n$ with coefficients in $\mathbb{C}$ and $M_{n}^{+}$ the cone of positive
semi-definite matrices in $M_{n}$ . In this section we study some properties
of interpolation functions of order $n$ and their local integral represen-
tations.
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Definition 3.1 ([1]). $A$ function $f:\mathbb{R}_{+}arrow \mathbb{R}_{+}$ is called an interpolation
function of order $n$ if for any $T,$ $A\in M_{n}$ with $A>0$ and $T^{*}T\leq 1$

$T^{*}AT\leq A \Rightarrow T^{*}f(A)T\leq f(A)$ .
We denote by $C_{n}$ the class of all interpolation functions of order $n$ on
$\mathbb{R}_{+}$ . Similarly, we can define an interpolation class $C_{n}(I)$ for an interval
$I\subset \mathbb{R}$ $(I: open,$ closed, $half- open)$ (see [15, Definition 1]). From the
above definition it is straightforward to check that $C_{n}\circ C_{n}\subset C_{n}$ (or
$C_{n}\circ C_{n}(I)\subset C_{n}(I)$ for any interval $I$ ).

Let $P’$ be a set of all positive Pick functions on $\mathbb{R}_{+}$ , i.e., functions of
the form

$h(s)= \int_{[0,\infty]}\frac{(1+t)s}{1+ts}d\rho(t) , s>0,$

where $\rho$ is some positive Radon measure on $[0, \infty].$

Remark 3.2. For $n\in \mathbb{N}$ denote by $P_{n}’$ the set of all strictly positive
$n$-monotone functions. We have the following properties can be found
in [9], [14], [1], [2], [3] or [4]:

(i) $P’= \bigcap_{n=1}^{\infty}P_{n}’,$ $P’= \bigcap_{n=1}^{\infty}C_{n}$ ;
(ii) $C_{n+1}\subseteq C_{n}$ ;
(iii) $P_{n+1}’\subseteq C_{2n+1}\subseteq C_{2n}\subseteq P_{n}’,$ $P_{n}’\subsetneq C_{n}$

(iv) $C_{2n}\subsetneq P_{n}’[15].$

The following useful characterization of a function in $C_{n}$ is due to
Donoghue (see [6], [7]), and to Ameur (see [1]).

Theorem 3.3. ([4, Corollary 2.4]) $A$ function $f:\mathbb{R}_{+}arrow \mathbb{R}_{+}$ belongs to
$C_{n}$ if and only iffor every $n$ -set $\{\lambda_{i}\}_{i=1}^{n}\subset \mathbb{R}_{+}$ there exists a $P’$ -function
$h$ such that $f(\lambda_{i})=h(\lambda_{i})$ for $i=1,$ $\ldots,$

$n.$

We have a $10$cal integral representation of every function in $C_{n}$ and
that the representation will be used in study of matrix connections in
the next sections.

Theorem 3.4. ([2, Theorem 7.1]) Let $A$ be a positive definite matrix
in $M_{n}$ and $f\in C_{n}$ . Then there exists a positive Radon measure $\rho_{\sigma(A)}$

on $[0, \infty]$ such that

(3) $f(A)= \int_{[0,\infty]}A(1+s)(A+s)^{-1}d\rho_{\sigma(A)}(s)$ ,

where $\sigma(A)$ is the set of eigenvalues of $A.$

3.2. Interpolation functions and Means of positive matrices.
Similarly to Definition 2.1 of connections of positive operators on in-
finite dimensional Hilbert space, we can give the definition of positive
matrices of order $n$ : $A$ binary operation $\sigma$ on $M_{n}^{+},$ $(A, B)\mapsto A\sigma B$ is
called a matrix connection of order $n$ (or $n$-connection) if it satisfies
three axioms an in Definition 2.1. Note that the order relation $A\leq B$
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always means the positivity of $B-A$ . That $A_{1}\geq A_{2}\geq\ldots$ and $A_{n}$

converges strongly to $A$ is denoted by $A_{n}\downarrow A.$

In [11], there is an affine ordcr-isomorphism from the set of connec-
tions onto the set of operator monotone functions. In this section, we
describe the similar relation between the connections of order $n$ and
$P_{n}’\supsetneq C_{2n}$ . Note that every positive semi-definite matrix can be ob-
tained as a limit of a decreasing sequence of positive definite matrices,
from now on, we can always assume that connections are defined on
positive definite matrices.

For any $n$-connection $\sigma$ , the matrix $I_{n}\sigma(tI_{n})$ is a scalar (see the proof
of [11, Theorem 3.2] $)$ , and so we can define a function $f$ on $(0, \infty)$ by

$f(t)I_{n}=I_{n}\sigma(tI_{n})$ ,

where $I_{n}$ is the identity in $M_{n}$ . As in the proof of [11, Theorem 3.2],
using the property (I) of the definition of connection, $f$ is a $n$-monotone
function on $(0, \infty)$ .

Now we can state the main theorem.

Theorem 3.5. For any natural number $n$ there is an injective map $\Sigma$

from the set of matrix connections of order $n$ to $P_{n}’\supset C_{2n}$ associating
each connection $\sigma$ to the function $f_{\sigma}$ such that $f_{\sigma}(t)I_{n}=I_{n}\sigma(tI_{n})$ for
$t>0$ . Furthermore, the range of this map contains $C_{2n}.$

Sketch the proof. Step 1. Let $f$ be a function belonging to $C_{n}$ . Define
a binary operation $\sigma$ on positivc definite matrices in $M_{n}$ by:

(4) $A\sigma B=A^{\frac{1}{2}}f[A^{\frac{-1}{2}BA^{\frac{-1}{2}}}]A^{\frac{1}{2}} \forall A, B>0.$

It is straightforward to check that $\sigma$ satisfies the axiom (III) of the
definition of $n$-connection.

Step 2. To check the axioms (I) and (II), we first show that for
$f\in C_{n}$ , there exists a Radon measure $\rho=\rho$ $-1$ $-1$ on $[0, \infty]$ such

$\sigma(A^{-T}BA)$

that

$f[A^{\frac{-1}{2}BA^{\frac{-1}{2}]=}} \int_{[0,\infty]^{A^{\frac{-1}{2}BA^{\frac{-1}{2}}}}}A^{\frac{-1}{2}BA^{\frac{-1}{2}}},$

where $\sigma(A^{\frac{-1}{2}BA^{\frac{-1}{2}}})$ is the set of eigenvalues of $A^{\frac{-1}{2}BA^{\frac{-1}{2}}}$ Substi-
tuting this equality into (4), we obtian

$A \sigma B=\int_{[0,\infty]}\frac{1+s}{s}\{(sA):B\}d\rho(s)$ .

step 3. Now for any $f\in C_{2n}$ , there exists a Radon measure $\rho$ on
$\sigma(A^{\frac{-1}{2}BA^{\frac{-1}{2}}})\cup\sigma(c\frac{-1}{2}Dc^{\frac{-1}{2}})$ such that

$A \sigma B=\int_{[0,\infty]}\frac{1+s}{s}\{(sA):B\}d\rho(s)$ ,

$C \sigma D=\int_{[0,\infty]}\frac{1+s}{s}\{(sC):D\}d\rho(s)$ .
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Since $\{(sA):B\}\leq\{(sC):D\}$ for $A\leq C$ and $B\leq D$ , the conditions
(I), (II) hold. $\square$

Remark 3.6. Since $P_{n}’\subsetneq C_{n}$ , the map associating each connection of
order $n$ to a function in $C_{n}$ as above is not surjective.

3.3. Decreasing inclusion of the connections of order $n$ . Via the
usual embedding of $M_{n}$ into $M_{n+1}$ , it is straightforward to check that
the classes of connections of order $n$ is decreasing. It is natural to ask
the following question: Is there a matrix mean $\sigma_{n}$ of the order $n$ on
$M_{n}$ such that $\sigma_{n}$ is not of order $n+1$ ?

The following observation gives partially affirmative data to the
above question.

Proposition 3.7.
(1) For any $n\geq 2$ there is a matrix mean $\sigma_{n}$ of order $n$ which is

not of order $n+2.$
(2) There is a matrix mean $\sigma_{1}$ of order 1 which is not of order 2.

Proof. Denote by $\Sigma_{n}$ the image of the class of connections of order $n$

via the map in Theorem 3.5 for each $n$ . Therefore, $\Sigma_{n}$ is isomorphic
to the class of $n$-connections (so the sequence $\{\Sigma_{n}\}$ is decreasing) and
$\Sigma_{n}\subseteq P_{n}’$ . From now on, we can identify the space of $n$-connections
with $\Sigma_{n}.$

(1): On account of Remark 3.2 and Theorem 3.5, we obtain the
following inclusion:

$\Sigma_{n+2}\subseteq P_{n+2}’\subseteq C_{2(n+1)+1}\subseteq C_{2(n+1)}\subseteq\Sigma_{n+1}$

$\subseteq P_{n+1}’\subseteq C_{2n+1}\subseteq C_{2n}\subseteq\Sigma_{n}.$

And since $P_{n+2}’\subsetneq P_{n+1}’$ , we imply that $\Sigma_{n+2}\subsetneq\Sigma_{n}.$

(2): Using Remark 3.2 again and the characterization of matrix con-
nections of order one (Subsection 3.5 below), we get

$\Sigma_{2}\subseteq P_{2}’\subseteq C_{3}\subseteq C_{2}=\Sigma_{1}.$

By [4, Proposition 3.14] $P_{2}’\neq C_{3}$ , we then have the statement. $\square$

3.4. Symmetric connections. As the same in [11], we can recall
some notations and properties of connections as follows. Let $\sigma$ be
a $n$-connection. The transpose $\sigma’$ , the adjoint $\sigma^{*}$ and the dual $\sigma^{\perp}$ of $\sigma$

are defined by
$A\sigma’B=B\sigma A, A\sigma^{*}B=(A^{-1}\sigma B^{-1})^{-1}, \sigma^{\perp}=\sigma^{\prime*}$

A connection is called symmetric if it equals to its transpose. De-
noted by $\Sigma_{n}^{sym}$ the set of $n$-monotone representing functions of sym-
metric $n$-connections, i.e., $\Sigma_{n}^{sym}$ is the image of the set of all symmetric
$n$-connections via the canonical map in Theorem 3.5.

(1) $\sigma+\sigma’$ and $\sigma(:)\sigma’$ are symmetric.
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(2) $\omega_{l}(\sigma)\omega_{r}=\sigma;\omega_{r}(\sigma)\omega_{l}=\sigma’$ , where $A\omega_{l}B=A$ and $A\omega_{r}B=B.$

(3) The $n$-monotone representing function of the $n$-connection $\sigma(\tau)\rho$

is $f(x)g[h(x)/f(x)]$ , where $f,$ $g,$ $h$ are the representing func-
tions of $\sigma,$ $\tau,$ $\rho$ in Theorem 3.5, respectively, and $A\sigma(\tau)\rho B=$

$(A\sigma B)\tau(A\rho B)$ .
(4) $\sigma$ is symmetric if and only if its $n$-monotone representing func-

tion $f$ is symmetric, that is, $f(x)=xf(x^{-1})$ .
Each $n$-connection corresponds to a positive $n$-monotone function

belonging to $\Sigma_{n}$ by Theorem 3.5. Therefore, combining with the ob-
servation above, we get the following.

Proposition 3.8. Let $f(x),$ $g(x),$ $h(x)$ belong to $\Sigma_{n}$ . Then the following
statements hold true:

(i) $k(x)=xf(x^{-1}),$ $f^{*}(x)=f(x^{-1})^{-1},$ $\frac{x}{f(x)},$ $f(x)g[h(x)/f(x)],$
$af(x)+bg(x)$ all belong to $\Sigma_{n}$ ;

(ii) $f(x)+k(x),$ $\frac{f(x)k(x)}{f(x)+k(x)}$ all belong to $\Sigma_{n}^{sym}.$

We know that (from Theorem 3.5):

Corollary 3.9.
$C_{2n}\subset\Sigma_{n}\subsetneq P_{n}’.$

But if restricting our attention to the class of the symmetric, we get
the following equality.

Theorem 3.10.
$\Sigma_{n}^{sym}=P_{n}^{\prime sym},$

where $P_{n}^{\prime sym}$ is the set of all $\mathcal{S}$ ymmetric functions in $P_{n}’.$

However,

Example 3.11. Let $p(x)=x+ \frac{1}{2}x^{2}+\frac{1}{6}x^{3}$ be a polynomial which belongs
to $P_{2}’(0, \alpha)$ but does not belong to $P_{3}’(0, \alpha)$ for some $\alpha>0$ (see [12]).
Let $q(x)$ be the symmetrization of $p$ by

$q(x)=p(x)+xp(x^{-1})$ .

Then $q$ is symmetric. However, we can show that $q$ does not belong to
$P_{2}’(0, \alpha)$ .

3.5. Matrix means of order one. We recall the results in [4] for the
sets $C_{1},$ $C_{2}$ as follows.

$\bullet$ $C_{1}$ is the set of all positive functions on $(0, \infty)$ .
$\bullet$ $C_{2}$ consists of all quasi-concave functions $( i.e., f(s)\leq f(t)\max\{1, \frac{s}{t}\}$

for all $s,$ $t>0$).
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For any connection $\sigma$ of order 1, then the corresponding function $f$

belongs to $C_{2}$ . Indeed, for any numbers $0<t\leq s$ , we have

$f(t) \max\{1, \frac{s}{t}\}=(1\sigma t)\frac{s}{t}=\frac{S}{t}\sigma s$

$\geq 1\sigma s=f(s)$ , and,

$f(s) \max\{1, \frac{t}{s}\}=(1\sigma s)$

$\geq 1\sigma t=f(t)$ .

Thus, we can characterize connections of order 1 completely:
a$)$ Every connection $\sigma$ of order one can be determined uniquely

by:
$x \sigma y=xf(\frac{y}{x}) \forall x, y>0,$

where $f$ is an interpolation function in $C_{2}.$

b$)$ Every function $f$ in $C_{2}$ can be represented uniquely by:
$f(x)=1\sigma x \forall x>0,$

where $\sigma$ is a connection of order 1.
Fr$om$ this result, we can easily get a functions in $C_{2}$ from the corre-

sponding connections and vise versa. For example, the functions in $C_{2}$

which correspond to arithmetic mean, harmonic mean and the geomet-
ric mean are $\frac{1+x}{2},$ $\frac{2}{1+x}$ and $x^{\frac{1}{2}}$ ; and any (positive) linear combination of
these functions also belongs to $C_{2}.$

If we take the function $f(x)=2 \frac{x}{1+x}+(\frac{x}{1+x}I^{2}\in C_{2}\backslash C_{3}$ in [4, Example
3.13], we have a connection $\sigma_{f}$ of order 1 which is not of order 2 as
follows:

$x \sigma_{f}y=xf(\frac{y}{x})$

$=2 \frac{xy}{x+y}+\frac{xy^{2}}{(x+y)^{2}}$

for $x,$ $y\in \mathbb{R}^{+}.$

4. TOWARD THE CONJECTURE $\mathcal{C}_{2n}=\sum_{n}$

We know that $C_{2n}\subseteq\Sigma_{n}\subseteq P_{n}’$ and $C_{2}=\Sigma_{1}$ . Therefore, we may give
a conjecture that, for any positive integer $n,$

$C_{2n}=\Sigma_{n}$ and $\Sigma_{n}^{sym}=C_{2n}^{sym}$

Even we still do not know whether $C_{2n}=\Sigma_{n}$ or not, but they have
some similar properties. In particular, the properties of the space $\Sigma_{n}$

represented in Proposition 3.8 also hold true when we replace $\Sigma_{n}$ by
$C_{2n}$ . That is,

Proposition 4.1. The statements in Proposition 3.8 hold if we replace
$\Sigma_{n}$ by $C_{2n}.$
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Note that Proposition 4.1 still holds true in the space $C_{n}.$
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