ヒルベルト C*-加群上の Selberg 不等式について

Selberg type inequalities on Hilbert C^* -modules

大阪教育大学数学教育講座 瀬尾祐貴 (Yuki Seo) Department of Mathematics Education, Osaka Kyoiku University

1. Introduction

This paper is based on [15].

We briefly review the Selberg inequality and its generalization in a Hilbert space.

Let H be a Hilbert space with the inner product $\langle \cdot, \cdot \rangle$. The Selberg inequality [2, 17] states that if y_1, y_2, \ldots, y_n and x are nonzero vectors in H, then

(1)
$$\sum_{i=1}^{n} \frac{|\langle y_i, x \rangle|^2}{\sum_{j=1}^{n} |\langle y_j, y_i \rangle|} \le ||x||^2.$$

Moreover, Furuta [10] posed conditions enjoying the equality: The equality in (1) holds if and only if $x = \sum_{i=1}^{n} a_i y_i$ for some scalars $a_1, a_2, \ldots, a_n \in \mathbb{C}$ such that for arbitrary $i \neq j$

(2)
$$\langle y_i, y_i \rangle = 0$$
 or $|a_i| = |a_j|$ with $\langle a_i y_i, a_j y_j \rangle \ge 0$,

also see [7]. Note that the Selberg inequality is simultaneous extensions of the Bessel inequality and the Cauchy-Schwarz inequality. As a matter of fact, if n = 1 and $y = y_1$, then we have the Cauchy-Schwarz inequality $|\langle y, x \rangle| \leq ||y|| ||x||$. If $\{y_i\}$ is an orthonormal system, then we have the Bessel inequality $\sum_{i=1}^{n} |\langle y_i, x \rangle|^2 \leq ||x||^2$. Fujii and Nakamoto [9] showed a refinement of the Selberg inequality (1): If $\langle y, y_i \rangle = 0$

for given nonzero vectors $y_1, \ldots, y_n \in H$, then

(3)
$$|\langle x, y \rangle|^2 + \sum_{i=1}^n \frac{|\langle x, y_i \rangle|^2}{\sum_{j=1}^n |\langle y_j, y_i \rangle|} \parallel y \parallel^2 \leq \parallel x \parallel^2 \parallel y \parallel^2$$

holds for all $x \in H$. Also, Bombieri [1] showed the following generalization of the Bessel inequality: If x, y_1, \ldots, y_n are nonzero vectors in H, then

(4)
$$\sum_{i=1}^{n} |\langle x, y_i \rangle|^2 \le ||x||^2 \max_{1 \le i \le n} \sum_{j=1}^{n} |\langle y_j, y_i \rangle|.$$

Moreover, Mitrinović, Pecărić and Fink [17, Theorem 5 in pp394] mentioned the following inequality equivalent to Bombieri's type (4): If x, y_1, \ldots, y_n are nonzero vectors in H and $a_1, \ldots, a_n \in \mathbb{C}$, then

(5)
$$|\sum_{i=1}^{n} a_i \langle x, y_i \rangle|^2 \le ||x||^2 \sum_{i=1}^{n} |a_i|^2 \sum_{j=1}^{n} |\langle y_j, y_i \rangle|.$$

In this paper, from a viewpoint of the operator theory, we propose a Selberg type inequality in a Hilbert C^* -module, which is simultaneous extensions of the Bessel inequality and the Cauchy-Schwarz inequality in a Hibert C^* -module. As applications, we show Hilbert C^* -module versions of Fujii-Nakamoto type (3), Bombieri type (4) and Mitrinović, Pecărić and Fink type (5).

2. Preliminaries

Let \mathscr{A} be a unital C^* -algebra with the unit element e. An element $a \in \mathscr{A}$ is called positive if it is selfadjoint and its spectrum is contained in $[0, \infty)$. For $a \in \mathscr{A}$, we denote the absolute value of a by $|a| = (a^*a)^{\frac{1}{2}}$. For positive elements $a, b \in \mathscr{A}$, the operator geometric mean of a and b is defined by

$$a \sharp b = a^{\frac{1}{2}} \left(a^{-\frac{1}{2}} b a^{-\frac{1}{2}} \right)^{\frac{1}{2}} a^{\frac{1}{2}}$$

for invertible a. If a and b are non invertible, then $a \sharp b$ belongs to the double commutant \mathscr{A}'' of \mathscr{A} in general. In fact, since $a \sharp b$ satisfies the upper semicontinuity, it follows that $a \sharp b = \lim_{\varepsilon \to +0} (a + \varepsilon e) \sharp (b + \varepsilon e)$ in the strong operator topology. If \mathscr{A} is monotone complete in the sense that every bounded increasing net in the self-adjoint part has a supremum with respect to the usual partial order, then we have $a \sharp b \in \mathscr{A}$, see [12]. The operator geometric mean has the symmetric property: $a \sharp b = b \sharp a$. In the case that a and b commute, we have $a \sharp b = \sqrt{ab}$. For more details on the operator geometric mean, see [11, 8].

A complex linear space $\mathscr X$ is said to be an inner product $\mathscr A$ -module (or a pre-Hilbert $\mathscr A$ -module) if $\mathscr X$ is a right $\mathscr A$ -module together with a C^* -valued map $(x,y)\mapsto \langle x,y\rangle:\mathscr X\times\mathscr X\to\mathscr A$ such that

- (i) $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$ $(x, y, x \in \mathcal{X}, \alpha, \beta \in \mathbb{C}),$
- (ii) $\langle x, ya \rangle = \langle x, y \rangle a \quad (x, y \in \mathcal{X}, a \in \mathcal{A}),$
- (iii) $\langle y, x \rangle = \langle x, y \rangle^*$ $(x, y \in \mathscr{X}),$
- (iv) $\langle x, x \rangle \geq 0$ $(x \in \mathcal{X})$ and if $\langle x, x \rangle = 0$, then x = 0.

We always assume that the linear structures of \mathscr{A} and \mathscr{X} are compatible. Notice that (ii) and (iii) imply $\langle xa,y\rangle=a^*\langle x,y\rangle$ for all $x,y\in\mathscr{X},a\in\mathscr{A}$. If \mathscr{X} satisfies all conditions for an inner-product \mathscr{A} -module except for the second part of (iv), then we call \mathscr{X} a semi-inner product \mathscr{A} -module.

In this case, we write $||x|| := \sqrt{||\langle x, x \rangle||}$, where the latter norm denotes the C^* -norm of \mathscr{A} . If an inner-product \mathscr{A} -module \mathscr{X} is complete with respect to its norm, then \mathscr{X} is called a $\mathit{Hilbert}\ C^*$ -module. In [6], from a viewpoint of operator theory, we presented the following Cauchy-Schwarz inequality in the framework of a semi-inner product C^* -module over a unital C^* -algebra: If $x,y\in \mathscr{X}$ such that the inner product $\langle x,y\rangle$ has a polar decomposition $\langle x,y\rangle = u|\langle x,y\rangle|$ with a partial isometry $u\in \mathscr{A}$, then

$$(6) |\langle x,y\rangle| \leq u^*\langle x,x\rangle u \sharp \langle y,y\rangle.$$

Under the assumption that \mathscr{X} is an inner product \mathscr{A} -module and $\langle y, y \rangle$ is invertible, the equality in (6) holds if and only if xu = yb for some $b \in \mathscr{A}$. As applications of the Cauchy-Schwarz inequality (6), we cite [5, 18].

An element x of a Hilbert C^* -module $\mathscr X$ is called nonsingular if the element $\langle x, x \rangle \in \mathscr A$ is invertible. The set $\{x_i\} \subset \mathscr X$ is called orthonormal if $\langle x_i, x_j \rangle = \delta_{ij}e$. For more details on Hilbert C^* -modules, see [16].

3. Main theorem

Fiest of all, we show the following Selberg type inequality in a Hilbert C*-module.

Theorem 1. Let \mathscr{X} be an inner product C^* -module over a unital C^* -algbera \mathscr{A} . If x, y_1, \ldots, y_n are nonzero vectors in \mathscr{X} such that y_1, \ldots, y_n are nonsingular, then

(7)
$$\sum_{i=1}^{n} \langle x, y_i \rangle \left(\sum_{j=1}^{n} |\langle y_j, y_i \rangle| \right)^{-1} \langle y_i, x \rangle \leq \langle x, x \rangle.$$

The equality in (7) holds if and only if $x = \sum_{i=1}^n y_i a_i$ for some $a_i \in \mathscr{A}$ and $i = 1, \ldots, n$ such that for arbitrary $i \neq j$ $\langle y_i, y_j \rangle = 0$ or $|\langle y_j, y_i \rangle| a_i = \langle y_i, y_j \rangle a_j$.

Theorem 1 is simultaneous extensions of the Bessel inequality [4] and the Cauchy-Schwarz inequality [6] in a Hilbert C^* -module. As a matter of fact, if $\{y_1, \ldots, y_n\}$ is orthonormal in Theorem 1, then we have the Bessel inequality:

$$\sum_{i=1}^{n} |\langle y_i, x \rangle|^2 \le \langle x, x \rangle$$

holds for all $x \in \mathcal{X}$. If n = 1 and $y = y_1$ in Theorem 1 and $\langle x, y \rangle$ has a polar decomposition $\langle x, y \rangle = u |\langle x, y \rangle|$ with a partial isometry $u \in \mathcal{A}$, then we have $u |\langle x, y \rangle| \langle y, y \rangle^{-1} |\langle y, x \rangle| u^* \leq \langle x, x \rangle$ and hence

$$|\langle x, y \rangle| = |\langle x, y \rangle| \langle y, y \rangle^{-1} |\langle y, x \rangle| \sharp \langle y, y \rangle \le u^* \langle x, x \rangle u \sharp \langle y, y \rangle.$$

This implies the Cauchy-Schwarz inequality (6).

To prove Theorem 1, we need the following two lemmas:

Lemma 2. If $a \in \mathcal{A}$, then the operator matrix on $\mathcal{A} \oplus \mathcal{A}$

$$A = \begin{pmatrix} |a^*| & -a \\ -a^* & |a| \end{pmatrix}$$

is positive, and $\begin{pmatrix} \xi \\ \eta \end{pmatrix} \in N(A)$ if and only if $|a^*|\xi = a\eta$, where N(A) is the kernel of A.

Lemma 3. For any $y_1, y_2, \ldots, y_n \in \mathscr{X}$

$$\begin{pmatrix} \langle y_1, y_1 \rangle & \cdots & \langle y_1, y_n \rangle \\ & \ddots & \\ \langle y_n, y_1 \rangle & \cdots & \langle y_n, y_n \rangle \end{pmatrix} \leq \begin{pmatrix} \sum_{j=1}^n |\langle y_j, y_1 \rangle| & 0 \\ & \ddots & \\ 0 & & \sum_{j=1}^n |\langle y_j, y_n \rangle| \end{pmatrix}.$$

Proof of Theorem 1 For each $i=1,\ldots,n$, put $c_i=\sum_{j=1}^n|\langle y_j,y_i\rangle|$. Since y_i is nonsingular, it follows that c_i is invertible in \mathscr{A} . It follows from Lemma 3 that

$$\sum_{i=1}^{n} \langle x, y_{i} \rangle c_{i}^{-1} \langle y_{i}, y_{j} \rangle c_{j}^{-1} \langle y_{j}, x \rangle$$

$$= (\langle x, y_{1} \rangle c_{1}^{-1} \cdots \langle x, y_{n} \rangle c_{n}^{-1}) \begin{pmatrix} \langle y_{1}, y_{1} \rangle & \cdots & \langle y_{1}, y_{n} \rangle \\ & \ddots & \\ & \langle y_{n}, y_{1} \rangle & \cdots & \langle y_{n}, y_{n} \rangle \end{pmatrix} \begin{pmatrix} c_{1}^{-1} \langle y_{1}, x \rangle \\ & \ddots & \\ c_{n}^{-1} \langle y_{n}, x \rangle \end{pmatrix}$$

$$\leq (\langle x, y_{1} \rangle c_{1}^{-1} \cdots \langle x, y_{n} \rangle c_{n}^{-1}) \begin{pmatrix} c_{1} & 0 \\ & \ddots & \\ 0 & c_{n} \end{pmatrix} \begin{pmatrix} c_{1}^{-1} \langle y_{1}, x \rangle \\ & \ddots & \\ c_{n}^{-1} \langle y_{n}, x \rangle \end{pmatrix}$$

$$= \sum_{i=1}^{n} \langle x, y_{i} \rangle c_{i}^{-1} \langle y_{i}, x \rangle$$

and this implies

$$0 \leq \langle x - \sum_{i=1}^{n} y_{i} c_{i}^{-1} \langle y_{i}, x \rangle, x - \sum_{i=1}^{n} y_{i} c_{i}^{-1} \langle y_{i}, x \rangle \rangle$$

$$= \langle x, x \rangle - 2 \sum_{i=1}^{n} \langle x, y_{i} \rangle c_{i}^{-1} \langle y_{i}, x \rangle + \sum_{i=1}^{n} \langle x, y_{i} \rangle c_{i}^{-1} \langle y_{i}, y_{j} \rangle c_{j}^{-1} \langle y_{j}, x \rangle$$

$$\leq \langle x, x \rangle - \sum_{i=1}^{n} \langle x, y_{i} \rangle c_{i}^{-1} \langle y_{i}, x \rangle.$$

Hence we have the desired inequality (7).

The equality in (7) holds if and only if the following (8) and (9) are satisfied:

(8)
$$x = \sum_{i=1}^{n} y_i c_i^{-1} \langle y_i, x \rangle$$

and for arbitrary $i \neq j$

(9)
$$(\langle x, y_i \rangle c_i^{-1} \langle x, y_j \rangle c_j^{-1}) \begin{pmatrix} |\langle y_j, y_i \rangle| & -\langle y_i, y_j \rangle \\ -\langle y_j, y_i \rangle & |\langle y_i, y_j \rangle| \end{pmatrix} \begin{pmatrix} c_i^{-1} \langle y_i, x \rangle \\ c_i^{-1} \langle y_j, x \rangle \end{pmatrix} = 0.$$

Put $A = \begin{pmatrix} |\langle y_j, y_i \rangle| & -\langle y_i, y_j \rangle \\ -\langle y_j, y_i \rangle & |\langle y_i, y_j \rangle| \end{pmatrix}$ and it follows that the condition (9) holds if and only if

$$A^{1/2} \begin{pmatrix} c_i^{-1} \langle y_i, x \rangle \\ c_j^{-1} \langle y_j, x \rangle \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Longleftrightarrow \quad A \begin{pmatrix} c_i^{-1} \langle y_i, x \rangle \\ c_j^{-1} \langle y_j, x \rangle \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Hence it follows from Lemma 2 that the condition (9) is equivalent to the following (10) and (11): For arbitrary $i \neq j$

$$\langle y_i, y_j \rangle = 0$$

or

(11)
$$|\langle y_j, y_i \rangle| c_i^{-1} \langle y_i, x \rangle = \langle y_i, y_j \rangle c_j^{-1} \langle y_j, x \rangle.$$

Conversely, suppose that $x = \sum_{i=1}^n y_i a_i$ for some $a_i \in \mathscr{A}$ and for $i \neq j \langle y_i, y_j \rangle = 0$ or $|\langle y_i, y_i \rangle| a_i = \langle y_i, y_j \rangle a_j$. Then

$$\sum_{i=1}^{n} \langle x, y_i \rangle \left(\sum_{j=1}^{n} |\langle y_j, y_i \rangle| \right)^{-1} \langle y_i, x \rangle = \sum_{i=1}^{n} \langle x, y_i \rangle \left(\sum_{j=1}^{n} |\langle y_j, y_i \rangle| \right)^{-1} \sum_{j=1}^{n} \langle y_i, y_j \rangle a_j$$

$$= \sum_{i=1}^{n} \langle x, y_i \rangle \left(\sum_{j=1}^{n} |\langle y_j, y_i \rangle| \right)^{-1} \sum_{j=1}^{n} |\langle y_j, y_i \rangle| a_i$$

$$= \sum_{i=1}^{n} \langle x, y_i \rangle \left(\sum_{j=1}^{n} |\langle y_j, y_i \rangle| \right)^{-1} \left(\sum_{j=1}^{n} |\langle y_j, y_i \rangle| \right) a_i$$

$$= \sum_{i=1}^{n} \langle x, y_i \rangle a_i$$

$$= \langle x, x \rangle.$$

Whence the proof is complete.

Remark 4. (1) In the case that \mathscr{X} is a Hilbert space, the equality condition $|\langle y_j, y_i \rangle| a_i = \langle y_i, y_j \rangle a_j$ in Theorem 1 implies the condition (2) in Introduction. In fact, for some scalars $a_i, a_j \in \mathbb{C}$, it follows that $\langle a_i y_i, a_j y_j \rangle = a_i^* \langle y_i, y_j \rangle a_j = a_i^* |\langle y_j, y_i \rangle| a_i \geq 0$, and $|\langle y_j, y_i \rangle| = |\langle y_j, y_i \rangle^*|$ implies $|a_i| = |a_j|$.

(2) In the Hilbert space setting, K. Kubo and F. Kubo [14] showed another proof of Selberg's inequality (1) using Geršgorin's location of eigenvalues [13, Theorem 6.1.1] and a diagonal domination theorem of positive semidefinite matrix.

4. Applications

In [4], Dragomir, Khosravi and Moslehian showed a version of the Bessel inequality and some generalizations of this inequality in the framework of Hilbert C^* -modules. Moreover, in [3], Bounader and Chahbi showed a type and refinement of Selberg inequality in Hilbert C^* -modules. In this section, by using Theorem 1, we consider several Hilbert C^* -module versions of the Selberg inequality and the Bessel inequality.

Bounader and Chahbi in [3, Theorem 3.1] showed that if \mathscr{X} is an inner product C^* -module and y_1, \ldots, y_n are nonzero vectors in \mathscr{X} , and $x \in \mathscr{X}$, then

(12)
$$\sum_{i=1}^{n} \frac{|\langle y_i, x \rangle|^2}{\sum_{j=1}^{n} ||\langle y_j, y_i \rangle||} \le \langle x, x \rangle.$$

By Theorem 1, we have the following corollary, which is an improvement of (12):

Corollary 5. Let \mathscr{X} be an inner product C^* -module over a unital C^* -algbera \mathscr{A} . If x, y_1, \ldots, y_n are nonzero vectors in \mathscr{X} such that y_1, \ldots, y_n are nonsingular, then

$$\sum_{i=1}^{n} \frac{|\langle y_i, x \rangle|^2}{\|\sum_{j=1}^{n} |\langle y_j, y_i \rangle| \|} \le \langle x, x \rangle.$$

Moreover, Bounader and Chahbi showed a Hilbert C^* -module version of Fujii-Nakamoto type (3), which is a refinement of (12): If y and y_1, \ldots, y_n are nonzero vectros in $\mathscr X$ such that $\langle y, y_i \rangle = 0$ for $i = 1, \ldots, n$, and $x \in \mathscr X$, then

(13)
$$|\langle y, x \rangle|^2 + \sum_{i=1}^n \frac{|\langle y_i, x \rangle|^2}{\sum_{j=1}^n ||\langle y_i, y_j \rangle||} ||\langle y, y \rangle|| \le ||\langle y, y \rangle|| \langle x, x \rangle.$$

We show a Hilbert C^* -module version of a refinement of the Selberg inequality due to Fujii and Nakamoto, which is another version of (13):

Theorem 6. Let \mathscr{X} be an inner product C^* -module over a unital C^* -algbera \mathscr{A} . If x, y, y_1, \ldots, y_n are nonzero vectors in \mathscr{X} such that y_1, \ldots, y_n are nonsingular, $\langle y, y_i \rangle = 0$ for $i = 1, \cdots, n$ and $\langle x, y \rangle = u |\langle x, y \rangle|$ is a polar decomposition in \mathscr{A} , i.e., $u \in \mathscr{A}$ is a partial isometry, then

$$\begin{split} |\langle y, x \rangle| & \leq u^* \langle y, y \rangle u \ \sharp \ \left(\langle x, x \rangle - \sum_{i=1}^n \langle x, y_i \rangle \left(\sum_{j=1}^n |\langle y_j, y_i \rangle| \right)^{-1} \langle y_i, x \rangle \right) \\ & \left(\leq u^* \langle y, y \rangle u \ \sharp \ \langle x, x \rangle \right). \end{split}$$

In [3, Corollary 3.5], Bounader and Chahbi showed a Hilbert C^* -module version of Bombieri type (4): If y_1, \ldots, y_n are nonzero vectors in \mathscr{X} and $x \in \mathscr{X}$, then

(14)
$$\sum_{i=1}^{n} |\langle y_i, x \rangle|^2 \le \langle x, x \rangle \max_{1 \le i \le n} \sum_{j=1}^{n} \| \langle y_i, y_j \rangle \|.$$

We show a Hilbert C^* -module version of Bombieri type, which is an improvement of (14):

Theorem 7. Let \mathscr{X} be an inner product C^* -module over a unital C^* -algbera \mathscr{A} . If x, y_1, \ldots, y_n are nonzero vectors in \mathscr{X} such that y_1, \ldots, y_n are nonsingular, then

$$\sum_{i=1}^n |\langle y_i, x \rangle|^2 \le \langle x, x \rangle \max_{1 \le i \le n} \| \sum_{j=1}^n |\langle y_j, y_i \rangle| \|.$$

As a corollary, we have the following Boas-Bellman type inequality [3, Corollary 3.6]:

Corollary 8. Let \mathscr{X} be an inner product C^* -module over a unital C^* -algbera \mathscr{A} . If x, y_1, \ldots, y_n are nonzero vectors in \mathscr{X} such that y_1, \ldots, y_n are nonsingular, then

$$\sum_{i=1}^{n} |\langle y_i, x \rangle|^2 \leq \langle x, x \rangle \left(\max_{1 \leq i \leq n} \parallel \langle y_i, y_i \rangle \parallel + (n-1) \max_{j \neq i} \parallel \langle y_j, y_i \rangle \parallel \right).$$

Finally, we show a Mitrinović-Pečarić-Fink type inequality [17, Theorem 5 in pp394] in Hilbert C^* -modules, which is another version of [4, Theorem 3.8]:

Theorem 9. Let \mathscr{X} be an inner product C^* -module over a unital C^* -algebra \mathscr{A} . If x, y_1, \ldots, y_n are nonzero vectors in \mathscr{X} and $a_1, \cdots, a_n \in \mathscr{A}$ such that y_1, \ldots, y_n are nonsingular and $\langle x, \sum_{i=1}^n y_i a_i \rangle = u | \langle x, \sum_{i=1}^n y_i a_i \rangle |$ is a polar decomposition in \mathscr{A} , i.e., $u \in \mathscr{A}$ is a partial isometry, then

$$|\sum_{i=1}^n \langle x, y_i \rangle a_i| \le u^* \langle x, x \rangle u \ \sharp \ \left(\sum_{i=1}^n a_i^* \left(\sum_{j=1}^n |\langle y_j, y_i \rangle| \right) a_i \right).$$

REFERENCES

- [1] E. Bombieri, A note on the large sieve, Acta. Arith., 18 (1971), 401-404.
- [2] E. Bombieri, Le Grand Grible dans la Theórie Analytique des Nombres, Asterisque 18, Societe Mathematique de France, 1974.
- [3] N. Bounader and A. Chahbi, Selberg type inequalities in Hilbert C*-modules, Int. J. Analy., 7 (2013), 385–391.
- [4] S.S. Dragomir, M. Khosravi and M.S. Moslehian, Bessel type inequalities in Hilbert C*-modules, Linear Multilinear Algebra, 58 (2010), 967–975.
- [5] J.I. Fujii, M. Fujii and Y. Seo, Operator inequalities on Hilbert C*-modules via the Cauchy-Schwarz inquality, to appear in Math. Ineq. Appl.
- [6] J.I. Fujii, M. Fujii, M.S. Moslehian and Y. Seo, Cauchy-Schwarz inequality in semi-inner product C*-modules via polar decomposition, J. Math. Anal. Appl., 394 (2012), 835-840.
- [7] M. Fujii, K. Kubo and S. Otani, A graph theoretical observation on the Selberg inequality, Math. Japon., 35 (1990), 381-385.
- [8] M. Fujii, J. Mićić Hot, J. Pečarić and Y. Seo, Recent Developments of Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 4, Element, Zagreb, 2012.
- [9] M. Fujii and R. Nakamoto, Simultaneous extensions of Selberg inequality and Heinz-Kato-Furuta inequality, Nihonkai Math. J., 9 (1998), 219–225.
- [10] T. Furuta, When does the equality of a generalized Selberg inequality hold?, Nihonkai Math. J., 2 (1991), 25-29.
- [11] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
- [12] M. Hamana, Partial *-automorphisms, normalizers, and submodules in monotome complete C*-algebras, Canad. J.Math., 58 (2006), 1144–1202.
- [13] R.A. Horn and C.A. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 1985.
- [14] K. Kubo and F. Kubo, Diagonal matrix that dominates a positive semidefinite matrix, Technical note, 1988.
- [15] K. Kubo, F. Kubo and Y. Seo, Selberg type inequalities in a Hilbert C*-module and its applications, to appear in Sci. Math. Jpn.
- [16] E.C. Lance, *Hilbert C*-Modules*, London Math. Soc. Lecture Note Series 210, Cambridge Univ. Press, 1995.
- [17] D.S. Mitrinović, J. Pecărić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.
- [18] Y. Seo, Hölder type inequalities on Hilbert C*-modules and its reverses, Ann. Funct. Anal., 5 (2014), 1–9.

Department of Mathematics Education, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582 JAPAN.

E-mail address: yukis@cc.osaka-kyoiku.ac.jp

大阪教育大学・数学教育講座 瀬尾 祐貴