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1. INTRODUCTION

This paper is based on [15].

We briefly review the Selberg inequality and its generalization in a Hilbert space.

Let H be a Hilbert space with the inner product (-,-). The Selberg inequality [2, 17]
states that if y;,¥s,...,y, and x are nonzero vectors in H, then

l<yza
(1) ZZJ » y;,yz)l <.

Moreover, Furuta [10] posed conditions enjoying the equality: The equality in (1) holds if
and only if z = Y. ; a;y; for some scalars ay, as, ..., an € C such that for arbitrary i # j

(2) {Yi,9;) =0 or |a| = |a;| with (a:ys, a;9;) >0,

also see [7]. Note that the Selberg inequality is simultaneous extensions of the Bessel
inequality and the Cauchy-Schwarz inequality. As a matter of fact, if n =1 and y = y;,
then we have the Cauchy-Schwarz inequality [(y, z)| <|| v |||l z [|. If {v:} is an orthonormal
system, then we have the Bessel inequality Y"1, (v, z)[* <|| = ||%.

Fujii and Nakamoto [9] showed a refinement of the Selberg inequality (1): If (y,y;) =0

for given nonzero vectors yi,...,y, € H, then
z, yz 2 2 2
(3) [z, 9)* + ly <l ="l v |
Z Z e | va%>|
holds for all z € H. Also, Bombieri [1] showed the following generalization of the Bessel
inequality: If z,¥,...,y, are nonzero vectors in H, then
@) Sl <llz|? lrg,aéle|<yj,yi>|.
i=1

Moreover, Mitrinovié, Pecarié¢ and Fink [17, Theorem 5 in pp394] mentioned the following
inequality equivalent to Bombieri’s type (4): If z,y1, ..., Y, are nonzero vectors in H and
ai,...,an € C, then
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In this paper, from a viewpoint of the operator theory, we propose a Selberg type
inequality in a Hilbert C*-module, which ia simultaneous extensions of the Bessel in-
equality and the Cauchy-Schwarz inequality in a Hibert C*-module. As applications,
we show Hilbert C*-module versions of Fujii-Nakamoto type (3), Bombieri type (4) and
Mitrinovié, Pecari¢ and Fink type (5).
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2. PRELIMINARIES

Let &/ be a unital C*-algebra with the unit element e. An element a € & is called
positive if it is selfadjoint and its spectrum is contained in [0, 00). For a € &7, we denote
the absolute value of a by |a| = (a*a)z. For positive elements a,b € &, the operator
geometric mean of a and b is defined by

[

afb= a2 (a"%ba‘%) a?
for invertible a. If a and b are non invertible, then a § b belongs to the double commutant
&" of & in general. In fact, since a }§ b satisfies the upper semicontinuity, it follows that
afb=lim.,,o(a+ce)§ (b+ ee) in the strong operator topology. If & is monotone
complete in the sense that every bounded increasing net in the self-adjoint part has a
supremum with respect to the usual partial order, then we have a § b € &7, see [12]. The
operator geometric mean has the symmetric property: a f b = b §f a. In the case that a
and b commute, we have a f b = v/ab. For more details on the operator geometric mean,
see [11, 8].

A complex linear space £ is said to be an inner product &/-module (or a pre-Hilbert
&/-module) if & is a right &/-module together with a C*-valued map (z,y) — (z,y) :
Z x & — & such that

(i) (z, 0y + B2) = afz,y) + B(z,2) (2,y,2€ &, 0,0 €C),

(ii) (z,ya) = (z,y)a (z,y € X ,a € ),
(i) (y,z) = (z,9)* (z,y € X),

(iv) (z,z) >0 (xe.%”) and if (z,z) = 0, then z = 0.

We always assume that the linear structures of & and £ are compatible. Notice that
(ii) and (iii) imply (za,y) = a*(z,y) forall z,y € & ,a € &. If Z satisfies all conditions
for an inner-product &/-module except for the second part of (iv), then we call 2 a
semi-inner product &/-module.

In this case, we write || z ||:= /|| (z,z) ||, where the latter norm denotes the C*-norm
of &. If an inner-product &/-module 2 is complete with respect to its norm, then &
is called a Hilbert C*-module. In [6], from a viewpoint of operator theory, we presented
the following Cauchy-Schwarz inequality in the framework of a semi-inner product C*-
module over a unital C*-algebra: If z,y € Z such that the inner product (z,y) has a
polar decomposition (z,y) = u|(z,y)| with a partial isometry u € &, then

(6) [(z,y)] < u™{z,z)uf (y,9)-

Under the assumption that £ is an inner product &/-module and (y,y) is invertible,
the equality in (6) holds if and only if zu = yb for some b € &/. As applications of the
Cauchy-Schwarz inequality (6), we cite [5, 18].

An element z of a Hilbert C*-module & is called nonsingular if the element (z,z) € &/
is invertible. The set {z;} C & is called orthonormal if (z;, z;) = é;;e. For more details
on Hilbert C*-modules, see [16].

3. MAIN THEOREM

Fiest of all, we show the following Selberg type inequality in a Hilbert C*-module.



Theorem 1. Let Z be an inner product C*-module over a unital C*-algbera &f. If
Z,Y1,...,Yn are nonzero vectors in & such that yi,...,y, are nonsingular, then

n

(7) > () (ZKZ/j,yi}l) (yi, 7) < (z, 7).

=1

The equality in (7) holds if and only if x = >, ysa; for some a; € & andi=1,...,n
such that for arbitrary i # j (yi,y;) = 0 or [{y;, vidlai = (s, yj)a;. -

Theorem 1 is simultaneous extensions of the Bessel inequality [4] and the Cauchy-
Schwarz inequality [6] in a Hilbert C*-module. As a matter of fact, if {y1,...,yn} is
orthonormal in Theorem 1, then we have the Bessel inequality:

> ) < (@)

holdsforallz € . If n = 1 and y = y; in Theorem 1 and (z, y) has a polar decomposition
(z,y) = u|({z,y)| with a partial isometry u € &, then we have u|(z, y)|(y,y) " [{y, z)|u* <
(z,z) and hence

9| = Kz ) [y 9) [y, )| £ (v, 9) < w(z,2)u d (y,9).
This implies the Cauchy-Schwarz inequality (6).

To prove Theorem 1, we need the following two lemmas:

Lemma 2. Ifa € &, then the operator matriz on & ® &

a= (=1

is positive, and (g) € N(A) if and only if |a*|¢ = an, where N(A) is the kernel of A.
Lemma 3. For any y1,%s,...,Yn € Z

(biv1) - (W1, Un) Z?:l‘(yjaylﬂ 0
. < .

Wmt1) () 0 S vl
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Proof of Theorem 1 For each i = 1,...,n, put ¢ = Z?=1|(yj,yi)|. Since y; is
nonsingular, it follows that ¢; is invertible in &/. It follows from Lemma 3 that

n

Z(x Yi)ci <yuy1> Hysr )

=1

v - Wuw)\ [N, x)
=((x,y1)01'1"-(x,yn)c;1)( ) ( e )
(ynayl) o+ (YnyYn) Cn (yn,x)

a 0 cl_1<y17$>
< (=, p)ert - (z,ym)cr )

0 Cn c;l(yn,a:)
= Z =, yi)er (v, @

and this implies
n
(z - Zyz (yi,z), @ — Zyici‘l(yi, z))

CE z —22 z yz yn +Z z yz yza?/a) <yJ’ >

i=1
n

< (IL',:I?) - Z(x yz) (yu )

i=1

Hence we have the desired inequality (7).
The equality in (7) holds if and only if the following (8) and (9) are satisfied:

(8) L= Zyz y’n

and for arbitrary ¢ # j

-1

9 2, e Mo, |{s» 1) ~(y¢,yj)) (ci (ww)) _

©) (e (L) (o) (Gaf )

Put A= (K?(J?JJ ’ y; yy’jyy’ ) and it follows that the condition (9) holds if and only if
Js 1, (3] _7

i ,)) () ( Ny )) (0>
~— A = ]
( (yJ» ) <y.7? ) 0
Hence it follows from Lemma 2 that the condition (9) is equivalent to the following (10)
and (11): For arbitrary i # j

or

(11) w5, widlei™ (ui, 7) = (ys, ys) 5 (s, @)



Conversely, suppose that z = > . y;0; for some a; € &/ and for i # j (y;,9;) = 0 or
l(yj7 vi)|as = (yi,yj)aj. Then

-1 q

Z z,9:) (Z’ v, va) ) (yi 2) = Z z, %) (Zl Yir Yi) > Z@h%’)aj
— Z T yz (Zl(ymyz)I) Zl(yj,yiﬂai
= Z z, ¥) (Z (s, i |> (ZI(%M!) a;

= Z<x7yi>az
= (z,z).

Whence the proof is complete. O

Remark 4. (1) In the case that 2" is a Hilbert space, the equality condition |(y;, ¥:)|a; =
(¥i,Yj)a; in Theorem 1 implies the condition (2) in Introduction. In fact, for some scalars
Qi, G € C, it follows that (aiyi,ajyj> = a;‘(yi,yj)aj = af|(yj,y¢)|ai > 0, and |<:_l/_7,yl>| =
|(y5, ys)*| implies |a;| = |a].

(2) In the Hilbert space setting, K. Kubo and F. Kubo [14] showed another proof of
Selberg’s inequality (1) using Gersgorin’s location of eigenvalues [13, Theorem 6.1.1] and
a diagonal domination theorem of positive semidefinite matrix.

4. APPLICATIONS

In [4], Dragomir, Khosravi and Moslehian showed a version of the Bessel inequality and
some generalizations of this inequality in the framework of Hilbert C*-modules. Moreover,
in [3], Bounader and Chahbi showed a type and refinement of Selberg inequality in Hilbert
C*-modules. In this section, by using Theorem 1, we consider several Hilbert C*-module
versions of the Selberg inequality and the Bessel inequality.

Bounader and Chahbi in [3, Theorem 3.1] showed that if £ is an inner product C*-
module and y1, ..., Yy, are nonzero vectors in 2, and x € £, then

- l(yi,a:)P < (CL‘,.’IZ)

; S I sy |~

By Theorem 1, we have the following corollary, which is an improvement of (12):

(12)

Corollary 5. Let & be an inner product C*-module over a unital C*-algbera &7. If
Z,Y1,...,Yn are nonzero vectors in Z such that yi,...,yn are nonsingular, then

o < (z,z).

y?d
Z [y (%.%)
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Moreover, Bounader and Chahbi showed a Hilbert C*-module version of Fujii-Nakamoto
type (3), which is a refinement of (12): If y and yi, ..., y, are nonzero vectros in 2" such
that (y,y;) =0fori=1,...,n, andxe &, then

(13) \(y, 22 + Z > Zl’l“ MJ) 7 @) ISl @) 1 (z,2).

We show a Hilbert C*-module version of a refinement of the Selberg inequality due to
Fujii and Nakamoto, which is another version of (13):

Theorem 6. Let & be an inner product C*-module over a unital C*-algbera <. If
Z,Y, Y1,---,Yn are nonzero vectors in & such that y1,...,Yn are nonsingular, (y,y;) =0
fori=1,---,n and (z,y) = ul{z,y)| is a polar decomposition in &, i.e., u € & is a
partial isometry, then

|(y,x)| S U*<y)y>u ﬁ <.’17,CC> - Z(xay2> (Z I(%a%)l) (yiax>

(_<. w(y, y)u (w,x>)'

In (3, Corollary 3.5], Bounader and Chahbi showed a Hilbert C*-module version of
Bombieri type (4): If y1,...,yn are nonzero vectors in £ and z € £, then

n

(14) ZI v o)’ < (z,7)m Iy i) Il

1< <n
i=1 j=1

We show a Hilbert C*-module version of Bombieri type, which is an improvement of
(14):

Theorem 7. Let & be an inner product C*-module over a unital C*-algbera 7. If
Z,Y1,- .., Yn are nonzero vectors in £ such that y.,...,y, are nonsingular, then

n
2!(%@)? < (2,2) max | ZI Ui v | -
=

As a corollary, we have the following Boas-Bellman type inequality [3, Corollary 3.6]:
Corollary 8. Let Z be an inner product C*-module over a unital C*-algbera &. If

Z,Y1,- -, Yn are nonzero vectors in & such that y, . .,yn are nonsingular, then
n
5l )P < (@2 (s 1 i |+~ ) max | s 1)

=1
Finally, we show a Mitrinovié-Peéari¢-Fink type inequality [17, Theorem 5 in pp394] in
Hilbert C*-modules, which is another version of [4, Theorem 3.8]:

Theorem 9. Let Z be an inner product C*-module over a unital C*-algbera &. If
Z,Y1,---,Yn are nonzero vectors in Z and ay,--- ,a, € & such that yy,...,y, are non-
singular and (z, Y o, viai) = ul(z, > o, Yiai)| is a polar decomposition in &, i.e., u € &
is a partial isometry, then

|zxm|<u v, 2 (Za (Dyg,yz) )
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