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A CONSTRUCTION ON HILBERT
REPRESENTATIONS OF QUIVERS
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1. INTRODUCTION

This is a joint work with Yasuo Watatani. We aim to study relations
between operator theory and Hilbert representations of quivers on in-
finite dimensional Hilbert spaces. In [4],we studied transitive Hilbert
representations of quivers. In [4] we omitted proofs of some statements.
In this paper we supply the detailed proof of them.

We shall explain some notions to describe our results. A family
I'=(V,E,s,r) is called a quiver if V is a vertex set and E is an edge
set and s, r are mappings from E to V such that for o € E, s(a) € V
is the initial point of o and () € V is the end point of a. A pair
(H, f) is called a Hilbert representation of a quiver I' if H = (Hy)ypev
is a family of Hilbert spaces and f = (f,)ack is & family of bounded
linear operators f, from Hy,) to H.(o). For Hilbert representations
(K,g) and (K',¢') of a quiver I, we define the direct sum (H, f) by
H=K,®oK),(veV), fo = 9.4, (a € E). For Hilbert representa-
tions (H, f) and (K, g) of I', a homomorphism ¢ : (H, f) — (K, g) is a
family ¢ = (¢, )yev of bounded operators ¢, : H, — K, satisfying, for
any arrow o € E, ¢r)fa = gabsa). Let Hom((H, f), (K, g)) denote
the set of homomorphisms from (H, f) to (K,g). Let End(H, f) de-
note Hom((H, f),(H, f)). Let Idem(H, f) be the set of idempotents
of End(H, f). Hilbert representations (H, f) and (K, g) of I" are called
isomorphic if there exists an isomorphism ¢ : (H, f) = (K,g), that
is, there exists a family ¢ = (¢, ),ev of bounded invertible operators
¢v € B(H,, K,) such that, for any arrow o € E, ¢r)fo = Gabs(a). A
Hilbert representation (H, f) of I is called indecomposable if it is not
isomorphic to nontrivial direct sum of Hilbert representations of I'. A
Hilbert representation (H, f) of I', is called transitive if End(H, f) = C.
We note that a Hilbert representation (H, f) of I is indecomposable if
and only if Idem(H, f) = {0, 1}. Therefore transitive Hilbert represen-
tations are indecomposable.

Gabriel characterized a class of quivers whose indecomposable fi-
nite dimensional representations are finite. Gabriel’s theorem says
that a finite, connected quiver has only finitely many indecomposable



finite dimensional representations if and only if the underlying undi-
rected graph is one of Dynkin diagrams A,, Dy, Eg, E7, Es. In [2], we
showed a complement of Gabriel’s theorem for Hilbert representations.
We constructed some examples of indecomposable, infinite-dimensional
Hilbert representations of quivers whose underlying undirected graphs
are extended Dynkin diagrams A, (n > 0) ,D, (n > 4), Fg, By and
Fs.

The following quiver K is called the Kronecker quiver.

o-:‘*—;_;::- 1 (K>)

In [3], we showed that the Kronecker quiver K, has a transitive
infinite dimensional Hilbert representation . We also showed that in
general, the transitivity property of Hilbert representations is not pre-
served by orientation changing. We consider the cyclic quiver Cy with
length 2.
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In [4], we showed that there exist no infinite dimensional transitive
Hilbert representations of the cyclic quiver Cy with length 2. Orienta-
tion changing may affect the transitivity property. For other quivers
whose underlying undirected graphs are D,,Fs,Er, Es, we showed the
following theorem in [4].

Theorem 1.1. Let I' be a finite, connected quiver. If the underly-
ing undirected graph |T'| contains one of the extended Dynkin diagrams
ljn (n > 4),EG,E7 and Eg, then there exists an infinite-dimensional,
transitive, Hilbert representation of I

In [5], C.M.Ringel considered some correspondences between finite
dimensional representations of the Kronecker quiver and finite dimen-
sional representations of the corresponding quivers whose underlying

diagrams are extended Dynkin diagrams and P.Donovan and M.R.Freislich

[1] also considered correspondences between finite dimensional repre-
sentations of the quiver whose underlying diagram is As and finite
dimensional representations of the corresponding quiver whose under-
lying diagram is Eg. In [4] we studied isomorphisms between endo-
morphism algebras of these corresponding Hilbert representations of
quivers. In [4] we omitted proofs of some statements for these corre-
spondences. In this paper we supply the detailed proof of some state-
ments in [4] to complete them.
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2. ENDOMORPHISM ALGEBRAS OF HILBERT REPRESENTATIONS OF
QUIVERS

In [4] we investigated correspondences between Hilbert representa-
tions of several quivers which is originally given by C.M.Ringel [5] in
the finite dimensional case . In [4] we studied isomorphisms between
endomorphism algebras of the corresponding Hilbert representations
of quivers. In particular the transitivity condition is preserved under
these correspondences. In the following we describe our results given
in [4] which we omitted the proof . Here we give the detailed proof for
some statements for completeness. In [4] we gave the following result
about the isomorphism of endomorphism algebras for the Hilbert rep-

resentations constructed from extended Dynkm diagrams A; and A,.
For a subspace L, we denote by L™ = L @ - - - @ L(m-times).

Theorem 2.1. Let K, be the Kronecker quiver and I be the quiver
whose underlying diagram is an A, diagram.

(2] Qy—1
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Let (H, f) be a Hilbert representation of K, such that f, = A, fs = B
for some A, B € B(Hy, Hy). For this Hilbert representation (H, f) of
K3, we put the associated Hilbert representation (K, g) of I as follows.

Koo = Ko = -+ = Kow-1) = Ho, Koo = K11 = -++ = Kyw—1) = Hy,
KOu = Hl; oy = ' = Goay1 = [7 g, = 1 = g8y, = [J 9o, =
A?.gﬂv—B

I LN I
I A
< » (K.,9)
I B
I LN ) I
Then End(H, f) is isomorphic to End(K, g).

In [4] we gave the following result about the isomorphism of endo-
morphism algebras for the Hilbert representations constructed from

extended Dynkin diagrams A; and D,.

Theorem 2.2. Let K, be the Kronecker quiver and T be the quiver
whose underlying diagram is a D, diagram.

(K2)
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el

Let H f) be a Hilbert representatzon of Ky such that f, = A, fs =
for some A, B € B(Hy, Hy). For this Hilbert representation (H ) of
Ky, we put the associated Hilbert representation (K, g) of I as follows.
Ki =Ky =Hy, Kz = Ky = Hi, Ks = Kg = -+ = Kpy1 = H} =
HOEBHO: 9oy = (I, ) 9or = (0, 1)%, gas_(A7_B)7ga4:(171)79a5:

- _gan =

a, 0)*> <<A ~B)
@D (K,g)
(0,1t H§

Then End(H, f) is zsomomhzc to End(K, g).

In [4] we gave the following result about the isomorphism of endomor-

phism algebras for Hilbert representations constructed from extended
Dynkin diagrams A; and Fy.

Theorem 2.3. Let K3 be the Kronecker quiver and TV be the quiver
whose underlying diagram is an Fg diagram.

6
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Let (H, f) be a Hilbert representation of K, such that fo, = A, fsg = B
for some A,B € B(Hy, Hy). For this Hilbert representation (H, f) of
K3, we put the associated Hilbert representation (K, g) of I' as follows.

Put Ko = H:{Q’,Kl = le,Kz = Ho,Kg = H12,K4 = Hl;KS =

H2, Ko = Hi.

10 A 00 I
Goy = 01 y Jag = B » Jaz = 10 y Joyg = I ’

0 0 01

1 0

I

9015: 00 ’906=<I)7

01

Then End(H, f) is isomorphic to End(K, g).

In [4] we gave the following result about the isomorphism of endomor-
phism algebras for Hilbert representations constructed from extended
Dynkin diagrams A; and Fr.
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Theorem 2.4. Let K be the Kronecker quiver and I" be the quiver
whose underlying diagram is an E; diagram.

1 (IY)
J‘allf

Sas Z2ap ! a1 Va1 ag? agh

Let (H, f) be a Hilbert representation of K, such that f, = A, fs = B
for some A, B € B(Hy, Hy). Then we put the Hilbert representation of

I as follows.
Ko = H{,K, = H}, K, = H, K3 = Hy, Ky = H}, Ky = H? Ky =

1 00
1 010 1
Hl,Kw:Hf,andgm:((i%): 001 ’g“"’z(oz)z
0 0O
0 0O
0 y Jog B ;gall ]_3 - 010 ’gagl =
0 0 01
10
0 - (1)8 [0 101
12 — 7ga3/'— 1 1g0‘1"_ 1 1
01 01

Then End(H, f) is isomorphic to End(K, g).

In [4] we gave the following result about the isomorphism between en-
domorphism algebras for the Hilbert representations constructed from

extended Dynkin diagrams A; and Eg. In [4] we omitted proofs of

these statements. Here we only give a proof for this last case (EAJ; case)
because it is complicated. Other cases are similarly proved and so we
omit here.

Theorem 2.5. Let K, be the Kronecker quiver and I be the quiver
whose underlying diagram is an Eg diagram.

1//
agr oy act/l, oz a3 o4 as (F’)
¥ 1 0 1 2 3 4 5
Let (H, f) be a Hilbert representation of the Kronecker quiver Kj
such that such that f, = A, fs = B for some A,B € B(Hy, Hy). Let
(K, g) be the associated Hilbert representation of I as follows. Ky =

HY Ky =H}, Ky =H{,Ks = H}, Ky = H},Ks = Hy, Ky = H}, Ky =

I I I
H127K1”=Hf7 Goy = ( 05); Gay = ( 61); ga3=<1030))ga4=




y Jag =

— O

O OO

? galll

, then End(H, f) is isomorphic to End(K, g) .

Proof. We take T = (To,Tl,Tg,Tg,T4,T5,T1/,T2/,T1/I) € End(K,g)

First we consider the following diagram.

a’l PR a6
by --- b
We put Ty = ;1 2(; T =
el “« o 66
fi o S

1 1 a
(9
0 1 1 €1
R A
al “ e a5 a6

Hence Ty — e 6 6 T
1 e 5 6
0 0 fs

Next we consider the following diagram.

as

€5

K1 Jaq
Ty
K,
Goy
o
o)
a ae
by be
C1 Cs
dq dg
€1 €
fl f6
(1)
a;
_ . .1.
o
0

s

Gaz

Ko
To

K,

T

Ky

Jay
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@ ... @
a; a4 I,
Weput T3 = R .Since 1194, = Ga, T2 andTl( 0 ) =
d(2) d(z)
1 T 04
.. 2 . (2)
1—4 a]_ ° a5 I4 1-4 al a4
d Ty, ;)= J
er -+ es d§2) dff)
@ . (2)
G - moo M a -
Hence ‘e N e — 9 2) ThU.ST2= e
d? - d d - d
€1 €4 0 ... 0 1 4
ay as ag
b1 bs bs
_ 1 Cs Ce
To= | 4 ds ds
0 0 €5 €
0 0 0 fs
K as K
Ts T
Next we consider the following diagram. K3 K
a3
Hence T = T3 and T: fs = Is Ts;. Put T3 =
2003 = Gaz13 2 100 100 3 3
1 00
ag3) ag:a) ags) ; 0 - ag C 10
B b p® | WehaveTp | o0 | = -+ -+ - L=
® & 0 100 d - d 00
G &' G 1 4 100
a1+a4 az Qs
bi+bs by b3
ci+c4 ¢y c3
di+ds dy ds
100 3 3 3 ags) ags) 0:5,3)
I3 010 a(ls) a?s) a(33) ¥ b b
And ( 100 >T3 o001 S AL Bl ENORRORNO
1 00 €i° G C3

®) B

ay+aq4 az as
Thus (qu)a1+a4 = d1 +d4, Qg = dg, ag = dg. Hence T3 = b1 + b4 b2 b3
ci+cqg co c3
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K 9oy Ks
Ts Ts
Next we consider the following diagram. K. K3
I 1 Yo a§4) aé‘g
T3ga4 = goz4T4 and 15 ( 01 ) = < 01 ) Ty. We put Ty = b§4) bg4) )
I a1+ as as ag 10 a1+ ag as+ as
T3<Oi>= bi+bs by bs 01 | = bi+bs by+bs
c1+cg ¢ cC3 01 c1+cy co+c3
CYRINC))
10 4 (4) a;’ Qg
I T =10 1 ag : Qs — b(4) b(4)
oL )** p& @ 1 0y
01 1 2 4) 4
by’ by

[ aatas az+az . _
Hence T, = < by +bs by -+ bs ),(Eq2) by +by=c1+cg, b+ b3=

Co + Cs.
K5 gas K4
T5 Ty
Next we consider the following diagram. Ks Ky
Gas
. _ B . B a1 +aq4 as+as B » _
SmceT4ga5—ga5T5andT4< A ) = ( _A )T5, ( by + by by + b ) ( _A ) =
BT '
—-ATs |-

Hence (Eq3) (a;+a4)B—(a2+as)A = BTs, (bi+bs) B—(ba+b3)A =
—ATs.

Gaq,

Kll : KO

Ty To

Next we consider the following diagram. Ky Ko
Goqs

0 0
T09a1/ = gal/Tl’ and TO 0 IO Tll. We put T1/ =
Iy 4

ORI

v 1
a4 g



ay as dag az Q4 Qa5 Qg
0 b1 bs bg 0 bs by bs bg
|l a Cs Ce _| & G C G
Bl ) )7 a ds do |\ ) )| ds di ds do
4 0 0 es eg 4 0 0 e5 e
0O --- 0 0 fe 0 0 0 fs
0 0
0 0 0
— _ 19 (1) _
= 0 |Tv=| q a, Hence (Eqd)as = a4 = a5 =
I 4
4 g
agll) a‘(lll)
ag = O,b3 = b4 = b5 = b6 =0 Tll = . =
4 4
aiy Qo 0 0 0 0
C3 C4 C5 Csg bl b2 0 0 0 0
d3 d4 d5 d6 . C1 C C3 C4 Cy Cps .
0 0 €5 €Eg ’ TO o dl d2 d3 d4 d5 d6 ) Slnce bl +
0 0 0 fe 0 0 0 0 es e

0 0 0 0 0 fe

by =c¢1 + ¢4 and by + b3 = ¢c3 + c3, (Eq5)by = ¢1 + ¢4 and by = 5 + c3.

@) @)
Next we consider the following diagram. Put Ty = ( 2(12/) b(22l) ) :
1 2

Ko 9oyt Ky
Ty Ty
Ko Ky
Gay
10 1 0
10 10
We have T 90, = gaz,Tzl and Ty 0115101 Ty
10 1 0
C3 C4 C5 Cg 1 c3+cs+ceg cs 1
ds3 dy ds dg 1 _ dz3+dy+dg ds and 1
0 € €g 0 €6 €5 0
0 0 fs 1 fe 0 1

_ O

o~ oo OO

0

0

1

0
a§2') agZ')
2y (2) 2) (@
( ( ( a,g ) g )

O - OO
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Therefore 03+C4+Ce—a1) ds + dy + dg = fs, agz’>=05=d5=
0, b(2) = 86,6(2) = e5. Hence (Eq6)03 +cs+cg =ds+ dy 4+ dg = [,
c5=d5:0.ThusT2,=(63“4“6 O).

€6 €5
ag a2 0 0 0 O
by bp 0 0 0 O
| @2 &6 o 0 cg
07| dy dy ds di 0 dg
0 0 0 0 es €6
0 0 0 0 0 fs
(1) (1”) 1)

ay as
Next we consider the following diagram. Put Ty = | {1 b(l" p{t")
Cgl//) célll) cglll)
Kyn oy Ko
Tlll To
Ky Ky
Gayn
1 00 1 00
010 010
0 00 000
Then Togall/ Gan Tl” and TO 00 0 = 00 0 Tl”'
010 010
0 01 0 01
1 O 0 a; Qo 0 0 0 0 100 a; Qo 0
010 by b, 0 0 0 O 010 by b O
T 0 00O . C1 C3 C3 C4 0 Cg 0 0O . C1 C2 Cg
0000“czlazQCch;()az6 000 | | di do ds
010 0 0 0 0 e5 eg 010 0 e5 eg )
0 01 0 0 0 0 0 fs 0 01 0 0 fs
100 100 ( ay ) ey ag’)
010 010 RGN CORNCD B b )
000 - 0 0O (111) (1//) (1~) . 0 0 0
000 |M=]ooo b(l,,) %, b(l,,) = 0o o o
001 001 SCCI O Oy

Then we have a; = aglﬂ) Qg = aglu), 0= aglﬂ), b = bglﬂ), by = bgl’/) 0=
bé”,cl=c2=cs=0,d1—d2—d6=0,=b1_b§”_Ob(”
bz = 65,1);(31) = €g, Cgl) = O C(l = O,Cgl) = fs. Hence (Eq7)
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b1=Cl=CQ=Cs=d1=d2=d6=66=0,b2=65,T1//=

ai a2 0 0 O O

o a4y 0 0 bpb 0O 0 0 O
1 0 0 ¢c3 ca 0 O
(8')02]9)’%— 0 0 ds do 0 O
6 0 0 0 0 e5 e

0 0 0 0 0 fs

The equation a; = 0 is implied by (Eql) and (Eq7). The equation
cq = 0 is implied by (Eq5) and (Eq7). The equation ds = 0 is implied
by (Eql) and (Eq4). The equation eg = 0 is implied by (Eq7). The
equation a; = dy is implied by (Eql),(Eq4) and (Eq7). The equation
by = c3 = es is implied by (Eq2),(Eq4) and (Eq7). The equation
c3 = f¢ is implied by (Eq5) and (Eq7). The equation dy = fg is implied
by (Eql) and (Eq7). Hence we have a; = by = ¢c3 = dy = e5 = [.
ait 0 0 0 O O
0 agt 0 0 0 O
0 0 a@¢ O 0 O
0 0 0 a@ 0 O
0 0 0 0 a O
0 0 0 0 0 a
Thus Ty = a1 B a1 D a; D a; ® a; & a;. Therefore Ty = a; D a; &

a1 +a4 as as

Therefore Ty =

a®a®a,T=0Pa;®ar®a, T3 = | bi+by by b3 | =
c1+cs4 C2 C3
ag+0 0 O
0+0 a3 O =a; ®a; P a,
040 0 ax

_ [ a+ag ag+az3 ) _ [ a+0 040 B
T4_<b1+b4 b2+b3)_<0+0 b2+0>_afl®a1,T5E

C3 C4 C5 Cp

| ds ds ds ds | _ [ cat+catcs 0 )
B(H0)> Tl' - 0 0 es eg - al@al@al@al, T2’ - ( es es ) -
0 0 0 fe
0 O
0+0 a
(C3'+‘0‘+‘ eO ):(adl C? ):al@al,Tlllz 0 b2 O =
5 1 0 0 f6
ai 0 0
0 a O = a1 ® a1 @ a1. Next we consider the relations for
0 0 a;

A and B. (a1 + a4)B — (az + a3)A = (a1 + O)B - (0 + O)A = BTy,
(bl + b4)B — (b2 + bg)A = (0 + O)B — (bg + O)A = ’—AT5. Thus we
have a;B = BTs,byA = ATs. Since a; = bs, we have the relations
a1B = BTs,a;A = ATs,where a; € B(H;),Ts € B(Hp). Combining
above considerations, we make a correspondence ¢ from End(H, f) to



End(K,g) by the following. For S = (S, S51) € End(H, f) , we put
p(8) =T = (To,T1, T2, T3, Ty, Ts, Tv/, Tor, Tyn) by Ty = Sils, Ty =
Siuls, Ty = S1ly, T3 = Sil3,Ty = 8115, Ts = So, Ty = S11y, Ty =
S11I5,Tin = S1I3. Since S = (S(),Sl) S End(H, f) , we have S1A =
ASp, S51B = BSp. From this, we have p(S) =T € End(K, g). Next we
consider the reverse correspondence ¥ from End(K,g) to End(H, f).
ForT = (To,Tl, To, T3, Ty, Ts, Thr, Tor, Tlﬂ) S End(K, g), we put ’lﬁ(T) =
S = (8,51) by So = T5,51 = (To)1,1. Then it is easy to show that
S € End(H, f). Thus End(H, f) are isomorphic to End(K,g) by the
relation Yo =T . ]

3. As DIAGRAM AND Ej5 DIAGRAM

Let I' be the following quiver whose underlying diagram is an ;4;
diagram and I" be the following quiver whose underlying diagram is

an Fg diagram.

B3 B2

T3 a3 Y2

In [4] we considered the correspondence by P.Donovan and M.R.Freislich

[1] and we gave the following result about the isomorphism of endo-
morphism algebras of the corresponding Hilbert representations. In [4]
we omitted the proof. For completeness we give the proof here.

Theorem 3.1. Let (H, f) be a Hilbert representation of T by Hy, =
Xl:sz - XQ’ ng = X37Hy1 = Y—lyHyg = }f2aHy3 = Y37 fal =
A1, fg, = Bu, fay = A, f3, = Ba, fay = As, fs, = Bs. Let (K, g) be the
associated Hilbert representation of I which is given by the following.
Ko=(X1®Xo® X3), K1 = (X180 Xa), Ko = Y1, Kz = (Xo @ X3),
Ky =Yy K5 = (X1 ® X3), Ke¢ = Ya, gy,(21,22) = (1,22,0) for
21 € X1,22 € Xo, 9y, (1) = (Buyr, Aain) for yn € Y, gyy(a2,73) =
(0,z,23) for o € Xy,235 € X3, gyy(y2) = (Boya, Asya) for ya € Vs,
Gys(T1,23) = (21,0,23) for 21 € X1,z5 € X, 96 (y3) = (A1ys, Bsys)
for ys € Y3. Then End(H, f) is isomorphic to End(K,g) .

Proof. Take T' € End(K,g). Then T has the form T = (T, ..., Ts).
Since 11 = Ty |K1: s ‘Xl@XzaTO(Xl &b Xz) C X1 @ Xs,. Since T3 =
To |Ks= To |X2€BX37 TO(X2 @Xa) C X2 ® X3. Since Ts = Tp |K5:

113



To |xi0xs, To(X1@X3) C X1®X3. By (X18X2)N(X18X3) = X1, we
have To(Xl) - Xl. By (Xl GBXQ) N (XQ@X;.;) = Xz, we have TQ(XQ) C
X,. By (X1® X3)N(X2® X3) = X3, we have Ty(X3) C X3. From this,
we may assume that Ty = Ry ® Ry® R3. where R; : X; — X;(i = 1,2,3).
And Ty = Ry ® Ry, T3 = Ry @ R3,Ts = Ry & Rs. Next we consider
the compatibility condition from T' € End(K,g) . Since T1g.,(11) =
9 To(Y1), T19y (1) = (R1 ® Ro)(Buy1, Aay1) = (R1Biyr, RaAay:) and
9uT2(y1) = (BiTayi, A2Toys), hence R By = BTy, RoAr = AT
Since Tsgy,(v2) = 9vTu(¥2), T39v(y2) = (R2 @ Rs)(Bays, Asyz) =
(RQBQyQ,R3A3y2) and g74T4(y2) = (BgT4y2,A3T4y2), hence RQBQ =
BTy, R3As = A3Ty. Since Tsg,,(y3) = 9vT6(y3), T5gv(y3) = (R1 &
R3)(A1ys, Bsys) = (R1A1ys, R3Bsys) and g,,Ts(ys) = (A1Tsys, BsTsys),
hence R1A1 = AlTs, R3Bg = B3T6. Therefore T = (To, Tl, s ,Ts) has
the following property. Ri1By = BiT3, RaAs = ATy, ReBy = BTy,
R3A3 = A3T4. R1A1 = Ang, R3B3 = Bng. Next we take the map
= (Zl,Zz,Z;;, Wi, Wa, Wg) € End(H, f) such that Z; € B(X,,), W; €
B(Y;),i = 1,2,3. Compatibility condition is Z;B; = B;W;,i = 1,2,3,
and Z2A2 = Ang,Z;;A;; = A3W2,ZlA1 = A1W3. For T € End(K, g)
and Z € End(H, f), its relation is R; = Z;, T, = W1, Ts = W3, Ty =
Ws. By this correspondence, End(K, g)) is isomorphic to End(H, f),
W
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